
GRNT: GATE-REGULARIZED NETWORK TRAINING FOR IMPROVING MULTI-SCALE
FUSION IN MEDICAL IMAGE SEGMENTATION

Yizhe Zhang1⋆ Pengfei Gu2⋆ Yejia Zhang2 Chaoli Wang2 Danny Z. Chen2

1Nanjing University of Science and Technology, Nanjing, Jiangsu, China
2University of Notre Dame, Department of Computer Science and Engineering, Notre Dame, IN, USA

ABSTRACT

Multi-scale fusion is a key for semantic segmentation of
medical images. Recent deep learning methods added net-
work complexity to achieve better multi-scale fusion results.
However, given the already very expressive architectures
(e.g., U-Net), an interesting question is whether additional
complexity is necessary for achieving more robust multi-
scale fusion performance. In this paper, we proposed a new
method for improving the multi-scale fusion performance of
a medical image segmentation model. We create a set of bi-
nary gates at fusing locations that allow us to control forward
and backward flows in training. A gate on-off schedule is
imposed so that high-scale (level) features could drive the
generation of segmentation, while low-scale features serve as
complimentary for reconstructing shape details. Our method
is effective, easy to implement, and occurs no extra cost when
deploying the trained model. Experiments show that our
gate-regularized network training (GrNT) improves widely
adopted models (e.g., U-Net, Attention U-Net, and Den-
seVoxNet) on three segmentation datasets (2017 ISIC Skin
Lesion segmentation (2D), MM-WHS CT (3D), and 2016
HVSMR (3D)).

1. INTRODUCTION

Fusing multi-scale information plays a key role in attaining
robust semantic segmentation of medical images. Low-level
features are essential for reconstructing the fine details of the
segmented shapes, but lack sufficient semantic information
to determine object classes due to the limited field of view
and encoding parameters. On the other hand, high-level fea-
tures are rich in semantic information, but lack sufficient res-
olution/details to reconstruct shape details. Combining high-
level and low-level features effectively is a key to medical im-
age segmentation. For example, U-Net [1] fuses multi-scale
information from bottom to top incrementally with concate-
nation and convolution operations, DCN [2] combines multi-
scale information via a one-time concatenation following con-
volution layers for information fusion, and DenseVoxNet [3]
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Fig. 1. U-Net [1], DCN [2], DVN [3], and HRNet [4] with
gates embedded during the training process. * indicates a
deeper version of the original network.

fuses multi-scale information with dense skip connections be-
tween convolution layers/blocks.

Recent developments designed additional modules for im-
proving multi-scale fusion. For example, Attention U-Net [5]
utilizes features from deeper layers and forms attention maps
to apply on shallower layer features, aiming to guide low-
level features in generating segmentation. In a similar princi-
ple, Inf-Net [6] designed reverse attention modules to allow
higher-level features to guide lower-level features in generat-
ing segmentation of COVID-19 lung CT scans.

On the other hand, studies for better network training
aimed to improve segmentation performance without adding
additional complexity to the original networks. The No
New-Net work [7] demonstrated that a well-trained U-Net
is difficult to beat on the BRATS18 dataset. A few meth-
ods [8, 9, 10] opted to train better medical segmentation
networks using data augmentation techniques. Recently,
methods for learning adaptive embedding have been proposed
to consider incremental classes and model capacities [11, 12].

In this paper, we propose a new gate-regularized network
training (GrNT) method to improve multi-scale information
fusion for medical image segmentation networks. Work-
ing in a training perspective, GrNT does not add additional
complexity to the networks in test time. First, binary gates
are created and placed at locations where multi-scale feature
fusion occurs in a semantic segmentation network. Then, a



scheduled training process is designed to control the on/off
(1/0) of these gates so that the trained network produces seg-
mentation results in a way that higher-level features always
drive the generation of segmentation and lower-level features
serve only as complimentary for reconstructing fine shape
details. In test time, these added gates are disabled (removed)
to allow utilizing the full expressiveness of the network; thus,
no additional inference time/computation cost is incurred.
Experiments on three public segmentation datasets show that
our new GrNT method brings considerable accuracy im-
provement with state-of-the-art networks. Further, our GrNT
method enables a more informative error analysis that can
measure how much a particular set of features may contribute
to the segmentation errors.

