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A B S T R A C T

In scientific visualization, despite the significant advances of deep learning for data gen-
eration, researchers have not thoroughly investigated the issue of data translation. We
present a new deep learning approach called generalized multivariate translation (GMT)
for multivariate time-varying data analysis and visualization. Like V2V, GMT assumes
a preprocessing step that selects suitable variables for translation. However, unlike V2V,
which only handles one-to-one variable translation during training and inference, GMT
enables one-to-many and many-to-many variable translation in the same framework.
We leverage the recent StarGAN design from multi-domain image-to-image translation
to achieve this generalization capability. We experiment with different loss functions
and injection strategies to explore the best choices and leverage pre-training for per-
formance improvement. We compare GMT with other state-of-the-art methods (i.e.,
Pix2Pix, V2V, StarGAN). The results demonstrate the overall advantage of GMT in
translation quality and generalization ability.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

As a branch of AI for VIS research, deep learning for sci-2

entific visualization has quickly become a hot topic. Within3

this topic, data generation aims to produce or reconstruct sci-4

entific data from their feature representations, low-resolution5

versions, or lower-dimensional counterparts. Generally speak-6

ing, there are four tasks under the umbrella of data generation:7

super-resolution, compression and reconstruction, translation,8

and extrapolation [1]. In scientific visualization, translation9

refers to mapping one variable or ensemble sequence to another10

or one field to another (e.g., a scalar field to a vector field).11

Compared with the first two tasks, translation is underexplored.12

Scientists studying various physical phenomena often gener-13

ate large-scale multivariate time-varying data (MTVD) for post14

hoc analysis and visualization. Due to I/O bandwidth and stor-15

age constraints, the output variable sequences from large-scale16

simulations can only be partially stored in most cases. As the17

number of variable sequences increases, only a smaller por-18

tion of each sequence (i.e., sparsely sampled time steps) can 19

be saved. Translation allows scientists to save only one or a 20

few variable sequences, and the remaining variable sequences 21

can be restored from the trained neural network. This alterna- 22

tive implies direct data reduction (only one or a few variable 23

sequences are needed). It also provides an advantageous point 24

to compress the variable sequence that must be saved for further 25

reduction (fewer sequences must be compressed). 26

Existing translation works include translating between scalar 27

variables [2, 3], translating from scalar fields to vector fields [4, 28

5], and translating from an input field to another that satisfies 29

specific properties or constraints (e.g., generating divergence- 30

free vector fields [6]). These works have successfully produced 31

faithful translation results allowing scientists to thoroughly in- 32

vestigate the underlying MTVD. These deep learning models 33

can also disentangle complex variable relationships from the 34

same simulation for further analysis. 35

However, all these works tackle variable pairs one at a time, 36
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ignoring the critical scalability or generalizability challenge.1

