

TUESDAY, 2018/03/20 READING: SIPSER 3.1

THE BIG PICTURE CHOMSKY HIERARCHY

Turing machines

are more powerful than

CFGs and PDAs

are more powerful than

DFAs, NFAs, and regular expressions

CHURCH-TURING THESIS IN MODERN LANGUAGE

Intuitive notion of algorithm

Turing machine algorithm

TURING MACHINES OVERVIEW

- Tape that has a left end and extends infinitely to the right
- Head that moves across the cells of the tape
- State (just like finite and pushdown automata)

TURING MACHINES INITIAL CONFIGURATION

- Tape initialized to input string followed by blanks (_)
- Head starts at first cell of state
- State is the start state (q₀)

where D can be L (left), S (stay), or R (right)

If in state q and read symbol a_1 or a_2 then move in direction D and go to state r

TURING MACHINES

TRANSITIONS

If a state has *no* transition for a symbol, assume there is an implicit transition to the reject state.

TURING MACHINES THREE POSSIBLE OUTCOMES

accept and halt	by entering q _{accept}
reject and halt	by entering q _{reject}
loop	otherwise

TURING MACHINES RECOGNIZING AND DECIDING LANGUAGES

Turing-recognizable: If the string is in *L*, then accept and halt Otherwise, reject and halt, **or loop**

(Turing-)decidable: If the string is in *L*, then accept and halt Otherwise, reject and halt

TURING MACHINES THREE WAYS OF WRITING

- Formal description: tuple and table, or state diagram
- Implementation description: pseudocode
 - Describes exact contents of tape and motion of head
 - Arithmetic, etc. not allowed
 - Should enable the reader to reimplement the machine
- High-level description:
 - Should convince the reader that the machine exists

TURING MACHINES EXAMPLE IMPLEMENTATION DESCRIPTION

 $A = \{0^n \mid n \text{ is a power of } 2\}$

 $M_2 =$ "On input string w:

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the contained more than a single 0 and the number of 0s was odd, *reject*.

4. Return the head to the left-hand end of the tape.

5. Go to stage 1."

TURING MACHINES EXAMPLE FORMAL DESCRIPTION (STATE DIAGRAM)

TURING MACHINES YOUR TURN

Write a state diagram for a Turing machine recognizing the language $\{a^{2n} \mid n \ge 0\}.$

TURING MACHINES YOUR TURN

Write an implementation description, then a state diagram for a Turing machine recognizing the language $\{ww^R \mid w \in \{0,1\}^*\}.$

THURSDAY, 2018/03/22 READING: SIPSER 3.2

CHURCH-TURING THESIS IN MODERN LANGUAGE

Intuitive notion of algorithm

Turing machine algorithm

CHURCH-TURING THESIS WHY SHOULD WE BELIEVE IT?

- Turing's original argument
- Convergence of several proposed models
 - Turing machines (1936)
 - Untyped lambda calculus (1936)
 - Partial recursive functions (1920, 1935, 1952)
 - Unrestricted (type 0) grammars (1956)

CHURCH-TURING THESIS 1+1=2 IN LAMBDA CALCULUS $(\lambda m.\lambda n.\lambda f.\lambda x.mf(nfx))(\lambda f.\lambda x.fx)(\lambda f.\lambda x.fx)$ $(\lambda n.\lambda f.\lambda x.(\lambda f.\lambda x.fx)f(nfx))(\lambda f.\lambda x.fx)$ $\lambda f. \lambda x. (\lambda f. \lambda x. fx) f((\lambda f. \lambda x. fx) fx)$ $\lambda f. \lambda x. (\lambda x. fx) ((\lambda f. \lambda x. fx) fx)$ $\lambda f. \lambda x. f((\lambda f. \lambda x. fx) fx)$ $\lambda f. \lambda x. f((\lambda x. fx)x)$ $\lambda f. \lambda x. f(fx)$

CHURCH-TURING THESIS WHY SHOULD WE BELIEVE IT?

