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ABSTRACT

Convolutional neural network (CNN) based methods have
achieved great successes in medical image segmentation, but
their capability to learn global representations is still limited
due to using small effective receptive fields of convolution
operations. Transformer based methods are capable of mod-
elling long-range dependencies of information for capturing
global representations, yet their ability to model local context
is lacking. Integrating CNN and Transformer to learn both
local and global representations while exploring multi-scale
features is instrumental in further improving medical image
segmentation. In this paper, we propose a hierarchical CNN
and Transformer hybrid architecture, called ConvFormer,
for medical image segmentation. ConvFormer is based on
several simple yet effective designs. (1) A feed forward mod-
ule of Deformable Transformer (DeTrans) is re-designed to
introduce local information, called Enhanced DeTrans. (2)
A residual-shaped hybrid stem based on a combination of
convolutions and Enhanced DeTrans is developed to capture
both local and global representations to enhance represen-
tation ability. (3) Our encoder utilizes the residual-shaped
hybrid stem in a hierarchical manner to generate feature maps
in different scales, and an additional Enhanced DeTrans en-
coder with residual connections is built to exploit multi-scale
features with feature maps of different scales as input. Exper-
iments on several datasets show that our ConvFormer, trained
from scratch, outperforms various CNN- or Transformer-
based architectures, achieving state-of-the-art performance.

1. INTRODUCTION

Image segmentation is a central problem in medical image
analysis. Convolutional neural networks (CNNs), especially
fully convolutional networks (FCNs), have become predom-
inant approaches for this problem (e.g., U-Net [1], UNet
3+ [2], etc). Despite their successes, CNNs still have yet to
address the limitation in learning long-range dependencies
(global information) to see a “big picture” due to limited
effective receptive fields (ERFs) of convolution (Conv) op-
erations. Attempts were made to enlarge ERFs, such as
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utilizing atrous Convs with different dilated rates (e.g., [3]),
applying pyramid pooling (e.g., [4]), and designing large ker-
nels (e.g., [5]). Although these methods enlarged ERFs to
some extent, they still suffered from limited ERFs, yielding
sub-optimal image segmentation accuracy.

Recently, Transformers (e.g., vision Transformer [6])
became a de-facto choice for modelling long-range depen-
dencies in computer vision, inspired by their success with
self-attention mechanism in natural language processing.
Compared to CNN methods, Transformer models have larger
receptive fields and excel at learning global information. But,
they also have drawbacks, e.g., high computation cost, slow
convergence, and short of CNN’s inductive biases. Two types
of methods attempted to reduce their computation cost. (1)
Limiting self-attention to local windows (e.g., [7, 8]). (2)
Downsampling the key and value feature maps (e.g., [9]).
Though effective in capturing global information, these
Transformer-based methods still yielded unsatisfactory per-
formance due to deficiency in learning local information.

In medical image segmentation, efforts were made to
combine Transformer and CNN to learn both local and global
representations. In [10], Transformer was utilized as a sup-
plement, appended to the last Conv block of the CNN encoder
to learn global information. MedT [11] exploited local and
global information by employing two branches, where a
gated axial Transformer was applied to explore global infor-
mation and CNN was leveraged to learn local information.
CoTr [12] employed Deformable Transformer (DeTrans) as
an additional encoder for exploring multi-scale information
from multi-scale feature maps for 3D medical image seg-
mentation. MISSFormer [13] introduced a Conv layer to
Transformer to enhance its capability to learn local informa-
tion. UNETR [14] proposed a U-shaped encoder-decoder net-
work, where Transformer was used as the encoder to capture
global multi-scale information and a CNN decoder was used
to compute final segmentation output. Although achieving
promising performances, these methods still incurred several
drawbacks. (1) Limited capability to learn both local and
global representations due to ineffective integration of CNN
and Transformer. For example, CoTr [12] did not apply Conv
to DeTrans for effectively learning local information. Tran-
sUNet [10] simply appended Transformer to a Conv block
in the encoder. UNETR [14] did not leverage Conv in the
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Fig. 1. (a) An overview of our Enhanced DeTrans with
the proposed enhanced positional encoding (EPE) and Conv-
based feed forward module (FFM) (shown in gray color). (b)
Our ConvFormer: The two big boxes on the left are for the
encoder and decoder, respectively (best viewed in color).

encoder. (2) Deficiency in capturing multi-scale information.
For instance, MedT [11] did not explore multi-scale informa-
tion in its global Transformer branch, and such drawbacks in
learning both local and global representations and capturing
multi-scale information led to sub-optimal segmentation.