Taking the ionization data set, for example, the neural net-2

work only takes one pair of source (e.g., H) and target (e.g.,3

H+) variables in the training or inference stage for translation4

(i.e., H→H+). Looping over different variable pairs would re-5

quire network retraining (i.e., the network trained over H→H+6

would not work for He→He+) or suffer from the downgrade of7

translation quality (i.e., the network trained over H→H+ would8

work less effectively for H→He). One can employ the brute-9

force solution to separately train the network m(m− 1) times10

to learn all translations among m variables to obtain the best11

results. Unfortunately, this practice becomes increasingly in-12

efficient and ineffective as variables increase. It is typical for a13

scientific simulation to produce many scalar and vector variable14

or ensemble sequences. For example, a turbulent combustion15

simulation can generate dozen chemical species reacting to the16

combustion process. Therefore, a practical deep learning solu-17

tion for analyzing MTVD should enable generalized variable-18

to-variable translation (e.g., going beyond one-to-one to support19

one-to-many or many-to-many).20

We present a novel deep learning approach to generalized21

multivariate translation (GMT) for scientific visualization. Our22

work is inspired by StarGAN [7], which unifies generative ad-23

versarial networks (GANs) for multi-domain image-to-image24

translation. In the context of MTVD, we aim to take in train-25

ing data of multiple variables and learn the translation between26

all variables using the same neural network. We adopt one-27

hot vectors as labels to represent variable information and ex-28

plore different injection strategies to design a flexible network29

for learning variable translation.30

Like V2V [2] and Scalar2Vec [5], we assume that the same31

variable selection step precedes the variable translation step.32

Variable selection first utilizes U-Net [8] to extract features33

from variables and then projects the learned features to a 2D34

space via t-SNE [9] for estimation of variable similarity. Vari-35

ables with the same footprint or share proximity in the t-SNE36

projection are deemed suitable for the subsequent translation.37

The generalization ability of GMT enables domain scientists38

to process multiple variable pairs under the same framework39

simultaneously. Moreover, handling multiple pairs in one ar-40

chitecture will likely boost generalization performance. To41

achieve this, we conjecture that GMT can learn information42

from different domains (i.e., variables in our context) and utilize43

the knowledge from other variables to enhance the synthesized44

quality of one variable.45

We summarize the contributions of our work as follows.46

First, we propose GMT, the first of its kind in scientific visu-47

alization, to solve the generalized variable translation problem.48

As deep learning for scientific visualization research is in full49

swing, addressing the fundamental and yet often overlooked50

challenge of generalization is imperative for further technique51

advance and solution adoption. Second, our GMT improves52

generalizability by leveraging adaptive instance normalization53

to control the translation outputs. We investigate different loss54

functions and injection strategies to achieve the best overall55

variable-to-variable translation quality. Third, we employ a pre-56

training and fine-tuning scheme to improve translation perfor-57

mance. Fourth, we thoroughly evaluate GMT and demonstrate 58

its advantages over state-of-the-art solutions (i.e., Pix2Pix, Star- 59

GAN, V2V). The results show that GMT outperforms existing 60

solutions while taking much less overall training time than Star- 61

GAN and V2V. 62

2. Related Work 63

Deep learning for scientific data generation. Thanks to 64

the great advances of deep learning solutions in image and lan- 65

guage generation tasks, the visualization community has started 66

to explore this direction for scientific data generation. Exam- 67

ples include spatial [10, 11, 12] and temporal [13, 14] super- 68

resolution generation for scalar and vector field data. Han 69

et al. [15] proposed STNet, an end-to-end generative solution 70

for upscaling low-resolution scalar volumetric data into high- 71

resolution in both spatial and temporal spaces. An et al. [16] 72

developed STSRNet, a deep learning framework that generates 73

space-time super-resolution for vector field visualization. En- 74

gel and Ropinski [17] designed DVAO, a U-Net [8] based so- 75

lution for predicting the corresponding ambient occlusion vol- 76

ume given the opacity volume. Lu et al. [18] presented neu- 77

rocomp, a coordinate-based network [19] that uses a set of 78

fully-connected layers to reconstruct volumetric data from its 79

coordinates via implicit neural representation. Jakob et al. [20] 80

studied convolutional neural networks (CNNs) for spatially up- 81

scaling flow maps. Han et al. [2] designed V2V, a three-stage 82

pipeline for variable translation using representation learning 83

and GAN. Gu et al. [5] developed Scalar2Vec, a framework 84

that utilizes k-complete bipartite translation network (kCBT- 85

Net) [21] to translate scalar fields to velocity vector fields. Shi 86

et al. [22] proposed GNN-Surrogate that utilizes a hierarchical 87

and adaptive graph neural network (GNN) to predict simulation 88

outputs on irregular grids given a set of simulation parameters. 89

Farokhmanesh et al. [3] investigated the applicability of V2V to 90

meteorological reanalysis data and presented an algorithm for 91

efficient V2V transfer by considering groups of parameter fields 92

in the transfer. We aim to synthesize MTVD using deep learn- 93

ing techniques like the above works. However, unlike closely 94

related works V2V [2] and Scalar2Vec [5], the proposed GMT 95

solution can simultaneously handle multiple pairs of variable 96

translation without network retraining and fine-tuning. 97

Multi-domain translation. Multi-domain translation aims 98

to translate data from different domains through a unified 99

framework. For instance, Liu and Tuzel [23] introduced cou- 100

pled GAN (CoGAN) that learns a joint distribution of multi- 101

domain images. Liu et al. [24] built a joint distribution in cross- 102

domains by leveraging images from the marginal distributions 103

in individual domains and combining variational autoencoder 104

and CoGAN. Choi et al. [7] proposed StarGAN, a generative 105

solution for synthesizing images with different facial expres- 106

sions. Huang et al. [25] proposed multimodal unsupervised 107

image-to-image translation (MUNIT) that disentangles images 108

into content and style for multimodal translation. Brock et al. 109

[26] controlled the image generation process by injecting class 110

embedding into the network architecture. Hao et al. [27] ma- 111

nipulated video generation through sparse motion trajectories 112

provided by users. 113
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Instead of focusing on the image or video domain, our GMT1

work aims to provide a single framework for multiple variable2

translations in the scientific data domain. The proposed GMT3

network borrows the StarGAN architecture by treating variables4

as domains. Besides, we designed a new mechanism that allows5

users to control the generated variable.6

3. GMT7

This section first provides an overview of GMT, then dis-8

cusses the design and experiment of different loss functions9

and injection strategies, and finally offers architecture and pre-10

training details.11
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Fig. 1: The overview of our GMT framework.

3.1. Overview12

As shown in Figure 1, given a source variable, we lever-13

age a set of convolutional (Conv) layers as an encoder to ex-14

tract its hidden representation. At the same time, a one-hot la-15

bel with m components, where m is the number of variables16

used, is fed into the feature generator, which consists of several17

fully-connected (FC) layers to learn a dense representation of18

the target variable. The dense representation adjusts the affine19

parameters in the affine network. In the decoding part of the20

generator, the outputs of every two Conv layers following a de-21

convolutional (DeConv) layer are modified by the adaptive in-22

stance normalization (AdaIN) [28] using the affine parameters.23

Consequently, the dense representation of the target variable is24

merged with the representation of the source variable during the25

decoding process. Finally, the synthesized output volume of the26

target variable is produced. Besides, we remove residual blocks27

in the StarGAN model, which is ineffective in our practice. In- 28

stead, we add skip connection [8] between different Conv layers 29

to improve the generation quality. These long skip connections 30

help the decoder use information from earlier encoder layers to 31

produce fine-grained and more accurate results. 32

3.2. Loss Functions 33

To optimize GMT, we investigate different types of loss func- 34

tions, discussed as follows. 35

Mean squared error (MSE). MSE estimates the difference
between the predicted and ground-truth (GT) variables at each
voxel. MSE is defined as

LMSE =
N

∑
i
(vi − v̂i)

2, (1)

where N is the number of voxels in the volume, vi is the GT 36

volume, and v̂i is the synthesized volume. 37

Structural dissimilarity index (DSSIM). DSSIM [29] was
originally designed for image similarity analysis. We adopt it to
calculate the dissimilarity between two volumes based on their
constituting subvolumes. DSSIM is defined as

LDSSIM = 1− (2µvµv̂ + c1)(2σvv̂ + c2)

(µ2
v +µ2

v̂ + c1)(σ2
v +σ2

v̂ + c2)
, (2)

where c1 and c2 are small constants for numerical stability, µ is 38

the mean, σ2 is the variance, and σvv̂ is the covariance. 39

Derivative. In addition to considering the constraints in the
original data space, we take the first-order derivative into ac-
count. The derivative loss is defined as

LDER =
N

∑
i=1

[
(

∂vi

∂x
− ∂ v̂i

∂x
)2 +(

∂vi

∂y
− ∂ v̂i

∂y
)2 +(

∂vi

∂ z
− ∂ v̂i

∂ z
)2],

(3)
where ∂

∂x , ∂

∂y , and ∂

∂ z denote the partial derivatives along the x, 40

y, and z directions, respectively. 41

Adversarial. Since GMT follows a GAN formulation, we
study the adversarial loss for the generator (G) and discrimina-
tor (D), respectively. The losses are defined as

LG = (D(G(vs))−1)2,

LD =
1
2
(D(vt)−1)2 +

1
2
(D(G(vs)))2,

(4)

where vs is the source variable and vt is the target variable. 42

Feature. Finally, we compare high-level features extracted
from the prediction and GT using the discriminator (D). The
feature loss is defined as

LFEA =
N

∑
i
(F(vi)−F(v̂i))

2. (5)

Table 1 compares these loss combinations in terms of PSNR 43

and LPIPS (refer to Section 4.3). Figure 2 displays the isosur- 44

face rendering results. Although the quantitative differences are 45

not necessarily significant, we favor the combination of all five 46

loss terms, as Table 1 and Figure 2 indicate that it leads to the 47

best overall results. 48
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Table 1: Performance comparison of loss combinations using the Tangaroa data set (best ones in bold). The weights are determined empirically based on their
respective ranges. We report the average PSNR (dB) and LPIPS (for volume rendering) across all time steps.

(1): MSE (2): (1)+0.1×DSSIM (3): (2)+2.0×DER (4): (3)+10−3×ADV (5): (4)+10−2×FEA
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

VLM→VTM 45.94 0.0837 45.95 0.0823 45.77 0.0953 46.21 0.0823 46.18 0.0822
VLM→DIV 49.65 0.1476 49.34 0.1393 50.03 0.1382 49.70 0.1422 50.35 0.1325
VLM→ACC 29.92 0.3126 30.28 0.2843 30.36 0.2951 30.29 0.2861 30.25 0.2843

(a) MSE (b) (a)+DSSIM (c) (b)+DER

(d) (c)+ADV (e) (d)+FEA (f) GT
Fig. 2: Isosurface rendering comparison under different loss combinations us-
ing the Tangaroa (VLM→DIV) data set at time step 1. The chosen isovalue
v = 0.58. (a) to (f) show the zoom-in views.