2. GATE-REGULARIZED NETWORK TRAINING
(GRNT)

2.1. Gate Design, Placement, and Training

Suppose a fully convolutional network (FCN) can be ex-
pressed as a series of encoding functions followed by a series
of decoding functions. Given an input image x, on the encod-
ing side, low level features are extracted via τlow = ϕlow(x);
middle-level features are then computed on top of the ex-
tracted low-level features, as τmid = ϕmid(τlow); finally,
high-level features are extracted via τhigh = ϕhigh(τmid).
Low-level features are rich in image fine details but are not
sufficient in providing semantic predictions, due to the lim-
ited field of view and encoding parameters. On the other
hand, high-level features contain more reliable semantic in-
formation but lack image fine details due to the pooling
operations (e.g., max-pooling, 2-stride Convolution (Conv))
applied along the encoding path.

With the low, mid, and high level features thus obtained,
the decoding side is normally carried out to generate seg-
mentation results. In many recent FCN designs, the de-
coder consists of not only up-sampling but also convolu-
tional layers (e.g., U-Net). In a simple form, we express
the decoding operations as dfhigh = Dhigh(τhigh), dfmid =
Dmid(τmid, dfhigh), and dflow = Dlow(τlow, dfmid). Finally,
several convolution layers are used to transfer dflow into the
final segmentation map as seg = (argmax(ϕfinal(dflow))).

Given the above formulation, our GrNT method puts a
binary gate gh on top of ϕhigh, a binary gate gm on top of
ϕmid, and a binary gate gl on top of ϕlow. With these added
gates, the decoding operations are expressed as dfhigh =
Dhigh(gh × τhigh), dfmid = Dmid(gm × τmid, dfhigh), and
dflow = Dlow(gl × τlow, dfmid).

During network training, we explicitly control the on/off
(1/0) of these gates to encourage the high-level information
driving the generation of the segmentation results, and the
low-level information serving only to supply segmentation
shape details. Given a set of images x1, x2, . . . , xn and

Algorithm 1 Gate-regularized network training
1: function GRNT(xi, yi, i = 1, 2, . . . , n, maxiter, batchsize)
2: # Suppose three gates are used in training: gl is put on low-level features,

gm is put on mid-level features, and gh is put on high-level features.
3: Initialize segmentation network fgh,gm,gl ;
4: for iter ← 1 to maxiter do
5: gl ← 0, gm ← 0, gh ← 0;
6: if iter mod 3 == 1 then gl ← 0, gm ← 0, gh ← 1;
7: else if iter mod 3 == 2 then gl ← 0, gm ← 1, gh ← 1;
8: else gl ← 1, gm ← 1, gh ← 1;
9: Randomly select batchsize samples (Xiter, Y iter) from the

full training set;
10: Update network fgh,gm,gl using the error from
L(fgh,gm,gl (Xiter), Y iter);

11: return segmentation network fgh,gm,gl .

their corresponding label maps y1, y2, . . . , yn, using an FCN
fgl,gm,gh(x) with gates embedded at the multi-scale fusion
locations, our GrNT loss function can be written as

n∑
i=1

L(fgh=1,gm=0,gl=0(xi), yi) + L(fgh=1,gm=1,gl=0(xi), yi)

+ L(fgh=1,gm=1,gl=1(xi), yi)

(1)

whereL is a typical cross-entropy loss for segmentation tasks.
Using a mini-batch stochastic gradient descend method, we
optimize this loss function using Algorithm 1. After network
training, for normal inference, one can either remove the gates
or set all the gates as 1.

2.2. Architecture Case Study

In this section, we showcase how to apply our proposed GrNT
method to several widely used FCNs.

U-Net-type networks. We derive the above general for-
mula to fit the U-Net [1] architecture. The exact placements
of the gates are shown in Fig. 1 (top-left). During training,
the gates are scheduled as follows. Iter-1: g1 = 1, g2, g3, g4,
g5 = 0; iter-2: g1, g2 = 1, g3, g4, g5 = 0; iter-3: g1, g2, g3 =
1, g4 ,g5 = 0; iter-4: g1, g2, g3, g4 = 1, g5 = 0; iter-5: g1, g2,
g3, g4, g5 = 1; iter-6: g1 = 1, g2, g3, g4, g5 = 0; these patterns
continue iteratively. These gate placements and the training
schedule apply to Attention U-Net [5] since the concatena-
tions between multi-scale features follow a similar design as
the original U-Net.