In this paper, we propose a new hierarchical CNN and
Transformer hybrid architecture, called ConvFormer, to cap-
ture both local and global representations while exploiting
multi-scale features for medical image segmentation. Specif-
ically, ConvFormer is based on several key designs. (1) We
re-design the feed forward module of DeTrans to introduce lo-
cal information, called Enhanced DeTrans. (2) We develop a
residual-shaped hybrid stem based on a combination of Convs
and Enhanced DeTrans to capture both local and global repre-
sentations to enhance representation ability. (3) The residual-
shaped hybrid stem is utilized in the encoder in a hierarchical
manner to generate feature maps in different scales, and an
additional Enhanced DeTrans encoder with residual connec-
tions is built to explore multi-scale features with feature maps
of different scales as input. (4) An enhanced positional en-
coding (EPE) introduces a Conv layer to the fixed sinusoidal
encoding method [15] to improve adaptability and flexibility.

Extensive experiments on two public datasets (2017 ISIC
Skin Lesion segmentation (2D) [16] and MM-WHS CT
(3D) [17]) and one in-house dataset (lymph node segmen-
tation (2D)) show that our ConvFormer, trained from scratch,
outperforms various known CNN-based or Transformer-
based methods, achieving state-of-the-art performance.

2. METHOD

Fig. 1 shows the architecture of our ConvFormer that contains
three main components: (1) Enhanced DeTrans that captures
global representations with local information, using a Conv-
based feed forward module (FFM); (2) the residual-shaped
hybrid stem that extracts local and global representations in
different scales that are fed to an additional Enhanced De-
Trans encoder to explore multi-scale features; (3) enhanced
positional encoding (EPE) that improves the adaptability and
flexibility of the fixed sinusoidal encoding method [15].

2.1. Enhanced DeTrans
FFM is an essential component of Transformer to enhance the
representation ability. The FFM proposed in DeTrans [8, 12]
consists of a multilayer perceptron (MLP) composing of two
linear layers separated by GELU, as follows:

FFM(x) = LN (GELU(xW1 + b1)W2 + b2 + x) , (1)

where x is an input feature map, W1 and W2 are weights of
the two linear layers respectively, b1 and b2 are bias terms, and
LN denotes layer norm. For simplicity, Dropouts are omitted.
Though effective, this design does not have good capability to
learn local information, which is critical in dense predictions.

To overcome this limitation and enable FFM to introduce
local information to the global representations captured by
multi-scale multi-head self attention (MS-MHSA), we resort
to a Conv layer. Specifically, we insert depth-wise convo-
lution (DW Conv) to the end of FFM. The resulted FFM is
called Conv-based FFM. Note that we leverage DW Conv in-
stead of Conv for reducing computation cost. As a result, the
proposed Conv-based FFM inherits the merit of both CNN
and DeTrans in learning local and global representations.

To adapt DW Conv to FFM, we first reshape the input 1D
sequences captured by FFM to 2D/3D feature maps, apply
DW Conv to the reshaped feature maps to learn local informa-
tion, and reshape the result back to 1D sequences as output:

Conv-based FFM(x) = reshape(DW Conv(reshape(FFM(x)))),
(2)

where x is an input feature map. Note that our Conv-based
FFM is capable of dealing with multi-scale feature map input,
which is important for accurate segmentation. DW Conv is
shared when processing multi-scale feature maps.

We replace the FFM of DeTrans by our Conv-based FFM,
and the resulted DeTrans is called Enhanced DeTrans. En-
hanced DeTrans is capable of capturing both local and global
information by combining Conv and Transformer.

2.2. Residual-shaped Hybrid Stem
Stacking Transformer to the last Conv block as a global fea-
ture extractor is a common way to combine CNN/Transformer
in encoder to learn local and global representations. For ex-
ample, in TransUNet [10] and CoTr [12], Transformer was
followed by a Conv block to capture global information for lo-
cal features obtained by Conv blocks. Although such methods
might enhance the models’ representation ability on learning
local and global information to some extent, they did not ex-
ploit both local and global features effectively. More impor-
tantly, they did not generate and explore multi-scale local and
global features, which are highly important to handle datasets
with large variations in object size, shape, and texture, which
are common characteristics of medical image datasets.