3.3. Injection Strategies1

To achieve multi-domain translation, we investigate three dif-2

ferent injection strategies to manipulate the output of GMT.3

Injection I. A straightforward way is to use a one-hot label,
which controls what variable to generate by GMT. The one-hot
label is defined as

l = [0, · · · ,1, · · · ,0], (6)

where the i-th element is 1 and the rest are 0. The 1 indicates
that GMT aims to synthesize the i-th variable in the target vari-
able pool. Combing the source variable and one-hot label, this
injection is defined as

v = [vs, l], (7)

where [·] represents concatenation. We illustrate this injection4

strategy in Figure 3 (a).5

Injection II. Since a one-hot label is binary, it may not pro-
vide enough information for translation. A follow-up strategy
is to learn a dense representation (d) from the one-hot label
through a multilayer perceptron (MLP), i.e., a set of FC layers.
Then this representation is injected into the source variable fea-
ture (fs) extracted by Conv layers through AdaIN. The injection
formulation is defined as

σd
fs −µfs

σfs
+µd, (8)

where µ and σ are the mean and standard deviation. Such an6

illustration is shown in Figure 3 (b).7

Injection III. The final injection strategy is to leverage all
available target variables’ time steps to control the generation

of GMT. That is, given all available target variables’ time steps
(i.e., [vt

1,v
t
2, · · · ,vt

k]), we stacked these data together and fed into
an encoder to learn a hidden representation ft . After that, AdaIN
is applied to fuse fs and ft . Written in the equation,

σft
fs −µfs

σfs
+µft . (9)

Figure 3 (c) shows how this injection works. 8

Table 2 shows the performance comparison of these three in- 9

jection strategies. Figure 4 displays the volume rendering re- 10

sults. As we can observe, Injection II is the winner, achieving 11

the best PSNR and LPIPS scores, even though the rendering 12

image only shows a slight advantage. Table 3 indicates that the 13

training time for Injection II is the shortest, albeit incurring a 14

medium model size. Therefore, we choose Injection II for vari- 15

able translation. 16

Table 2: Performance comparison of injection strategies using the ionization
data set. We report the average PSNR (dB) and LPIPS (for volume rendering)
across all time steps.

Injection I Injection II Injection III
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

H→H+ 51.69 0.010 61.99 0.001 53.02 0.004
H→He 44.54 0.047 46.43 0.039 45.70 0.045

H→He+ 44.07 0.048 47.08 0.036 46.19 0.040

Table 3: Total training time (H:M:S) and model size (MB) under different in-
jection strategies using the mantle data set.

Injection I Injection II Injection III
training time 21:51:12 20:57:34 31:07:14
model size 86.1 92.9 111

3.4. GMT Architecture 17

The architecture of GMT follows a GAN formulation, where 18

G is an encoder-decoder framework that leverages Conv lay- 19

ers, their transposed versions, and AdaIN, and D is an encoder 20

structure. 21

Generator. As shown in Figure 1, in the encoding stage, 22

given the source variable, a block of two 3×3 Conv layers in- 23

creases the number of channels from 1 to 32 and maintains the 24

resolution as 64× 64× 64 (no downsampling). Then we use 25

four consecutive blocks of two 3×3 Conv layers to double the 26

number of channels and downsample the feature maps. In each 27

block, the first 3×3 Conv layer with a stride of 2 is responsible 28

for downsampling the feature maps and doubling their chan- 29

nels. The second 3× 3 Conv layer aims to extract higher-level 30

features. Eventually, this leads to a 4× 4× 4× 512 tensor en- 31

coding the given source variable. 32

Before we decode the encoded representation of the source 33

variable, given the one-hot label that represents the target vari- 34

able, we use four FC layers as the feature generator to transform 35
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Fig. 3: Illustration of three strategies of information injection for one-to-many variable translation.
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Fig. 4: Volume rendering comparison under different injection strategies using
the ionization (H→He) data set at time step 100.

the label to a feature vector of 512 dimensions. Then, the fea-1

ture vector is used as the input of an affine network to modulate2

the outputs of Conv layers through AdaIN for decoding.3

In the decoding stage, four blocks of layers upscale the en-4

coded representation back to the original resolution. The first5

layer of each block is a 2×2 transposed Conv layer, which is re-6

sponsible for doubling the resolution and halving the number of7

channels. The output of the first layer is concatenated with the8

output of the corresponding block in the encoding stage via skip9

connections. The second and third layers are two 3× 3 Conv10

layers controlled through AdaIN by the feature vector generated11

according to the given one-hot label. We choose leaky rectified12

linear unit (Leaky ReLU) [30] with α = 0.2 as the activation13

function for all layers in the generator except for the final Conv14

layer in the decoder. In that layer, we utilize a 1×1 Conv layer15

to reduce the number of channels back to 1 and a tanh function16

to regulate the output in [−1,1].17

Discriminator. As shown in Figure 1, we apply five Conv 18

layers with a stride of 2 to downsample the input volume for 19

the discriminator. After that, a MLP is utilized to predict a score 20

that indicates the realness of the volume. Leaky ReLU [30] with 21

α = 0.2 is followed after each Conv layer. 22

3.5. Pre-training 23

GMT utilizes a pre-training process before fine-tuning to im- 24

prove training efficiency and effectiveness. First, we pre-train 25

GMT as an autoencoder on the reconstruction task. Then, with 26

the existing knowledge, GMT is fine-tuned on the translation 27

task. 28

Suppose we directly optimize the trainable parameters in 29

GMT on the translation task without pre-training. In that case, 30

the stability of GMT is largely affected by the number of vari- 31

ables involved in the training. GMT is more likely to be opti- 32

mized to a local minimum without pre-training, favoring some 33

variable translations but degrading the quality of other transla- 34

tions. Thus, we pre-train GMT on the relatively easy recon- 35

struction task and then utilize the local minimum of the pre- 36

training task as the starting point for fine-tuning. 37

To optimize GMT during pre-training, we leverage the MSE 38

loss (Equation 1). After sufficient pre-training, GMT can pro- 39

duce lossless reconstruction inferences, which indicates that 40

the encoder of GMT can extract meaningful high-level features 41

from the input volume of any seen variables. Additionally, the 42

feature generator and the affine network have learned the style 43

encoding of different variables in pre-training. As shown in Ta- 44

ble 4 and Figure 5, pre-training and fine-tuning generally allow 45

GMT to produce higher-quality inferred data and more visu- 46

ally accurate rendering results than the directly trained GMT 47

model. It is worth noting that fine-tuning a pre-trained GMT 48

only takes half to two-thirds of the total training time (including 49

pre-training time) to achieve the same performance as a directly 50

trained GMT. 51

Table 4: Performance comparison under different training procedures using the
Tangaroa data set. We report the average PSNR (dB) and LPIPS (for volume
rendering) across all time steps.

w/o pre-training w pre-training
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

VLM→VTM 44.50 0.123 46.18 0.082
VLM→DIV 48.93 0.171 50.35 0.132
VLM→ACC 30.93 0.280 30.25 0.284
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(a) w/o pre-training (b) w pre-training (c) GT
Fig. 5: Volume rendering comparison under pre-training using the Tangaroa
(VLM→VTM) data set at time step 1.

4. Results and Discussion1

4.1. Data Sets and Variable Selection2

We experimented with the four MTVD listed in Table 5.3

The variable set of the combustion data set includes stoichio-4

metric mixture fraction (MF), scalar dissipation (CHI), OH5

mass fraction (YOH), and heat release (HR). The Tangaroa6

data set also has four variables: velocity magnitude (VLM),7

acceleration (ACC), divergence (DIV), and vorticity magnitude8

(VTM). Note that the Tangaroa data set contains derived vari-9

ables whose mathematical relationships are known. We use10

this data set to illustrate how the relationships between differ-11

ent variables influence the difficulty of their translations. For12

ionization and mantle, we started with seven and six variables,13

respectively, and followed the solution of V2V [2] to decide the14

variable subsets suitable for translation. The seven variables of15

ionization are total particle density (PD), gas temperature (T),16

H mass abundance (H), H+ mass abundance (H+), He mass17

abundance (He), He+ mass abundance (He+), H2 mass abun-18

dance (H2). The six variables of the mantle are temperature19

(T), velocity magnitude (VLM), conductivity anomaly (CA),20

density anomaly (DA), expansivity anomaly (EA), and temper-21

ature anomaly (TA). Figure 6 shows the t-SNE projections of22

these two data sets where each circle represents a single time23

step. We selected four variables for each based on the proximity24

of variable trajectories, as determined by the distances between25

their respective centroids in the t-SNE projection. The excluded26

variables are shown with strikethroughs in Table 5. We normal-27

ized the value range to [0, 1] across all time steps for each data28

set and variable. The isovalues reported in the figures and tables29

are based on this range.30

Table 5: The variables and dimensions of each data set.
data set variables dimension (x× y× z× t)

combustion [31] MF, CHI, YOH, HR 480×720×120×100
ionization [32] PD, T, H, H+, He, He+, H2 600×248×248×100

mantle [33] T, VLM, CA, DA, EA, TA 360×201×180×150
Tangaroa [34] VLM, ACC, DIV, VTM 300×180×120×100

