Homework 3: Non-regular languages

CSE 30151 Spring 2018
Modified 2018/02/14
Due Thursday, 2018/02/22 at 10:00pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them in the library or using a smartphone to get them into PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw3.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw3-123.pdf, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Sakai. Don't forget to click the Submit button!

Problems (10 points each)

1. Regular expressions vs. Unix regular expressions. Regular expressions and Unix regular expressions have some superficial differences, but also some deeper ones that affect the class of languages recognized.
(a) Unix regular expressions do not have \emptyset, because it's not really needed. Prove that if L is a nonempty regular language, it can be described by a regular expression without \emptyset. Hint: Use induction to show that any regular expression can be converted into either just \emptyset or an expression without \emptyset.
(b) Unix regular expressions have backreferences. ${ }^{1}$ Give an example of a Unix regular expression that uses backreferences to describe a nonregular language, and prove that this language is not regular. We want you to get

[^0]practice writing a non-regularity proof, so although you may use Examples 1.73-77, do not simply cite one of them; please write out a full proof.

2. Binary addition.

(a) [Problem 1.32] Let

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\},
$$

that is, an alphabet of eight symbols, each of which is a 3 -tuple of binary digits. Thus, a string over Σ_{3} gives three rows of binary digits. Show that the following is regular:

$$
B=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the sum of the top two rows }\right\} .
$$

Hint: Since it's easier to think about addition from right to left, design an automaton for B^{R} first, then convert it into an automaton for B.
(b) [Problem 1.53] Let $\Sigma=\{0,1,+,=\}$, and prove that the following is not regular:
$A D D=\{x=y+z \mid x, y, z$ are binary natural numbers, and $x=y+z$ is true $\}$.
3. Two similar but different languages [Problem 1.49].
(a) Let $B=\left\{1^{k} y \mid y \in\{0,1\}^{*}\right.$ and y contains at least $k 1 \mathrm{~s}$, for $\left.k \geq 1\right\}$. Show that B is a regular language. Hint: Try out some strings to see what does and doesn't belong to B, in order to find another simpler way of thinking about B.
(b) Let $C=\left\{1^{k} y \mid y \in\{0,1\}^{*}\right.$ and y contains at most k s, for $\left.k \geq 1\right\}$. Prove that C is not a regular language.

[^0]: ${ }^{1}$ http://www.regular-expressions.info/backref.html