DCN. Similar to U-Net, DCN [2] utilizes concatenation
to combine features across scales. Different from the incre-
mental fusion approach of U-Net, DCN concatenates all the
features of multiple scales at once and uses a sequence of con-
volutions following the concatenation to fuse the multi-scale
features and produce the final segmentation results. The exact
placements of the gates are shown in Fig. 1 (top-right). Dur-
ing training, the gates are scheduled as follows. Iter-1: g1 =
1, g2, g3, g4, g5, g6= 0; iter-2: g1, g2 = 1, g3, g4, g5, g6 = 0;
iter-3: g1, g2, g3 = 1, g4, g5, g6 = 0; iter-4: g1, g2, g3, g4= 1,



g5, g6 = 0; iter-5: g1, g2 ,g3, g4, g5 = 1, g6 = 0; iter-6: g1, g2
,g3, g4, g5, g6 = 1; iter-7: g1 = 1, g2, g3, g4, g5, g6 = 0; these
patterns continue.

DenseVoxNet (DVN). DenseVoxNet [3] utilizes dense
between-layer skip connections to progressively combine
earlier layer (lower-level) features with later layer (higher-
level) features. Placing gates and controlling the forward and
backward propagation flows in such fine-grained levels incur
additional challenges in gate design and scheduling. Instead
of putting gates at the layer-level, we create two gates and
put them at the stage-level (see Fig. 1 (bottom-left)). The
network output is then slightly modified from taking only
the 2nd stage’s output to combining (adding) the 1st stage’s
output with the 2nd stage’s output. During training, the gates
are scheduled as follows. Iter-1: g1 = 1, g2 = 0; iter-2: g1, g2
= 1; iter-3: g1 = 1, g2 = 0; these patterns continue.

HRNet. Fig. 1 (bottom-right) shows an architectural
overview of the state-of-the-art segmentation network/backbone
for HRNet [4]. It fuses multi-scale information between each
computation stage, where lower-level features are fused into
higher-level features. We put the multi-scale fusion gates at
the last stage.

During training, the gates are scheduled as follows. Iter-1:
g1 = 1, g2, g3, g4 = 0; iter-2: g1, g2 = 1, g3, g4 = 0; iter-3: g1,
g2, g3 = 1, g4 = 0; iter-4: g1, g2, g3, g4 = 1; iter-5: g1 = 1, g2,
g3, g4 = 0; these patterns continue.

2.3. Enabling a More Informative Error Analysis

As mentioned in Section 2.1, a segmentation network fgh,gm,gl

after gate-regularized training can be applied in a normal way
in which all the gates are set to 1. Setting all the gates to 1 is
equivalent to removing all the gates from the network. How-
ever, if one aims to perform a more thorough error analysis
when evaluating a segmentation network, these gates can be
useful to provide more information for the error analysis.

Segmentation errors are due to various causes; some are
caused by less accurate boundary reconstruction, and some
are caused by incorrect semantic prediction of target objects.
Traditionally, a trained network provides a single segmenta-
tion output, and we compare the output with the ground truth
(GT) annotation for evaluating the overall segmentation per-
formance. But, little effort has been conducted on determin-
ing whether a particular error (in an image) is caused by less
robust high-level (semantic) features or due to less accurate
low-level shape reconstruction. Our GrNT automatically pro-
vides a way to address this issue.

For a given test image xi, we apply the trained fgl,gm,gh

with different gates: ŷhi = fgl=0,gm=0,gh=1(xi) and ŷfulli =
fgl=1,gm=1,gh=1(xi). We compare ŷhi with the GT annotation
yi, and obtain a set Ph containing pixel locations exhibiting
errors. Similarly, we obtain pixel locations with errors in a set
P full by comparing ŷfulli with yi. Let P be the set containing
all the pixel locations in the test image xi. We take Ph∩P full

Table 1. Comparison of segmentation results on the 2017
ISIC Skin Lesion dataset. * indicates a deeper version of the
original network.

Method Jaccard index Dice Sensitivity Specificity
Yuan et al. [13] 0.765 0.849 0.825 0.975

Li et al. [14] 0.765 0.866 0.825 0.984
Mirikharaji et al. [15] 0.773 0.857 0.855 0.973

Xie et al. [16] 0.788 0.868 0.884 0.957

U-Net [1]* 0.778 0.877 0.815 0.986
w/ GrNT 0.785 0.882 0.829 0.986

Ablation: w/ random gating 0.774 0.875 0.815 0.985

Attention U-Net [5]* 0.779 0.878 0.821 0.985
w/ GrNT 0.791 0.886 0.846 0.981

Ablation: w/ random gating 0.770 0.873 0.807 0.987

DCN [2]* 0.787 0.883 0.822 0.987
w/ GrNT 0.794 0.887 0.832 0.987

Ablation: w/ random gating 0.778 0.877 0.817 0.987

to obtain the pixels with errors exclusively caused by high-
level semantic features. This additional performance metric
is a useful tool when one needs to find a more robust network
backbone during architecture search and/or model selection,
since errors caused by high-level features are directly caused
by a less robust backbone architecture.