Table 6: Training time (H:M:S) and model size (MB) for GMT’s one-to-many
variable translation.

data set source variable target variables training time model size
combustion MF CHI, YOH, HR 18:53:09 92.9
ionization H H+, He, He+ 20:57:34 92.9

mantle CA DA, EA, TA 27:46:06 92.9
Tangaroa VLM ACC, DIV, VTM 23:13:19 92.9

4.2. Network Training31

For network training, GMT takes full-resolution volumetric32

data from a given data set and crops the original volume ran-33

H

He

H+

He+
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PD

T

H2

H HeH+

He+

T

PD

T

DA

TA

CA

EA

VLM

VLM

T

CA

DAEA

TA

(a) ionization (b) mantle
Fig. 6: T-SNE projections for variable selection.

Table 7: Average PSNR (dB), LPIPS (for volume rendering), and CD (for iso-
surface rendering, refer to Section 4.3) values across all time steps. The data
set column also reports the source and target variables as well as the chosen
isovalue v.

data set method PSNR ↑ LPIPS ↓ CD ↓
Pix2Pix 41.07 0.211 2.08

combustion V2V 44.49 0.177 1.54
(MF→CHI, v = 0.02) StarGAN 42.84 0.173 1.37

GMT 44.20 0.159 1.28
Pix2Pix 40.82 0.062 0.55

ionization V2V 58.25 0.005 0.07
(H→H+, v = 0.5) StarGAN 45.97 0.049 0.26

GMT 61.99 0.001 0.04
Pix2Pix 31.03 0.315 7.47

mantle V2V 35.38 0.217 3.79
(CA→TA, v = 0.55) StarGAN 33.29 0.376 7.49

GMT 36.37 0.229 3.57
Pix2Pix 37.04 0.271 3.31

Tangaroa V2V 43.23 0.182 1.95
(VLM→DIV, v = 0.58) StarGAN 43.68 0.278 3.23

GMT 50.35 0.134 1.36

domly for training. Such a treatment reduces GPU memory 34

consumption and improves training efficiency. The crop size 35

in either dimension should be a multiple of two to the power 36

of the number of times (in our case, four) GMT downsamples 37

the input volume. We recommend a crop size larger than 32 38

since we downsample the volume five times in the discrimina- 39

tor; otherwise, removing a downsampling layer is necessary. 40

For all data sets, we used the middle 40% time steps for train- 41

ing and the rest of the 60% time steps at both ends for inference. 42

The input volume is always renormalized to [-1,1], correspond- 43

ing to the range of output volume from a tanh function. We 44

initialized the trainable parameters of GMT with Kaiming ini- 45

tialization [35] and optimized the parameters with Adam algo- 46

rithm [36]. We used 1×10−4 as the learning rate of GMT, and 47

β1 = 0.9, β2 = 0.999. We tested five loss function settings (Sec- 48

tion 3.2) and three injection strategies (Section 3.3) to identify 49

the best choices. Table 6 lists the training time and model size 50

for GMT’s one-to-many variable translation. We can see that 51

the model size remains the same across all cases, and the train- 52

ing time is mainly determined by the number of time steps and 53

forms a linear relationship. 54

4.3. Results 55

Baselines. We compare our GMT with the following state- 56

of-the-art deep learning methods: 57

• Pix2Pix [37]: Pix2Pix is a framework for paired image-to- 58

image translation. We used the original Pix2Pix architec- 59

ture for variable translation. 60
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(a) combustion (MF→CHI) (b) ionization (H→H+) (c) mantle (CA→TA) (d) Tangaroa (VLM→DIV)
Fig. 7: Top to bottom: PSNR, LPIPS (for volume rendering), and CD (for isosurface rendering) of synthesized target variables (VTM, H+, TA, and DIV) under
Pix2Pix, V2V, StarGAN, and GMT. The chosen isovalues are reported in Table 7. The shaded area denotes the time steps used for network training.

• StarGAN [7]: StarGAN is a unified GAN for multi-1

domain image-to-image translation. We treated variables2

as domains and modified StarGAN to work with volume-3

to-volume translation.4

• V2V [2]: V2V is a paired volume-to-volume translation5

framework. We built and trained GMT with reference to6

the V2V architecture.7

For all methods and across all data sets, we use the same crop8

size of 643 and train each model for 4000 epochs to ensure9

that the model converges sufficiently. We present the training10

time comparison for all methods in Table 8, including the time11

we spent on pre-training GMT for 500 epochs. StarGAN and12

GMT perform one-to-many variable translation, and Pix2Pix13

and V2V only perform one-to-one variable translation. There-14

fore, the total time to train Pix2Pix or V2V for an equivalent15

one-to-many (three in this case) variable translation task should16

be roughly tripled.17

Table 8: Training time (H) for Pix2Pix, V2V, StarGAN, and GMT.
Pix2Pix V2V StarGAN GMT

1-to-1 1-to-3 1-to-1 1-to-3 1-to-3 pre-train 1-to-3
combustion 6.1 18.3 11.7 35.1 26.5 2.5 18.9
ionization 7.3 21.9 14.1 42.3 35.9 4.6 21.0

mantle 10.8 32.4 22.9 68.7 54.7 3.4 27.8
Tangaroa 7.0 21.0 15.5 46.5 35.5 2.3 23.2