- Turing's original argument
- Convergence of several proposed models
 - Turing machines (1936)
 - Untyped lambda calculus (1936)
 - Partial recursive functions (1920, 1935, 1952)
 - Unrestricted (type 0) grammars (1956)
- Today: Explore extensions to Turing machines

ALL OF UNDERGRADUATE COMPUTER SCIENCE ACCORDING TO ME

ALL OF UNDERGRADUATE COMPUTER SCIENCE ACCORDING TO ME

TURING MACHINES DISCUSS

What do computers (or computer languages) have that Turing Machines don't?

variables	output of strings, numbers, etc.
numbers, arithmetic	output, e.g.,graphics, sound, music
process one character at a time	input, e.g., mouse, keyboard
loops, if/then/else	network
functions	
data structures	
random access memory	
concurrency	
classes	

MULTITAPE TURING MACHINES IDEA

- Fixed (usually small) number of tapes
- One head per tape, each moving independently
- Single global state

EQUIVALENCE WITH SINGLE-TAPE

How do you convert a multitape Turing machine into an equivalent single-tape Turing machine?

MULTITAPE TURING MACHINES EQUIVALENCE WITH SINGLE-TAPE

...

NONDETERMINISTIC TURING MACHINES IDEA

Machine will follow both transitions in two computation branches

NONDETERMINISTIC TURING MACHINES IDEA

accept	when any branch
and halt	enters q _{accept}
reject	when all branches
and halt	enter q _{reject}
loop	otherwise

NONDETERMINISTIC TURING MACHINES EQUIVALENCE WITH DETERMINISTIC

How do you convert a nondeterministic Turing machine into an equivalent deterministic Turing machine?

NONDETERMINISTIC TURING MACHINES EQUIVALENCE WITH DETERMINISTIC MULTITAPE

Each string here selects a branch: choose #1, then #2, etc. Enumerate all branches in BFS order: 1, 2, 3, ..., 11, 12, 13, ..., 21, 22, 23, ...

NONDETERMINISTIC TURING MACHINES EQUIVALENCE WITH DETERMINISTIC SINGLE-TAPE

q 1	0	0	1	0	#	1	q ₂	0	1	0	#	•••
------------	---	---	---	---	---	---	-----------------------	---	---	---	---	-----

- Tape holds a queue of simulated configurations
 - State on tape means head is on next square
- While front configuration is not accepting:
 - For each possible move in front configuration:
 - Push new configuration to back of queue
 - Pop front configuration

RANDOM ACCESS MACHINES IDEA

	1	0	0	123	5	0	-6	7	1	-88	1	•••
--	---	---	---	-----	---	---	----	---	---	-----	---	-----

$X[i] \leftarrow C$	write constant
$X[i] \leftarrow X[j] + X[k]$	add (also subtract) cells
$X[i] \leftarrow X[X[j]]$	copy from dereferenced cell
$X[X[i]] \leftarrow X[j]$	copy to dereferenced cell
TRA <i>m</i> if <i>X</i> [<i>j</i>] > 0	conditional branch

RANDOM ACCESS MACHINES EQUIVALENCE WITH TURING MACHINES

How do you convert a random access machine into an equivalent multitape Turing machine?

RANDOM ACCESS MACHINES EQUIVALENCE WITH TURING MACHINES

1	0	0	123	5	0	-6	7	1	-88	1	•••
---	---	---	-----	---	---	----	---	---	-----	---	-----

becomes

\$	*	0	#	1	*	1	1	#	1	1	•••
----	---	---	---	---	---	---	---	---	---	---	-----

- Cook-Reckhow targeted a multitape TM: additional tapes for an address register, a value register, and scratch space?
- I don't know how they represented negative numbers

RANDOM ACCESS MACHINES EQUIVALENCE WITH TURING MACHINES

Demo: C code → ELVM assembly → Turing machine https://github.com/shinh/elvm

TURING MACHINES

WHAT'S NEXT?

- The most powerful Turing machine
- Is there a language that is undecidable?
- What other languages are undecidable?
- Is there really nothing beyond Turing machines?