
Theory of Computing
CSE 30151

TUESDAY, 2018/03/20
READING: SIPSER 3.1

CHOMSKY HIERARCHY

THE BIG PICTURE

Turing machines
are more powerful than

CFGs and PDAs
are more powerful than

DFAs, NFAs, and
regular expressions

IN MODERN LANGUAGE

CHURCH-TURING THESIS

Intuitive notion of algorithm
=

Turing machine algorithm

OVERVIEW

TURING MACHINES

• Tape that has a left end and extends infinitely to the right

• Head that moves across the cells of the tape

• State (just like finite and pushdown automata)

0 0 0 0 _ …
head

tape

INITIAL CONFIGURATION

TURING MACHINES

head

tape

• Tape initialized to input string followed by blanks (_)

• Head starts at first cell of state

• State is the start state (q0)

0 0 0 0 _ …

TRANSITIONS

TURING MACHINES

q r
a→b, D

If in state q and read symbol a
then write b, move in direction D, and go to state r

where D can be L (left), S (stay), or R (right)

q r
a1, a2 →D

If in state q and read symbol a1 or a2
then move in direction D and go to state r

TRANSITIONS

TURING MACHINES

If a state has no transition for a symbol, assume there
is an implicit transition to the reject state.

q

ra→b, D

r′a→b′, D′

THREE POSSIBLE OUTCOMES

TURING MACHINES

accept 
and halt

by entering qaccept

reject 
and halt

by entering qreject

loop otherwise

RECOGNIZING AND DECIDING LANGUAGES

TURING MACHINES

Turing-recognizable:
If the string is in L, then accept and halt

Otherwise, reject and halt, or loop

(Turing-)decidable:
If the string is in L, then accept and halt

Otherwise, reject and halt

THREE WAYS OF WRITING

TURING MACHINES

• Formal description: tuple and table, or state diagram

• Implementation description: pseudocode

• Describes exact contents of tape and motion of head

• Arithmetic, etc. not allowed

• Should enable the reader to reimplement the machine

• High-level description:

• Should convince the reader that the machine exists

EXAMPLE IMPLEMENTATION DESCRIPTION

TURING MACHINES

A = {0n | n is a power of 2}

M2 = “On input string w:

1. Sweep left to right across the tape, crossing off every other 0.

2. If in stage 1 the tape contained a single 0, accept.

3. If in stage 1 the contained more than a single 0 and the
number of 0s was odd, reject.

4. Return the head to the left-hand end of the tape.

5. Go to stage 1.”

EXAMPLE FORMAL DESCRIPTION (STATE DIAGRAM)

TURING MACHINES

q1 q2 q3

qacceptqreject q4

q5

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

0 0 0 0 _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ 0 0 0 _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 0 _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 0 _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x 0 x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

q1 q2 q3

qacceptqreject q4

q5

_ x x x _ _ _ _ …

_ → R 
x → R

0 → _, R 0 → x, R

_ → R 0 → R 0 → x, R

x → R

x → Rx → R
_ → R _ → L

0 → L 
x → L

_ → R

YOUR TURN

TURING MACHINES

Write a state diagram for a Turing machine
recognizing the language

{a2n | n ≥ 0}.

YOUR TURN

TURING MACHINES

Write an implementation description,
then a state diagram for a Turing machine

recognizing the language
{wwR | w ∈ {0,1}*}.

THURSDAY, 2018/03/22
READING: SIPSER 3.2

IN MODERN LANGUAGE

CHURCH-TURING THESIS

Intuitive notion of algorithm
=

Turing machine algorithm

WHY SHOULD WE BELIEVE IT?

CHURCH-TURING THESIS

• Turing’s original argument

• Convergence of several proposed models

• Turing machines (1936)

• Untyped lambda calculus (1936)

• Partial recursive functions (1920, 1935, 1952)

• Unrestricted (type 0) grammars (1956)

1+1=2 IN LAMBDA CALCULUS

CHURCH-TURING THESIS

(λm.λn.λf.λx.mf(nfx))(λf.λx.fx)(λf.λx.fx)

(λn.λf.λx.(λf.λx.fx)f(nfx))(λf.λx.fx)

λf.λx.(λf.λx.fx)f((λf.λx.fx)fx)

λf.λx.(λx.fx)((λf.λx.fx)fx)

λf.λx.f((λf.λx.fx)fx)

λf.λx.f((λx.fx)x)

λf.λx.f(fx)

WHY SHOULD WE BELIEVE IT?