Except for the rendering of GT, all visualization results pre-18

sented in this paper are rendering results from synthesized data.19

Since the prediction results of a time step furthest from the20

training set better reflect the performance of each model, we21

picked a time step at either end of the sequence for the compar-22

ison. The accompanying video shows the rendering of all time23

steps of selected cases.24

Except for Figure 2, for closer examination, we calculate25

rendering differences with respect to the GT rendering in the26

CIELUV color space. Noticeable pixel differences are mapped 27

to purple, blue, green, yellow, and red, showing low to high 28

pixel-wise differences (refer to the lower-left corner of Figure 4 29

for the colormap legend). Optionally, we provide zoom-in com- 30

parisons as well. Parameter studies of GMT, including training 31

sample, training epoch, and crop size, are presented in the ap- 32

pendix. 33

Evaluation metrics. For quantitative evaluation, we employ 34

three metrics: peak signal-to-noise ratio (PSNR), learned per- 35

ceptual image patch similarity (LPIPS) [38], and chamfer dis- 36

tance (CD) [39]. These three metrics evaluate the quality of 37

synthesized data at different levels. At the data level, PSNR 38

evaluates the quality of the synthesized data with respect to the 39

original data (higher PSNR means better quality). At the im- 40

age level, LPIPS evaluates the similarity of volume rendering or 41

isosurface rendering images from the synthesized and original 42

data. As a learned metric based on neural networks, it computes 43

a weighted average of the activations at hidden layers to predict 44

relative image similarities, which correlate well with percep- 45

tual judgments (lower LPIPS means better quality). Finally, at 46

the feature level, CD evaluates the similarity between isosur- 47

faces extracted from the synthesized and original data. It cal- 48

culates the bidirectional overall vertex-wise Euclidean distance 49

between the two surfaces (lower CD means better quality). 50

Quantitative comparison. Table 7 reports the average 51

PSNR, LPIPS, and CD values of inferred data across all time 52

steps. GMT is the winner across all metrics and data sets, 53

except for PSNR for combustion (MF→CHI) and LPIPS for 54

mantle (CA→TA). In these cases, GMT is a close second-best 55

behind V2V. V2V is the second best among these four meth- 56

ods, only losing slightly to StarGAN on PSNR for Tangaroa 57

(VLM→DIV). Between Pix2Pix and StarGAN, StarGAN beats 58

Pix2Pix across all metrics for combustion (MF→CHI) and ion- 59
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(a) Pix2Pix (b) V2V (c) StarGAN (d) GMT (e) GT
Fig. 8: Volume rendering comparison among different methods. Top to bottom: combustion (MF→CHI), ionization (H→H+), mantle (CA→TA), and Tangaroa
(VLM→DIV). The time steps displayed are 6, 100, 150, and 1, respectively.

ization (H→H+). The results are mixed for the other two data1

sets, with StarGAN winning over Pix2Pix for PSNR, Pix2Pix2

winning over StarGAN for LPIPS, and a tie for CD. Overall,3

we can conclude that GMT is the best, followed by V2V, Star-4

GAN, and Pix2Pix.5

Figure 7 plots PSNR, LPIPS, and CD values for each time6

step. For PSNR, GMT is the best for both training and inferred7

time steps for ionization and Tangaroa, in a strong tie with V2V8

for combustion and mantle for training time steps but is better9

for inferred time steps. For LPIPS, similar observations can be10

made for combustion, ionization, and Tangaroa, while for man-11

tle, V2V outperforms GMT for training time steps, but GMT is12

in a strong tie with V2V for inferred time steps. For CD, GMT13

is the best for ionization and Tangaroa, in a strong tie with V2V14

for training time steps of combustion and mantle, but beats V2V15

for inferred time steps. For the combustion data set, since CHI16

has more drastic changes than MF in later time steps, the perfor-17

mance curves exhibit strong spikes, bounded by the sharp dips18

around time steps 80 and 95. The fluctuation of performance19

curves for the mantle data set is due to its lack of temporal co- 20

herence in the original data. We expect the performance to peak 21

at the training time steps and decline at the inferred time steps 22

(i.e., exhibiting the bell curve), and most of the results support 23

this expectation. Exceptions across all four data sets are the 24

early inferred time steps for PSNR, LPIPS, and CD curves of 25

combustion and ionization. These exceptions may be due to the 26

relatively straightforward data patterns exhibited in the early 27

time steps of the data set. 28

Qualitative comparison. Figures 8 and 9 show volume ren- 29

dering and isosurface rendering comparisons. For volume ren- 30

dering, GMT is the winner for mantle and Tangaroa. For com- 31

bustion, the results of GMT are very close to those of V2V and 32

StarGAN, but the details generated from GMT are more accu- 33

rate than the other two. For ionization, GMT and V2V lead to 34

very close results, but the difference images show that GMT is 35

still better than V2V. Overall, Pix2Pix yields the worst results 36

across all four data sets, followed by StarGAN. For isosurface 37

rendering, we can draw similar conclusions. 38
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(a) Pix2Pix (b) V2V (c) StarGAN (d) GMT (e) GT
Fig. 9: Isosurface rendering comparison among different methods. Top to bottom: combustion (MF→CHI), ionization (H→H+), mantle (CA→TA), and Tangaroa
(VLM→DIV). The time steps displayed are 6, 100, 150, and 1, respectively. The chosen isovalues are reported in Table 7.

One-to-many variable translation. Both StarGAN and1

GMT have the capability of achieving one-to-many variable2

translation. Figures 10 and 11 show their volume rendering3

and isosurface rendering comparisons using the ionization data4

set where H is the source variable. We use a time step at one5

end (time step 100) furthest away from the training time steps,6

demonstrating the worst-case results. Although the differences7

are subtle, GMT generates better results than StarGAN for vol-8

ume and isosurface rendering (refer to the difference images9

and zoom-in comparisons). The quantitative comparison in Ta-10

ble 9 also indicates that overall, GMT outperforms StarGAN11

over the three quality metrics. GMT is consistently better across12

all time steps.13

Many-to-many variable translation. The GMT design14

makes it easy to train all pairs bidirectionally within a single15

framework. The training time proportionally increases as the16

number of variable pairs multiplies. For example, given four17

variables, the number of pairs increases from three (one-to-18

many) to 12 (many-to-many). The training time of many-to-19

many variable translation is expected to be four times that of20

one-to-many. 21

Figures 12 and 13 show volume rendering and isosurface ren- 22

dering comparisons using the Tangaroa data set. Again, we 23

use a time step at the other end (time step 1), furthest away 24

from the training time steps, demonstrating the worst-case re- 25

sults. Examining Figure 12 across the rows and columns, we 26

can observe that overall, VLM is the best source variable (i.e., 27

the source leading to the best translation result regardless of the 28

target), and VTM is the best target variable (i.e., the most easily 29

transferrable target irrespective of the source). Checking Fig- 30

ure 13 leads to the same observation. 31

These visual results echo the pairwise LPIPS (for volume 32

rendering) and CD (for isosurface rendering) comparisons re- 33

ported in Table 10. However, PSNR comparisons at the data 34

level do not agree (for PSNR, VLM is the best source, and 35

DIV is the best target). Table 10 also shows that the bidirec- 36

tional translation is not symmetric. For example, VLM→DIV 37

achieves a PSNR value of 47.75 dB, while DIV→VLM only 38

leads to a PSNR value of 34.72 dB. For LPIPS, the widest gap 39

happens between VTM→DIV and DIV→VTM, and that for 40
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Table 9: PSNR (dB), LPIPS (for volume rendering), and CD (for isosurface rendering) values at time step 100 and their averages across all time steps for one-to-many
variable translation using the ionization data set. For CD, v = 0.5, 0.7, and 0.1 for H+, He, and He+, respectively.

time step 100 average across all time steps
PSNR ↑ LPIPS ↓ CD ↓ PSNR ↑ LPIPS ↓ CD ↓

StarGAN GMT StarGAN GMT StarGAN GMT StarGAN GMT StarGAN GMT StarGAN GMT
H→H+ 40.58 58.25 0.067 0.002 0.48 0.05 45.97 61.99 0.049 0.001 0.26 0.04
H→He 33.66 34.10 0.135 0.090 1.23 1.10 41.21 46.43 0.079 0.039 0.51 0.30

H→He+ 32.95 34.11 0.158 0.090 1.50 1.11 39.65 47.08 0.103 0.036 1.04 0.51

Table 10: PSNR (dB), LPIPS (for volume rendering), and CD (for isosurface rendering) values at time step 1 for GMT’s many-to-many variable translation using
the Tangaroa data set. The rows are the source variables, and the columns are the target variables.

PSNR ↑ DIV VLM VTM LPIPS ↓ DIV VLM VTM CD ↓ DIV VLM VTM
DIV — 34.72 42.39 DIV — 0.152 0.121 DIV — 2.17 1.32
VLM 47.75 — 43.62 VLM 0.168 — 0.103 VLM 1.81 — 1.12
VTM 47.58 34.73 — VTM 0.186 0.158 — VTM 1.89 2.16 —

(a) StarGAN (b) GMT (c) GT
Fig. 10: Volume rendering comparison of one-to-many variable translation us-
ing the ionization data set at time step 100. Top to bottom: H→H+, H→He,
and H→He+.