3. EXPERIMENTS AND RESULTS

Implementation Details. Our GrNT method is implemented
with Tensorflow, trained on an Nvidia Tesla V100 Graphics
Card with 32GB GPU memory using the Adam optimizer
(β1 = 0.9, β2 = 0.999, and ϵ = 1e − 10). All the mod-
els are initialized using a Gaussian distribution and the “poly”
learning rate policy, Lr ×

(
1− iter

#iter

)
, is applied; the initial

learning rate is 5e−4, and the maximum number of iterations
is 60k times the number of gates embedded in the respective
model. We apply the standard data augmentation (e.g., ran-
dom cropping, rotation, and flipping) to reduce overfitting.
All the experiments are performed 5 times, each time with a
different random seed.

Only the mean values across the 5 runs are reported in the
tables below.
(1) The 2017 ISIC Skin Lesion Segmentation Dataset. This
dataset [17] aims to segment lesion boundaries in 2D dermo-
scopic images. It contains 2000 training, 150 validation, and
600 test images. Following [16, 13], we resize the images
to 224 × 224 as input, and apply a dual-threshold method to
generate the final results for all the settings. Table 1 presents
the results. First, observe that our GrNt can improve the per-
formance of multiple segmentation networks and backbones
consistently across nearly all the evaluation measures. Sec-
ond, by leveraging our GrNt, DCN [2]* attains the highest
Jaccard index, Dice, and specificity, though its sensitivity is
slightly lower than that of some other methods. This demon-
strates the effectiveness of our GrNt method.
(2) The 2017 MM-WHS CT Dataset. This dataset [18] aims
to segment seven cardiac structures (left/right ventricle blood
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Fig. 2. From left to right: raw images (C1), GT (C2), seg-
mentation using full features (C3), segmentation using only
high-level features (C4), differences between these two types
of segmentation results (C5), errors due to lower-level fea-
tures (C6), and errors due to high-level features (C7). Red:
false positives; green: false negatives.

cavity (LV/RV), left/right atrium blood cavity (LA/RA), my-
ocardium of the left ventricle (LV-myo), ascending aorta
(AO), and pulmonary artery (PA)) in 3D CT images. It con-
tains 20 unpaired CT images.

Our training/test split (16 and 4 images) is the same as
in [19]. Table 2 shows that our GrNT can consistently im-
prove segmentation results across multiple networks. The
improvements are especially noticeable for surface/boundary
based metrics (ADB and Hausdorff).

(3) The 2016 HVSMR Dataset. This dataset [20] is for seg-
mentation in 3D cardiovascular MR images, with two objects
of interest: blood pool and myocardium. Evaluations are per-
formed on the organizers’ server. We show in Table 3 that 3D
U-Net is improved by GrNT considerably.

Error Analysis. As described in Section 2.3, GrNT enables
disentangling segmentation errors caused by high-level fea-
tures and lower-level features. In inference, segmentation us-
ing high-level features is generated by setting g1 ← 1 and all
the other gates as 0. Segmentation using full features is at-
tained by setting all the gates as 1. The last two columns of
Fig. 2 showcase the disentangled segmentation errors caused
by lower-level features and high-level features.

Ablation Study. We conduct ablation study using the 2017
ISIC Skin Lesion and MM-WHS CT datasets to examine the
effectiveness of our scheduled gates in training. In each train-
ing iteration, instead of assigning specific values to the gates
(i.e., using the scheduled gates), we randomly assign 0 or 1 to
the gates (similar to random dropout), which we denote as “w/
random gating”. From Table 1 and Table 2, one may observe:
(1) when using random gating, the performance drops signifi-
cantly compared to our GrNT; (2) when using random gating,
in some cases, the performance can be even worse than that
of the original models. These observations demonstrate the
effectiveness of our GrNT.

Table 2. Comparison of segmentation results on the 2017
MM-WHS CT dataset. * indicates a deeper version of the
original network. AB denotes ablation study.

