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Abstract

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG)
method [6, 5, 4, 3] for conservation Laws. The new formulation requires the com-
puted RKDG solution in a cell to satisfy additional conservation constraint in adjacent
cells and does not increase the complexity or change the compactness of the RKDG
method. We use this new formulation to solve conservation laws on one-dimensional
grids with piecewise cubic polynomial approximation as well as on two-dimensional
unstructured grids with piecewise quadratic polynomial approximation. The hierar-
chical reconstruction [12, 24] is applied as a limiter to eliminate spurious oscillations.
Numerical computations for scalar and systems of nonlinear hyperbolic conservation
laws are performed. We find that: 1) this new formulation improves the CFL number
over the original RKDG formulation and thus reduces the overall complexity; 2) the
new formulation improves the robustness of the DG scheme with the current limiting
strategy and improves the resolution of the numerical solutions in multi-dimensions.

1 Introduction

In this paper, we introduce a simple, yet effective technique to improve the Courant-Friedrichs-
Lewy (CFL) condition of the Runge-Kutta discontinuous Galerkin (RKDG) method for
solving nonlinear conservation laws. The discontinuous Galerkin method (DG) was firstly
introduced by Reed and Hill [17] as a technique to solve neutron transport problems. In a
series of papers by Cockburn, Shu et al. [6, 5, 4, 3], the RKDG method has been developed
for solving nonlinear hyperbolic conservation laws and related equations, in which DG is used
for spatial discretization with flux values at cell edges computed by either Riemann solvers
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or monotone flux functions, the total variation bounded (TVB) limiter [18, 6] is employed
to eliminate spurious oscillations and the total variation diminishing (TVD) Runge-Kutta
(RK) method [20] is used for the temporal discretization to ensure the stability of the nu-
merical approach while simplifying the implementation. The RKDG method has enjoyed
great success in solving the Euler equations for gas dynamics, compressible Navier-Stokes
equations, viscous MHD equations and many other equations, and motivated many related
new techniques.

In [6], the RKDG method is shown to be linearly stable when the CFL factor is bounded
by 1

2q+1
for the second order and the third order schemes in the one-dimensional (1D) space,

where q is the degree of the polynomial approximating the solution. It would be great if
there is a simple technique to increase its CFL number without too much overhead while still
being compact and maintaining its other nice properties. In this paper, we present a strategy
which is to mix the RKDG method with some of the finite volume reconstruction features
(e.g. Abgrall [1]), and use them as the extra constraint. We would like to refer to a recent
work of van Leer and Nomura [11], in which the diffusive flux for DG is approximated by
using a reconstructed polynomial supported on the union of adjacent cells out of a piecewise
polynomial. In a paper by Warburton and Hagstrom [23], the RKDG solution is projected
to the staggered covolume mesh to obtain distributional derivatives and then is projected
back on each Runge-Kutta step which is analytically shown in 1D to significantly increase
the CFL number. It is found in [14] that the central DG scheme on overlapping cells with
Runge-Kutta time-stepping can afford larger CFL numbers than the RKDG method on
non-overlapping cells when the order of accuracy is above the first order.

In the present paper, we enforce a few local cell average constraints on the RKDG method
in order to obtain a larger CFL number and better quality of numerical solutions after
limiting. The resulting method is termed as the conservation constrained RKDG method
or the constrained RKDG method. We are going to test the effectiveness of our technique
in the fourth order case for 1D (while the third order case in 1D becomes a finite volume
scheme) and in the third order case on two-dimensional (2D) triangular meshes. Further
study on higher order cases and theoretical analysis will be reported in the future.