CHURCH-TURING THESIS

• Turing’s original argument

• Convergence of several proposed models

• Turing machines (1936)

• Untyped lambda calculus (1936)

• Partial recursive functions (1920, 1935, 1952)

• Unrestricted (type 0) grammars (1956)

• Today: Explore extensions to Turing machines

ACCORDING TO ME

ALL OF UNDERGRADUATE COMPUTER SCIENCE

Logic Design

Architecture

Theory

Fundamentals
Systems

Programming
Data Structures

Turing machines

Algorithms

RAM model

Operating SystemsCompilers

ACCORDING TO ME

ALL OF UNDERGRADUATE COMPUTER SCIENCE

Logic Design

Architecture

Theory

Fundamentals
Systems

Programming
Data Structures

Turing machines

Algorithms

RAM model

Operating SystemsCompilers

DISCUSS

TURING MACHINES

What do computers (or computer languages)
have that Turing Machines don’t?

variables output of strings, numbers, etc.
numbers, arithmetic output, e.g.,graphics, sound, music

process one character at a time input, e.g., mouse, keyboard
loops, if/then/else network

functions
data structures

random access memory
concurrency

classes

IDEA

MULTITAPE TURING MACHINES

• Fixed (usually small) number of tapes

• One head per tape, each moving independently

• Single global state

0 0 0 0 _ _ _ _ _ _ _ …

1 1 0 1 1 _ _ _ _ _ _ …

EQUIVALENCE WITH SINGLE-TAPE

MULTITAPE TURING MACHINES

How do you convert a multitape
Turing machine into an equivalent

single-tape Turing machine?

EQUIVALENCE WITH SINGLE-TAPE

MULTITAPE TURING MACHINES

0 0 0 0 _ _ _ _ _ _ _ …

1 1 0 1 1 _ _ _ _ _ _ …

0 0 0 0 # 1 1 0 1 1 …

becomes

IDEA

NONDETERMINISTIC TURING MACHINES

q

ra→b, D

r′a→b′, D′

Machine will follow both transitions
in two computation branches

IDEA

NONDETERMINISTIC TURING MACHINES

accept 
and halt

when any branch  
enters qaccept

reject 
and halt

when all branches 
enter qreject

loop otherwise

EQUIVALENCE WITH DETERMINISTIC

NONDETERMINISTIC TURING MACHINES

How do you convert a
nondeterministic Turing machine
into an equivalent deterministic

Turing machine?

EQUIVALENCE WITH DETERMINISTIC MULTITAPE

NONDETERMINISTIC TURING MACHINES

0 0 1 0 _ _ _ _ _ _ _ …

x x # 0 1 x _ _ _ _ _ …

1 2 3 3 2 3 1 2 1 1 3 …

Each string here selects a branch: choose #1, then #2, etc.
Enumerate all branches in BFS order: 1, 2, 3, …, 11, 12, 13, …, 21, 22, 23, …

EQUIVALENCE WITH DETERMINISTIC SINGLE-TAPE

NONDETERMINISTIC TURING MACHINES

• Tape holds a queue of simulated configurations

• State on tape means head is on next square

• While front configuration is not accepting:

• For each possible move in front configuration:

• Push new configuration to back of queue

• Pop front configuration

q1 0 0 1 0 # 1 q2 0 1 0 # …

IDEA

RANDOM ACCESS MACHINES

1 0 0 123 5 0 -6 7 1 -88 1 …

X[i] ← C write constant

X[i] ← X[j] + X[k] add (also subtract) cells

X[i] ← X[X[j]] copy from dereferenced cell

X[X[i]] ← X[j] copy to dereferenced cell

TRA m if X[j] > 0 conditional branch

EQUIVALENCE WITH TURING MACHINES

RANDOM ACCESS MACHINES

How do you convert a random
access machine into an equivalent

multitape Turing machine?

EQUIVALENCE WITH TURING MACHINES

RANDOM ACCESS MACHINES

• Cook-Reckhow targeted a multitape TM: additional tapes for an
address register, a value register, and scratch space?

• I don’t know how they represented negative numbers

$ * 0 # 1 * 1 1 # 1 1 …

1 0 0 123 5 0 -6 7 1 -88 1 …

becomes

EQUIVALENCE WITH TURING MACHINES

RANDOM ACCESS MACHINES

Demo:
C code → ELVM assembly → Turing machine

https://github.com/shinh/elvm

https://github.com/shinh/elvm

WHAT’S NEXT?

TURING MACHINES

• The most powerful Turing machine

• Is there a language that is undecidable?

• What other languages are undecidable?

• Is there really nothing beyond Turing machines?