CD is between VTM→VLM and VLM→VTM.1

Comparison with compression methods. SZ3 [40] and2

TTHRESH [41] are two state-of-the-art error-bounded lossy3

compressors for scientific data. We designed two experi-4

ments to comprehensively compare GMT and these compres-5

sion methods. In the first experiment, we compress the vol-6

ume data using SZ3 and TTHRESH to match the same average7

PSNR as the volumes generated by GMT. In the second experi-8

ment, we compress the volume data using SZ3 and TTHRESH9

to match the same compression rate (CR) as GMT. That is, the10

total size of compressed volume data of the target variables11

should be as close as possible to the size of the GMT model,12

which is 92.9 MB. We present the results of both experiments13

in Table 11. Note that TTHRESH cannot successfully compress14

(a) StarGAN (b) GMT (c) GT
Fig. 11: Isosurface rendering comparison of one-to-many variable translation
using the ionization data set at time step 100. Top to bottom: H→H+, H→He,
and H→He+. v = 0.5, 0.7, and 0.1 for H+, He, and He+, respectively.

and decompress 15 time steps of H+ of the ionization data set, 15

111 time steps of TA of the mantle data set, and all 100 time 16

steps of DIV of the Tangaroa data set. We test on machines 17

with different platforms, and the same issue persists. Hence, 18

we mark the metrics with ⋆ to denote the average results of suc- 19

cessfully compressed and decompressed time steps. 20

Additionally, to demonstrate the performance of GMT com- 21

pared to SZ3 and TTHRESH when dealing with larger data 22

sets, we double the size in each spatial dimension for the com- 23

bustion data set via trilinear interpolation, resulting in volumes 24

eight times the size of the original ones. The results shown 25

in Table 11 indicate that, as the resolution of the data set in- 26

creases, both SZ3 and TTHRESH produce larger compressed 27
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(a) GT DIV (b) DIV→VLM (c) DIV→VTM

(d) VLM→DIV (e) GT VLM (f) VLM→VTM

(g) VTM→DIV (h) VTM→VLM (i) GT VTM
Fig. 12: Volume rendering for GMT’s many-to-many variable translation using
the Tangaroa data set at time step 1.

Table 11: Average CR, PSNR (dB), LPIPS (for volume rendering), and CD (for
isosurface rendering) values across all time steps. The data set column also
reports the source and target variables. For CD, v = 0.02, 0.5, 0.55, and 0.58,
respectively. Metrics of partially failed cases are labeled with ⋆, and those of
completely failed cases are denoted by —.

same PSNR same CR
data set method CR ↑ LPIPS ↓ CD ↓ PSNR ↑ LPIPS ↓ CD ↓

SZ3 1332 0.338 4.80 47.29 0.179 1.40
combustion TTHRESH 831 0.325 2.67 46.92 0.228 1.42
(MF→CHI) GMT 511 0.159 1.28 44.20 0.159 1.28

SZ3 3677 0.189 1.57 45.41 0.203 1.77
combustion 2× TTHRESH 3847 0.239 1.59 45.65 0.249 1.68

(MF→CHI) GMT 4087 0.146 1.27 46.15 0.146 1.27
SZ3 183 0.003 0.02 45.83 0.048 0.11

ionization TTHRESH 616⋆ 0.003⋆ 0.03⋆ 46.11⋆ 0.013⋆ 0.09⋆

(H→H+) GMT 455 0.001 0.04 61.99 0.001 0.04
SZ3 963 0.333 3.39 47.79 0.158 0.75

mantle TTHRESH 3091⋆ 0.381⋆ 3.19⋆ 47.31⋆ 0.112⋆ 0.51⋆

(CA→TA) GMT 241 0.229 3.57 36.37 0.229 3.57
SZ3 607 0.122 3.38 67.62 0.013 0.28

Tangaroa TTHRESH — — — — — —
(VLM→DIV) GMT 80 0.134 1.36 50.35 0.134 1.36

files to maintain the same PSNR. Moreover, GMT performs the1

best with upscaled volumes because the network processes finer2

blocks. Since the model size of GMT stays the same with the3

upscaled data, neither SZ3 nor TTHRESH can beat GMT in4

both experiments. Based on the metrics, we conclude that GMT5

is more likely to outperform SZ3 and TTHRESH by achieving6

either a better generation quality or a higher CR when dealing7

with larger data (the upscaled combustion data set in our exper-8

iments) which hints that GMT is more suitable for compressing9

large-scale data sets.10

We point out that GMT needs to perform an extrapolation11

task, as it does not have information about 60% of the time steps12

of the target variables, while SZ3 and TTHRESH see all time13

steps. That could also explain why GMT may perform worse14

than SZ3 in some cases. Compared to SZ3 and TTHRESH, we15

also observe much less noise and visual artifacts on the render-16

ing images generated by GMT, as shown in Figure 14. Unlike17

volume data compression methods such as SZ3 and TTHRESH,18

GMT does not guarantee error bounds since it is a machine-19

learning approach. Despite the risks of using an approach with-20

(a) GT DIV (b) DIV→VLM (c) DIV→VTM

(d) VLM→DIV (e) GT VLM (f) VLM→VTM

(g) VTM→DIV (h) VTM→VLM (i) GT VTM
Fig. 13: Isosurface rendering for GMT’s many-to-many variable translation
using the Tangaroa data set at time step 1. v = 0.58, 0.5, and 0.1 for DIV, VLM,
and VTM, respectively.

out guaranteed error bounds, we believe GMT can be useful and 21

reliable in exploring complex MTVD, identifying relationships 22

of variables, and assisting scientists in developing hypotheses. 23

In the appendix, we visualize and discuss the errors introduced 24

by the reconstructed volumes using different methods, with vol- 25

ume renderings showing voxel-wise errors and box plots show- 26

ing error distributions. 27

4.4. Limitations 28

Compared with V2V, while GMT generalizes from one- 29

to-one variable translation to one-to-many and many-to-many 30

variable translation, it still has three limitations. 31

First, like V2V, GMT does not guarantee that any variable 32

pair is transferrable. So, it relies on a variable selection step that 33

chooses a subset of variables from the given MTVD for the sub- 34

sequent variable translation task. Nevertheless, as demonstrated 35

in the appendix, although not universal, handling multiple pairs 36

in GMT could boost translation performance. Furthermore, us- 37

ing other variables not suggested by our variable selection step 38

will likely lead to worse translation quality. 39

Second, given a pair of variables, the translation quality 40

is not bidirectionally symmetric (refer to Table 10, and Fig- 41

ures 12 and 13). This is what we expect as the transferable 42

difficulty defined by Han et al. [2] is not symmetric. Neverthe- 43

less, designing a more powerful solution to reduce the gap and 44

improve quality in both directions could lead to a more balanced 45

bidirectional translation. 46

Third, we observe that translating the same pair using a 47

many-to-many network may perform worse than a one-to-many 48

network. For example, a one-to-many network can achieve an 49

average PSNR value of 50.35 dB for VLM→DIV (Table 7), 50

whereas a many-to-many network only gets 47.75 dB (Ta- 51

ble 10). 52

Despite these limitations, GMT significantly improves the 53

existing V2V in generalizing from one-to-one to many-to-many 54

variable translation. This critical step promotes solution adop- 55

tion by domain scientists. 56
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(a) SZ3-1 (b) SZ3-2 (c) TTHRESH-1 (d) TTHRESH-2 (e) GMT (f) GT
Fig. 14: Rendering comparison of different methods. (a) and (b) show SZ3 under the same PSNR and CR, respectively, as GMT. (c) and (d) show TTHRESH under
the same PSNR and CR, respectively, as GMT. Top to bottom: isosurface rendering of combustion (MF→CHI, v = 0.02) at time step 87, isosurface rendering of
2× upscaled combustion (MF→CHI, v = 0.02) at time step 87, volume rendering of ionization (H→H+) at time step 87, volume rendering of mantle (CA→TA) at
time step 92, and isosurface rendering of Tangaroa (VLM→DIV, v = 0.58) at time step 1. TTHRESH leads to empty rendering for Tangaroa (VLM→DIV) because
the compression fails.