Method Metric LV RV LA RA LV-myo AO PA Mean
Payer et al. [21] Dice 0.918 0.909 0.929 0.888 0.881 0.933 0.840 0.900
Dou et al. [22] Dice 0.888 — 0.891 — 0.733 0.813 — —

HFA-Net [19]

Dice 0.946 0.893 0.925 0.897 0.910 0.964 0.830 0.909
Hausdorff 7.148 33.128 42.173 22.903 36.954 12.075 37.845 27.461

ADB 0.076 0.562 0.210 0.334 0.225 0.103 1.685 0.456
Chen et al. [23] Dice 0.919 — 0.911 — 0.877 0.927 — 0.909

U-Net [1]*
Dice 0.952 0.894 0.937 0.906 0.920 0.968 0.835 0.916

Hausdorff 5.837 35.081 18.014 28.942 8.423 8.621 31.814 19.534
ADB 0.073 0.682 0.158 0.266 0.113 0.067 1.567 0.418

w/ GrNT
Dice 0.952 0.901 0.933 0.911 0.921 0.973 0.843 0.920

Hausdorff 5.587 13.928 19.345 15.148 7.326 7.795 37.065 15.172
ADB 0.068 0.340 0.170 0.248 0.104 0.040 1.500 0.353

AB: w/ random gating
Dice 0.947 0.898 0.935 0.899 0.914 0.961 0.834 0.912

Hausdorff 14.969 28.033 29.419 17.187 26.875 18.553 42.928 25.424
ADB 0.150 0.605 0.185 0.311 0.129 0.138 1.671 0.456

Attention U-Net [5]*
Dice 0.952 0.898 0.937 0.908 0.921 0.969 0.838 0.918

Hausdorff 5.404 32.863 18.069 17.844 15.980 16.237 31.687 19.726
ADB 0.069 0.493 0.164 0.261 0.115 0.072 1.527 0.386

w/ GrNT
Dice 0.953 0.900 0.936 0.910 0.919 0.972 0.840 0.919

Hausdorff 6.041 13.923 12.875 14.260 6.544 7.590 36.395 13.947
ADB 0.068 0.325 0.165 0.243 0.110 0.041 1.547 0.357

AB: w/ random gating
Dice 0.949 0.897 0.936 0.882 0.912 0.954 0.833 0.909

Hausdorff 6.550 29.766 18.648 25.080 14.352 22.907 48.808 23.730
ADB 0.076 0.371 0.162 0.389 0.128 0.192 1.672 0.427

DCN [2]*
Dice 0.953 0.896 0.937 0.912 0.922 0.971 0.830 0.918

Hausdorff 9.148 15.282 12.180 14.201 12.404 12.789 32.461 15.458
ADB 0.069 0.385 0.163 0.238 0.108 0.066 1.628 0.380

w/ GrNT
Dice 0.951 0.905 0.940 0.906 0.922 0.972 0.834 0.920

Hausdorff 5.993 14.933 11.987 15.959 8.208 7.923 34.428 14.099
ADB 0.072 0.344 0.155 0.268 0.104 0.040 1.574 0.365

AB: w/ random gating
Dice 0.950 0.907 0.936 0.891 0.917 0.961 0.824 0.912

Hausdorff 5.753 14.887 11.186 15.306 8.334 10.604 37.746 15.031
ADB 0.073 0.376 0.150 0.318 0.111 0.080 1.658 0.395

DVN [3]
Dice 0.945 0.878 0.931 0.871 0.900 0.956 0.830 0.901

Hausdorff 35.249 74.381 86.127 77.582 41.516 49.993 55.525 60.053
ADB 0.096 0.765 0.335 1.858 0.761 0.300 1.684 0.828

w/ GrNT
Dice 0.948 0.883 0.931 0.874 0.913 0.960 0.833 0.906

Hausdorff 10.322 70.463 34.175 111.613 37.569 52.133 52.328 52.658
ADB 0.083 0.441 0.271 0.719 0.143 0.212 1.652 0.503

Table 3. Comparison of segmentation results on the 2016
HVSMR dataset.

Method
Myocardium Blood pool Overall

scoreADB Dice Hausdorff ADB Dice Hausdorff
3D U-Net [24] 0.858 0.791 5.026 0.848 0.934 8.125 −0.079

w/ GrNT 0.778 0.805 4.475 0.800 0.934 7.287 0.083

4. CONCLUSIONS

In this paper, we presented a new gate-regularized network
training (GrNT) method for improving multi-scale informa-
tion fusion, which is a key process in medical image segmen-
tation. Theoretical analysis and empirical study demonstrated
that our GrNT is effective in improving segmentation results
by encouraging high-level features to drive the generation of
the segmentation. As a bonus, GrNT offers a new means for
a more informative error analysis and model interpretability
by disentangling segmentation errors caused by features of
different levels.
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