Using finite volume limiting techniques on solutions computed by the RKDG method
for conservation laws has been explored by many researchers. In [16, 26], the WENO finite
volume reconstruction procedures are used as the limiter on ”trouble cells”. In [15], Luo et al.
develop a Hermite WENO-based limiter for the second order RKDG method on unstructured
meshes following [16]. Since the RKDG method is a compact method, it would be ideal to use
a compact limiting technique. It is a challenging task to use adjacent high order information
in the limiting procedure to remove spurious oscillations in the vicinities of discontinuities
while preserving high resolution. The first of such limiters is the TVB projection limiter
by Cockburn and Shu, which uses the lowest and (limited) first Legendre moments locally
where non-smoothness is detected. Other compact limiting techniques which are supposed
to remove spurious oscillations using information only from adjacent cells for any orders
include the moment limiter [2] and the recently developed hierarchical reconstruction (HR)
[12]. Besides the above related techniques, there are also many research works of compact
limiters for high order schemes on various problems. HR as a limiting technique can be
applied without using local characteristic decomposition. One goal of the paper is to verify
if our technique for improving the CFL number of RKDG works well with HR. In [24], HR
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on 2D triangular meshes has been studied for the piecewise quadratic DG method; a partial
neighboring cell technique has been developed and a component-wise WENO-type linear
reconstruction is used on each hierarchical level. This new technique has good resolution
and accuracy on unstructured meshes and is easy to implement since the weights on each
hierarchical level are trivial to compute and essentially independent of the mesh.

We find that the constrained RKDG method increases the CFL number over the original
RKDG method, reduces the magnitude of numerical errors for the multi-dimensional case,
and further improves the resolution of the numerical solutions limited by HR.

The paper is organized as follows. Section 2 describes the conservation constrained
RKDG formulation and summarizes the limiting procedure. Results of numerical tests are
presented in Section 3. Concluding remarks and a plan for the future work are included in
Section 4.

2 Algorithm Formulation

In this section, we formulate the conservation constrained Runge-Kutta discontinuous Galerkin
finite element method for solving time dependent hyperbolic conservation laws (2.1){

∂uk

∂t
+∇·Fk(u) = 0 , k = 1, .., p, in Ω× (0, T ) ,

u(x, 0) = u0(x) ,
(2.1)

where Ω ⊂ Rd, x = (x1, ..., xd), d is the dimension, u = (u1, ..., up)
T and the flux vectors

Fk(u) = (Fk,1(u), ..., Fk,d(u)).
The method of lines approach is used to evolve the solution. The 3rd and 4th order

accurate TVD Runge-Kutta time-stepping methods are used for the test problems presented
in the paper. At each time level the semi-discrete constrained DG method is used for spatial
discretization. In the vicinities of discontinuities of the solution, the computed piecewise
polynomial solution is reconstructed by the hierarchical reconstruction to remove spurious
oscillations.

2.1 Conservation constrained discontinuous Galerkin Method

We describe the conservation constrained DG formulation here. First, the physical domain
Ω is partitioned into a collection of N non-overlapping cells Th = {Ki : i = 1, ...,N} so that
Ω =

∪N
i=1 Ki. In 2D, we use triangular meshes and for simplicity, we assume that there are

no hanging nodes. Let the basis function set which spans the finite element space on cell Ki

be
Bi = {ϕm(x) : m = 0, ..., r} . (2.2)

In the present study, we choose the basis function set to be a polynomial basis function set of
degree q in a cell Ki, which consists of the monomials of multi-dimensional Taylor expansions
about the cell centroid. For instance, for a 2D triangular cell Ki, the basis function set (2.2)
in the (x, y) coordinate is

Bi = {ϕm(x− xi, y − yi) : m = 0, ..., r}
= {1, x− xi, y − yi, (x− xi)

2, (x− xi)(y − yi), (y − yi)
2, · · · , (y − yi)

q} ,
(2.3)
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where xi ≡ (xi, yi) is the centroid of Ki and r = (q + 1)(q + 2)/2 + 1. The finite element
space on cell Ki is the span of these basis functions.