5. Conclusions and Future Work1

We have presented GMT, a generalized deep-learning ap-2

proach for MTVD that supports one-to-many and many-to-3

many variable translation within a single framework. By allow-4

ing simultaneously training multiple variable pairs, GMT elim-5

inates the need to train each variable pair separately, which is6

a tedious job given many variables. Furthermore, we optimize7

the GMT model according to our task requirement to reduce8

training costs and improve stability. To illustrate the improve-9

ment, we employ StarGAN as one of the baselines in multiple10

comparisons. The results suggest that GMT is more suitable11

than StarGAN for the MTVD translation task.12

GMT is the first unified multi-domain translation focusing13

on scientific volumetric data. We believe this work represents14

a timely and significant step forward in deep learning for sci-15

entific visualization literature. As the research in this direc-16

tion quickly grows, generalization is a challenge the commu-17

nity must tackle to tame the commonly produced large amount18

of multivariate or ensemble time-varying simulation data gen-19

erated from scientific applications.20

In the future, besides multivariate data sets, we will experi- 21

ment with GMT on ensemble data sets to verify this method’s 22

efficacy. We will also address the uneven translation quality 23

among variable pairs to maximize the benefit of training all 24

variable pairs while minimizing their potential negative inter- 25

influence. We point out that diffusion models, such as DALL·E 26

2 [42], stable diffusion [43], Imagen [44], and eDiff-I [45], have 27

outperformed other deep generative models like GANs, vari- 28

ational autoencoders, and flow-based models in many image 29

generation tasks. Since conditioning can be applied to the de- 30

noising operation to designate the output variable, it is possible 31

to develop a solution using diffusion models for the generalized 32

multivariate translation task. We offer two reasons for not us- 33

ing diffusion models in this work. First, Dhariwal et al. [46] 34

and Rombach et al. [43] argued that since the denoising pro- 35

cess usually takes multiple steps to achieve outstanding qual- 36

ity, diffusion models are slower than GANs in sampling speed. 37

For large-scale volumetric data, we need to infer thousands or 38

more blocks (e.g., 643) to fill the entire volume. Considering we 39

also have multiple variables, each with a hundred or more time 40

steps, it could be impractical to use diffusion models. Second, 41
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according to Yang et al. [47], unlike GANs, the effectiveness1

of diffusion models for specific tasks is much less studied the-2

oretically. Particularly, it is hard to find evidence that diffusion3

models outperform GANs when the objective is voxel-wise ac-4

curacy instead of likelihood. Therefore, we believe GAN is a5

more practical first step to achieving our goal. Nevertheless,6

we would like to explore the potential of diffusion models in7

addressing some of the issues we have found in the current im-8

plementation of GMT.9

Acknowledgements10

This research was supported in part by the U.S. National Sci-11

ence Foundation through grants CNS-1629914, DUE-1833129,12

IIS-1955395, IIS-2101696, and OAC-2104158, and the U.S.13

Department of Energy through grant DE-SC0023145. The au-14

thors would like to thank the anonymous reviewers for their15

insightful comments.16

References17

[1] Wang, C, Han, J. DL4SciVis: A state-of-the-art survey on deep learn-18

ing for scientific visualization. IEEE Transactions on Visualization and19

Computer Graphics 2022;Accepted.20

[2] Han, J, Zheng, H, Xing, Y, Chen, DZ, Wang, C. V2V: A deep learning21

approach to variable-to-variable selection and translation for multivariate22

time-varying data. IEEE Transactions on Visualization and Computer23

Graphics 2021;27(2):1290–1300.24
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Appendix

Besides loss combinations and injection strategies investi-
gated in Sections 3.2 and 3.3 of the paper, we study three pa-
rameters influencing GMT training: training sample, training
epoch, and crop size. In addition, we perform additional ex-
periments to explore how variable selection results impact the
subsequent quality of variable translation and investigate error
bounds using different methods.
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Fig. 1: Average PSNR and LPIPS for GMT under different (a) training samples,
(b) training epochs. LPIPS is for volume rendering.

Training sample. We train GMT using the combustion data
set under different percentages of the data as training samples
(20%, 40%, 60%). Figure 1 (a) shows the PSNR and LPIPS
values for MF→CHI translation as the percentage increases. As
we can see, there are significant performance gains for PSNR
and LPIPS when the training samples increase from 20% to
40%. After that, the gains are much narrower. Figure 2 com-
pares volume rendering results under different percentages of
the data as training samples. We can observe clear visual qual-
ity improvement when the percentage increases from 20% to
40%. However, when 60% of the data are used for training,
visual quality improvement is less substantial. As the training
cost increases almost linearly with the training samples, we take
40% of the data to train GMT for quality and speed tradeoffs.

Training epoch. We train GMT using the ionization data
set under different epochs (500 to 5000 with a step size of 500).
Figure 1 (b) shows the PSNR and LPIPS values for VLM→DIV
translation as the number of epochs increases. As we can see,
the performance continues to increase until 4000 epochs. There
is a drop from 4000 to 4500 epochs, and the improvement from
4000 to 5000 epochs is also much less significant. Figure 3
compares volume rendering results under different epochs. We
can observe significant visual quality improvement from 500

(a) 20%

(b) 40%

(c) 60%

(d) GT
Fig. 2: Volume rendering comparison for GMT under different percentages of
the data as training samples using the combustion (MF→CHI) data set at time
step 6.

to 1000 epochs, followed by 1000 to 1500 epochs. Afterward,
details are still getting refined as the epoch increases. Since
performance starts to drop after 4000, we use 4000 epochs for
training GMT.

Table 1: GMT training time (H:M:S) of the mantle data set using different crop
sizes on the one-to-three variable translation task.

crop size 643 963 1283

training time 27:46:12 147:13:12 257:53:59

Crop size. We train GMT using the mantle data set under
different crop sizes (643, 963, 1283). A larger crop size leads
to a more extensive receptive field, helping the network cap-
ture more information. However, as the crop size increases, the
training time increases dramatically. The training time for dif-
ferent crop sizes is shown in Table 1. With the crop size of
1283, we spent more than 257 hours training GMT for 4000
epochs, which is more than 9× the training time with the crop
size of 643. The crop size of 963 also costs about 5× the train-
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(a) 500 (b) 1000 (c) 1500 (d) 2000

(e) 2500 (f) 3000 (g) 3500 (h) 4000

(i) 4500 (j) 5000 (k) GT
Fig. 3: Volume rendering comparison for GMT under different training epochs using the Tangaroa (VLM→DIV) data set at time step 1.

