# Homework 1: Strings and languages 

CSE 30151 Spring 2018
Due: 2018/01/25 10:00pm

## Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them in the library or using a smartphone to get them into PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw1.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw1-123.pdf, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Sakai. Don't forget to click the Submit button!


## Problems

Each problem is worth 10 points.

1. Strings and languages. How would you represent each of the following sets as a formal language? (There are many possible right answers.) For each set, write what the alphabet would be. Describe informally how to encode an element as a string. Give an example of a string belonging to the language and a string not belonging to the language. You don't need to explain how you would actually decide whether a string belongs to the language.
(a) The set of syntactically correct C programs.
(b) The set of all solvable Sudoku boards.
(c) The set of all ways to walk from North Dining Hall to DeBartolo Hall.
2. String homomorphisms. If $\Sigma$ and $\Gamma$ are finite alphabets, a string homomorphism is a function $\phi: \Sigma^{*} \rightarrow \Gamma^{*}$ that has the property that for any $u, v \in \Sigma^{*}$, $\phi(u v)=\phi(u) \phi(v)$.
Intuitively, a string homomorphism does a "search and replace" where each symbol is replaced with a (possibly empty) string. For example, the function $\phi:\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{~F}\}^{*} \rightarrow\{0,1\}^{*}$ that converts hexadecimal numbers (including $\varepsilon$ ) to binary is a string homomorphism because each hex digit is replaced with four bits $(0 \mapsto 0000,1 \mapsto 0001,2 \mapsto 0010, \ldots, F \mapsto 1111)$.
Prove the above intuition more formally. That is, prove that if $\phi$ is a string homomorphism, then for any $w=w_{1} \cdots w_{n}$ (where $n \geq 0$ and $w_{i} \in \Sigma$ for $1 \leq i \leq n$ ), we have $\phi(w)=\phi\left(w_{1}\right) \cdots \phi\left(w_{n}\right)$. Use induction, as follows:
(a) Basis: Show that $\phi(\varepsilon)=\varepsilon$.
(b) Induction step: Assuming that, for any $w=w_{1} \cdots w_{k}$, we have $\phi(w)=$ $\phi\left(w_{1}\right) \cdots \phi\left(w_{k}\right)$, show that, for any $w=w_{1} \cdots w_{k+1}$, we have $\phi(w)=$ $\phi\left(w_{1}\right) \cdots \phi\left(w_{k+1}\right)$.
3. Language classes. Recall that a language class is a set of languages. In this course, we'll study several language classes, and as a warm-up to this concept, we'll think about the class of finite languages.
Assume that $\Sigma$ is a finite, nonempty alphabet. Let FINITE be the class of all finite languages over $\Sigma$, and let

$$
\operatorname{coFINITE}=\{L \mid \bar{L} \in \text { FINITE }\},
$$

where, for any language $L$ over $\Sigma, \bar{L}$ is the complement of $L$, that is, $\Sigma^{*} \backslash L$.
(a) Are there any languages in FINITE $\cap$ coFINITE? Give an example language or briefly prove that there is none.
(b) Are there any languages not in FINITE $\cup$ coFINITE? Give an example language or briefly prove that there is none.