In each cell Ki, the approximate solution uh,k of the kth equation of (2.1) is expressed as

uh,k =
r∑

m=0

cm(t)ϕm(x) . (2.4)

Let’s assume that the immediate neighbors (sharing same edges) of Ki are collected as the
set {KJ : J = 1, 2, ..,M.} (which also contains cell Ki). The semi-discrete DG formulation of
the kth equation of (2.1) is to find an approximate solution uh of the form (2.4) (neglecting
its subscript k for convenience) such that

d

dt

∫
Ki

uhvhdx+

∫
∂Ki

Fk(uh) · nivhdΓ−
∫
Ki

Fk(uh) · ∇vhdx = 0 , (2.5)

for any vh ∈ span{Bi}, where ni is the outer unit normal vector of Ki.
Since the approximate solution uh is discontinuous across cell edges, the interfacial fluxes

are not uniquely determined. The flux function Fk(uh) · ni appearing in equation (2.5) can
be replaced by the Lax-Friedrich flux function (see e.g. [19]) defined as

hk(x, t) = hk(u
in
h ,uout

h ) =
1

2
(Fk(u

in
h ) · ni + Fk(u

out
h ) · ni) +

α

2
(uin

h − uout
h ) , k = 1, ...,m ,

where α is the largest characteristic speed,

uin
h (x, t) = limy→x,y∈Kint

i
uh(y, t) ,

uout
h (x, t) = limy→x,y/∈K̄i

uh(y, t) .

Equation (2.5) then becomes

d

dt

∫
Ki

uhvhdx+

∫
∂Ki

hkvhdΓ−
∫
Ki

Fk(uh) · ∇vhdx = 0 . (2.6)

The resulting systems of ordinary differential equations can be solved by a TVD Runge-
Kutta method [20] which builds on convex combinations of several forward Euler schemes
of (2.6). Our additional conservation constraint is performed within each of the component
forward Euler scheme. A forward Euler scheme of (2.6) can be written as∫

Ki

un+1
h vhdx =

∫
Ki

un
hvhdx−∆tn

∫
∂Ki

hn
kvhdΓ +∆tn

∫
Ki

Fn
k(uh) · ∇vhdx , (2.7)

where the superscript n denotes the time level tn, ∆tn = tn+1 − tn. In particular, letting

vh ≡ 1, we obtain the cell average of un+1
h over cell Ki, denoted by un+1

i , just as with a finite
volume scheme.

Now suppose the cell averages {un+1
i } have been computed on all cells. We do not

compute the rest of the moments of un+1
h on cell Ki by using equation (2.7). Instead, we

let un+1
h on cell Ki minimize an energy functional (variational to (2.7)) subject to that it
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conserves additional given cell averages not only in cell Ki but also in some of its neighbors.
Rewrite (2.7) in cell Ki as ∫

Ki

un+1
h vhdx = L(vh) , (2.8)

where L(vh) represents the right-hand-side of (2.7), which is a linear bounded functional
defined on the finite element space on Ki. The variational form of (2.8) is to find un+1

h in
the finite element space on Ki such that it minimizes the energy functional

E(vh) =
1

2

∫
Ki

(vh)
2dx− L(vh) . (2.9)

Finally, our new conservation constrained RKDG formulation on cell Ki can be described
as replacing each component forward Euler scheme by finding un+1

h in the finite element space
on Ki, such that

E(un+1
h ) = Minimum of {E(vh) : vh ∈ span{Bi}},

subject to 1
|KJ |

∫
KJ

vhdx = un+1
J , J = 1, ...,M .

(2.10)

This constrained minimization problem can be solved by the method of Lagrange as
follows ∫

Ki
un+1
h vhdx− L(vh) =

∑M
J=1

λJ

|KJ |

∫
KJ

vhdx, ∀ vh ∈ span{Bi}
1

|KJ |

∫
KJ

un+1
h dx = un+1

J , J = 1, ...,M ,
(2.11)

where {λJ} are Lagrangian multipliers. Coefficients {cm} of un+1
h (see equation (2.4)) is

determined by the above linear system. Note that the left-hand-side of the first equation
of (2.11) is in the same form as equation (2.8) or (2.7), and M = 4 for the 2D triangular
meshes since the set {KJ} contains the cell Ki and its three adjacent neighbors (sharing
common edges with Ki). (M = 3 in 1D, the set {KJ} contains the cell Ki and its left and
right neighbors.)