(a) 643 (b) 963 (c) 1283 (d) GT
Fig. 4: Volume rendering comparison for GMT under different crop sizes using the mantle (CA→TA) data set at time step 150.

ing time with the crop size of 643. Figure 1 (c) shows the PSNR
and LPIPS values for CA→TA translation as the crop size in-
creases. As we can see, as the crop size increases from 643

to 963, both PSNR and LPIPS values improve. When the crop
size increases from 963 to 1283, the PSNR value stays almost
the same, but the LPIPS value decreases, which implies visual
quality improvement. We can observe in Figure 4 that 963 and
1283 crop sizes produce visually better results compared to 643

crop size. Considering the significant amount of extra time for
training using a crop size of 963 or 1283, we choose the crop
size of 643 to train GMT for efficiency.

Variable selection. To illustrate the effectiveness of variable
selection on variable translation, we compare the performance
of GMT in three settings for the ionization and mantle data
sets. First, we train three individual one-to-one models with one
of the three variable pairs respectively (H→H+, H→He, and
H→He+ for ionization) (CA→TA, CA→DA, and CA→EA for
mantle). Second, we train a one-to-many model with selected
variables (H→H+, He, and He+ for ionization) (CA→TA, DA,

and EA for mantle). Last, we train a one-to-many model with
all variables of the ionization dataset (H→H+, He, He+, T, H2,
and PD for ionization) (CA→TA, DA, EA, T, and VLM for
mantle).

From the results reported in Table 2, we can see that, for the
ionization dataset, the translation quality of the 1-to-3 model is
as good as separate 1-to-1 models. However, after we add three
extra variables (T, H2, and PD) far from the existing variables in
the t-SNE projection (see Figure 6 (a) in the paper), the trans-
lation quality of the existing pairs reduces considerably. The
metrics show that the translation quality of both T and PD is
worse than other variables. Although the PSNR of H2 is not
as bad as T and PD because most of the voxels have relatively
small values (below 0.01 after normalization), both LPIPS and
CD of H2 are still much worse than H+, He, and He+. The
translation performance of the ionization data set is consistent
with the proximity pattern demonstrated in the t-SNE projection
(i.e., variables with closer footprints in the projection are easier
in translation). Hence, the variable selection step is effective by
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Table 2: PSNR (dB), LPIPS (for volume rendering), and CD (for isosurface
rendering) values averaged across all time steps for different variable selection
settings using the ionization and mantle data sets. For CD of the ionization data
set, v = 0.5, 0.7, 0.1, 0.05, 0.01, and 0.4 for H+, He, He+, T, H2, and PD,
respectively. For CD of the mantle data set, v = 0.55, 0.6, 0.75, 0.6, and 0.15
for TA, DA, EA, T, and VLM, respectively.

average across all time steps
PSNR ↑ LPIPS ↓ CD ↓

ionization 1-to-1 1-to-3 1-to-6 1-to-1 1-to-3 1-to-6 1-to-1 1-to-3 1-to-6
H→H+ 63.83 61.99 56.05 0.001 0.001 0.004 0.03 0.04 0.08
H→He 46.71 46.43 45.01 0.039 0.039 0.049 0.30 0.30 0.35

H→He+ 46.12 47.08 44.91 0.040 0.036 0.047 0.56 0.51 0.63
H→T — — 30.30 — — 0.175 — — 6.22

H→H2 — — 44.77 — — 0.133 — — 1.75
H→PD — — 34.96 — — 0.222 — — 3.29

PSNR ↑ LPIPS ↓ CD ↓
mantle 1-to-1 1-to-3 1-to-5 1-to-1 1-to-3 1-to-5 1-to-1 1-to-3 1-to-5

CA→TA 32.94 36.37 34.62 0.257 0.229 0.237 6.83 3.57 6.80
CA→DA 30.72 31.06 31.24 0.315 0.318 0.291 16.13 13.11 13.35
CA→EA 31.28 31.25 31.33 0.488 0.530 0.480 29.19 27.75 28.17
CA→T — — 33.59 — — 0.198 — — 5.15

CA→VLM — — 27.78 — — 0.508 — — 17.22

eliminating variables far away to maintain good performance of
GMT.

For the mantle data set, the situation is a bit different. Al-
though their metrics are pretty close, 1-to-1 models perform the
worst compared to the 1-to-3 model and 1-to-6 model. We be-
lieve that one-to-many models may create a better latent space
during pre-training, which allows the network to generate more
meaningful results. With T and VLM included in the training,
the translation quality of existing variable pairs is hardly af-
fected. This is because two adjacent time steps in the mantle
data set are 500 million years apart, meaning the data set has
significantly less temporal coherence than others. Although the
selected variables (CA, TA, DA, and EA) have better correla-
tions according to the t-SNE projection, predicting the corre-
sponding time step between selected variables is still extremely
difficult for GMT. Therefore, the variable selection step might
be less effective for a data set with less temporal coherence.

Error bounds. GMT is a deep-learning method that does
not guarantee error bounds for its generated volumes. In sci-
entific data analysis, it is necessary to know the bounds and
distributions of the errors introduced by the synthesized data.
In Figure 5, we compare volume rendering of voxel-wise er-
rors derived from generated volumes using SZ3, TTHRESH,
and GMT. To illustrate error distributions, we present box plots
in Figure 6 for each corresponding volume shown in Figure 5.
Considering both error visualizations and box plots, we point
out two main observations. First, for all cases except ioniza-
tion, the errors associated with the generated results of GMT
are much less varied than those of SZ3-1 and TTHRESH-1 (i.e.,
SZ3 and TTHRESH under the same PSNR). With a higher vari-
ance of errors, the volumes generated by SZ3 and TTHRESH
exhibit more artifacts and noises. With closer bounds and fewer
outliers under the same PSNR, GMT is more trustworthy for
data reduction. Second, the errors in volumes produced by
GMT are mostly concentrated on certain data regions. Val-
ues in these regions are sensitive to time and variable changes.
With highlighted anomalies, visualizing errors and their statistic
patterns may also provide insights into the drives of particular
trends over time and relationships between variables captured
by GMT.

(a) (b) (c) (d) (e)
Fig. 5: Volume rendering comparison of voxel-wise errors between the synthe-
sized volumes generated by different methods and the GTs. (a) to (e): SZ3-1,
SZ3-2, TTHRESH-1, TTHRESH-2, and GMT. (a) and (b) show SZ3 under the
same PSNR and CR, respectively, as GMT. (c) and (d) show TTHRESH un-
der the same PSNR and CR, respectively, as GMT. Top to bottom: combustion
(MF→CHI) at time step 87, 2× upscaled combustion (MF→CHI) at time step
87, ionization (H→H+) at time step 87, mantle (CA→TA) at time step 92, and
Tangaroa (VLM→DIV) at time step 1. TTHRESH leads to empty rendering for
Tangaroa (VLM→DIV) because the compression fails.
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Fig. 6: Box plots of voxel-wise errors between the synthesized volumes gen-
erated by different methods and the GTs. SZ3-1 and SZ3-2 show SZ3 under
the same PSNR and CR, respectively, as GMT. TTHRESH-1 and TTHRESH-
2 show TTHRESH under the same PSNR and CR, respectively, as GMT.
(a) to (e): combustion (MF→CHI) at time step 87, 2× upscaled combus-
tion (MF→CHI) at time step 87, ionization (H→H+) at time step 87, man-
tle (CA→TA) at time step 92, and Tangaroa (VLM→DIV) at time step 1.
TTHRESH does not have box plots for Tangaroa (VLM→DIV) because the
compression fails.
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