To effectively capture both local and global represen-
tations, we propose the residual-shaped hybrid stem, which



consists of two key designs (see the leftmost box in Fig. 1(b)).
(1) Residual connections are introduced to the stacked Convs
for feature diversity and delivery. (2) Local representations
captured by the stacked Convs are combined with global
representations learned by Enhanced DeTrans via an add
operation. These two designs offer two compelling advan-
tages: (i) The introduced residual connections are critical for
avoiding feature collapse (i.e., feature diversity is continu-
ously reduced as the layer depth increases); (ii) the captured
local and global representations can be better fused via add
operation. The improvement (e.g., in Table 4, F1 improved
by 1.0%, p < 0.05, t-test) shows the importance of the
introduced residual connections.

We use the residual-shaped hybrid stem in the encoder in
a hierarchical manner, so that it can generate global and lo-
cal representations in different scales. Given an input image,
we can obtain hierarchical global and local representations
with different resolutions, which are then fed to an additional
Enhanced DeTrans encoder to exploit multi-scale represen-
tations. Different from CoTr [12] which utilized DeTrans to
exploit multi-scale features, we add residual connections to
our Enhanced DeTrans to reuse the local representations cap-
tured by the stacked Convs and consolidate the captured local
and global representations.

The architecture of our ConvFormer is shown in Fig. 1.
Following the architecture of CoTr [12], ConvFormer has
four encoder and decoder stages, with a Conv stem and three
residual-shaped hybrid stems in encoder, a deconvolution
(DeConv) stem and three decoder stems in decoder, and an
additional Enhanced DeTrans encoder.

2.3. Enhanced Positional Encoding (EPE)
In Transformer, we first flatten input feature maps into 1D se-
quences. But, this flattening process may cause loss of spatial
information that is critical for segmentation. Known meth-
ods [12, 15] employed fixed sinusoidal encoding to supple-
ment flattened sequences with position information. In partic-
ular, sine and cosine functions of different frequencies were
used to compute the positional coordinates of each dimension:

PE(pos,2i) = sin
(
pos/100002i/C

)
, (3)

PE(pos,2i+1) = cos
(
pos/100002i/C

)
, (4)

where pos is for position, i is the dimension, and C is a con-
stant. However, such a fixed sinusoidal encoding method
lacks adaptability and flexibility, as the code (e.g., frequen-
cies) is predefined.

To improve adaptability and flexibility, we introduce DW
Conv to the fixed sinusoidal encoding [15], since a Conv ker-
nel naturally encodes pixel locality and semantic continuity
with adaptability and flexibility. The resulted positional en-
coding method is called enhanced positional encoding (EPE).
Specifically, it uses two branches: one branch applies the
fixed sinusoidal encoding [15] to learn position information,

Table 1. Quantitative results of various models on the lymph
node dataset. The reported values are average±STD for 3
runs with different random seeds. The best results are in bold.

Method IoU Precision Recall F1 Score
U-Net [1] 0.661 0.834 0.761 0.796

Zhang et al. [20] 0.810 0.901 0.889 0.895
kCBAC-Net [21] 0.829 0.909 0.904 0.906

ConvFormer (Ours) 0.845±0.002 0.925±0.002 0.907±0.002 0.916±0.002

and the other uses DW Conv to capture position information.
The two branches are combined by an add operation:

x′ = fixed sinusoidal encoding(x)+ReLU(BN(DW Conv(x))),
(5)

where x is an input feature map, x′ denotes the output feature
map embedded with position information, and BN is batch
normalization. The improvement (in Table 4, F1 improved by
0.4%, p < 0.05, t-test) demonstrates the importance of EPE.

3. EXPERIMENTS AND RESULTS

Datasets. (1) The lymph node segmentation ultrasound
dataset: This in-house dataset is for segmenting lymph nodes
in 2D ultrasound images. It contains 137 training and 100 test
images. (2) The 2017 MM-WHS CT dataset: This pub-
lic dataset [17] is for segmenting seven cardiac structures,
the left/right ventricle blood cavity (LV/RV), left/right atrium
blood cavity (LA/RA), myocardium of the left ventricle (LV-
myo), ascending aorta (AO), and pulmonary artery (PA). It
contains 20 unpaired 3D CT images, which are randomly
split into 16 images and 4 images for training and testing,
following [18]. (3) The 2017 ISIC skin lesion segmenta-
tion dataset: This public dataset [16] is for segmenting le-
sion boundaries in 2D dermoscopic images. It contains 2000
training, 150 validation, and 600 test images.
Implementation Details. Our ConvFormer is implemented
with PyTorch, and is trained on an NVIDIA Tesla P100
Graphics Card with 16GB GPU memory using the AdamW [19]
optimizer with weight decay 0.005. We apply the “poly”
learning rate policy with an initial learning rate of 2e − 4.
The maximum number of iterations is 100k for the lymph
node and 2017 ISIC skin lesion datasets, and 240k for the
2017 MM-WHS CT dataset (using about 34, 48, and 96 train-
ing hours, respectively). To avoid overfitting, standard data
augmentation (e.g., random flip, crop, etc) is applied.
Experimental Results. Table 1 reports quantitative results
on the lymph node dataset, showing that our ConvFormer
outperforms the known methods by a clear margin in all the
evaluation measures. In particular, ConvFormer outperforms
the state-of-the-art (SOTA) method, kCBAC-Net [21], by
1.6% and 1.0% in IoU and F1, respectively, achieving new
SOTA performances. Table 2 shows quantitative results on
the 2017 MM-WHS CT 3D dataset. Our ConvFormer outper-
forms the best-known CNN-based (HFA-Net [18], kCBAC-
Net [21]) and Transformer-based (CoTr [12], UNETR [14])
methods, achieving new SOTA performances. Specifically,
ConvFormer outperforms HFA-Net [18], kCBAC-Net [21],



Table 2. Quantitative results of different models on the 2017
MM-WHS CT dataset. “—” means that the results were not
reported by the original papers, “Para.” means the number of
parameters of the model, and “HDF” represents Hausdorff.

Method Para. Metric LV RV LA RA LV
-myo AO PA Mean

Payer et al. [23] — Dice 0.918 0.909 0.929 0.888 0.881 0.933 0.840 0.900
Dou et al. [24] — Dice 0.888 — 0.891 — 0.733 0.813 — —
Chen et al. [25] — Dice 0.919 — 0.911 — 0.877 0.927 — 0.909

HFA-Net [18] —

Dice 0.946 0.893 0.925 0.897 0.910 0.964 0.830 0.909
IoU 0.898 0.810 0.861 0.816 0.836 0.930 0.722 0.839
HDF 7.148 33.128 42.173 22.903 36.954 12.075 37.845 27.461
ADB 0.076 0.562 0.210 0.334 0.225 0.103 1.685 0.456

kCBAC-Net [21] 134M

Dice 0.951 0.902 0.938 0.911 0.922 0.974 0.837 0.919
IoU 0.907 0.825 0.883 0.838 0.855 0.949 0.734 0.856
HDF 5.500 14.940 12.403 15.081 7.337 6.848 32.499 13.516
ADB 0.074 0.285 0.163 0.248 0.119 0.059 1.403 0.336

CoTr [12] 42M

Dice 0.944 0.896 0.934 0.898 0.908 0.953 0.845 0.911
IoU 0.895 0.816 0.876 0.816 0.832 0.912 0.742 0.841
HDF 5.905 15.819 12.746 15.767 10.346 12.330 31.539 14.922
ADB 0.084 0.352 0.159 0.285 0.131 0.118 1.391 0.360

UNETR [14] 93M

Dice 0.950 0.888 0.939 0.903 0.919 0.964 0.843 0.915
IoU 0.896 0.806 0.868 0.818 0.854 0.930 0.744 0.845
HDF 5.869 15.698 11.769 14.080 8.816 11.864 33.392 14.498
ADB 0.080 0.349 0.151 0.278 0.115 0.103 1.404 0.354

ConvFormer
(Ours) 61M

Dice 0.955 0.910 0.943 0.914 0.926 0.980 0.844 0.925
IoU 0.914 0.836 0.885 0.835 0.857 0.957 0.740 0.861
HDF 5.089 12.873 11.745 13.360 7.000 6.823 34.560 13.064
ADB 0.069 0.264 0.175 0.242 0.120 0.030 1.359 0.323

Table 3. Quantitative results of different models on the 2017
ISIC skin lesion dataset.

Method Jaccard Index Dice Sensitivity Specificity
Yuan et al. [22] 0.765 0.849 0.825 0.975

Li et al. [26] 0.765 0.866 0.825 0.984
Lei et al. [27] 0.771 0.859 0.835 0.976

Mirikharaji et al. [28] 0.773 0.857 0.855 0.973
Xie et al. [29] 0.788 0.868 0.884 0.957

kCBAC-Net [21] 0.794 0.887 0.847 0.984
ConvFormer (Ours) 0.797±0.003 0.889±0.002 0.846±0.002 0.986±0.001

CoTr [12], and UNETR [14] by 1.6%, 0.6%, 1.4%, and 1.0%
in Dice score on average, respectively. Table 3 gives quan-
titative results on the 2017 ISIC skin lesion dataset. Our
ConvFormer attains accuracy gain of 3.2% in Jaccard In-
dex over the 2017 ISIC Challenge winner [22] and slightly
outperforms the SOTA method, kCBAC-Net [21], achieving
new SOTA performances. Note that, (1) our ConvFormer
shows excellent generalization on both 2D and 3D datasets,
on ultrasound, dermoscopic, and CT images, outperforming
previous SOTA methods; (2) ConvFormer achieves compet-
itive performances without pre-training, different from most
of the known Transformer-based models. All these suggest
that our ConvFormer is a promising and robust method suit-
able for medical image segmentation tasks on datasets of
different imaging characteristics and modalities, and it is
capable of learning effective local, global, and multi-scale
representations. Fig. 2 shows some qualitative results.
Ablation Study. We conduct an ablation study to examine
the effects of different components in our ConvFormer using
the lymph node dataset. As Table 4 shows, (1) when using the
fixed sinusoidal encoding [15] for positional encoding (the re-
sulted ConvFormer is denoted by ConvFormer w/o EPE), the
F1 score drops by 0.4%; (2) when removing the additional
Enhanced DeTrans encoder that aims to explore multi-scale
information from ConvFormer w/o EPE (denoted by Con-
vFormer w/o Additional Enhanced DeTrans), the F1 score
drops by 0.5%; (3) when removing Conv-based FFM from
ConvFormer w/o Additional Enhanced DeTrans (denoted by
ConvFormer w DeTrans), the F1 score drops by 0.4%; (4)
when completely removing DeTrans (the resulted network is
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Fig. 2. Some visual qualitative results on the lymph node
dataset (a) and the 2017 MM-WHS CT dataset (b), demon-
strating the capability of our ConvFormer.

Table 4. Ablation study of the effects of different components
in ConvFormer using the lymph node dataset.

DeTrans Conv-based
FFM

Addi.
E-DeTrans EPE Method IoU Precision Recall F1

ConvFormer
w/o DeTrans 0.673 0.833 0.782 0.807

√ ConvFormer
w DeTrans 0.825 0.906 0.900 0.903

√ √
ConvFormer

w/o
Additional
Enhanced
DeTrans

0.830 0.908 0.906 0.907

√ √ √ ConvFormer
w/o EPE 0.839 0.912 0.910 0.912

√ √ √ √
ConvFormer 0.845 0.925 0.907 0.916

ConvFormer w/o residual connections 0.829 0.910 0.902 0.906

a pure CNN baseline, denoted by ConvFormer w/o DeTrans),
the F1 score drops by 9.6%. These effects demonstrate the
importance of our proposed components for better capturing
local, global, and multi-scale information for accurate image
segmentation. Besides, we remove the residual connections
of the residual-shaped hybrid stem (denoted by ConvFormer
w/o residual connections), and the F1 score drops by 1.0%.
This validates the importance of the residual connections.

4. CONCLUSIONS
In this paper, we proposed a new hierarchical CNN and Trans-
former hybrid architecture, ConvFormer, for medical image
segmentation. ConvFormer is capable of well learning local,
global, and multi-scale representations by introducing Conv-
based FFM, residual-shaped hybrid stem, and an additional
Enhanced DeTrans encoder with residual connections. More-
over, we presented an enhanced positional encoding to im-
prove the adaptability and flexibility of the fixed sinusoidal
encoding method. Experiments on 2D and 3D datasets of
different imaging characteristics and modalities demonstrated
the effectiveness of ConvFormer.
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