To summarize, assume we employ a s-stage TVD Runge-Kutta method to solve equation
(2.6), which can be written in the form:∫

Ki
u
(j)
h vhdx =

∑j−1
l=0 αjl

(∫
Ki

u(l)vhdx+∆tnβjlL(u
(l)
h , vh)

)
, j = 1, ..., s

≡
∑j−1

l=0 αjl

∫
Ki

u
(j,l+1)
h vhdx ,

(2.12)

with
u
(0)
h = un

h, u
(s)
h = un+1

h . (2.13)

Here αjl and βjl are coefficients of the Runge-Kutta method at the jth stage, and

L(uh, vh) = −
∫
∂Ki

hkvhdΓ +

∫
Ki

Fk(uh) · ∇vhdx .

In particular, u
(j,l+1)
h is determined by∫

Ki

u
(j,l+1)
h vhdx =

∫
Ki

u(l)vhdx+∆tnβjlL(u
(l)
h , vh) , ∀ vh ∈ span{Bi} .

This is a forward Euler scheme as in (2.7) with the time step size ∆tnβjl, and will be replaced
similarly by the modification as in (2.11).
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2.2 Limiting by hierarchical reconstruction

To prevent non-physical oscillations in the vicinity of discontinuities, we apply HR [24] at
each Runge-Kutta stage to the DG solution. Since shock waves or contact discontinuities
are all local phenomena, we apply the HR limiting procedure to a small region covering
discontinuities. Specifically, we employ a local limiting procedure by using a detector [3] to
identify “bad cells”, i.e., cells which may contain oscillatory solutions. HR is then applied
to solutions supported on these “bad cells”. We give a brief description of the HR limiting
procedure here. More details can be found in [24].

HR decomposes the job of limiting a high-order polynomial supported on a cell (which
may contain spurious oscillations) into a series of smaller jobs, each of which only involves the
non-oscillatory reconstruction of a linear polynomial, which can be easily achieved through
classical processes such as the MUSCL reconstruction [8, 9, 10] used in [12], or a WENO-
type combination used in [24]. Since the reconstruction of a linear polynomial can only use
information from adjacent cells, HR can be formulated in multi dimensions on a compact
stencil. Using the basis function set (2.3), the approximate solution uh(x−xi) on cell Ki is in
the Taylor expansion around cell centroid xi. uh(x− xi) may contain spurious oscillations.
The hierarchical reconstruction procedure is to recompute the coefficients of polynomial
uh(x − xi) by using polynomials in cells adjacent to Ki (or partial neighboring cells [24]).
These adjacent cells (or partial cells) are collected as the set {Kj} (which also contains cell
Ki) and the polynomials (of degree q) supported on them are denoted as {uh,j(x − xj)}
respectively. HR recomputes a set of new coefficients

1

m!
ũ
(m)
h (0), |m| = q, q − 1, . . . , 0

to replace the original coefficients 1
m!
u
(m)
h (0) of uh(x−xi) iteratively from the highest to the

lowest degree terms without losing the order of accuracy if the piecewise polynomial solution
is locally smooth, and eliminates spurious oscillations of uh(x− xi) otherwise.

To obtain ũ
(m)
h (0), we first compute candidates of u

(m)
h (0), and then let the new value for

u
(m)
h (0) be

ũ
(m)
h (0) = F

(
candidates of u

(m)
h (0)

)
,

where F is a convex limiter of its arguments (e.g., the center biased minmod function used in
[13], or the WENO-type combination in [24]), F (a1, a2, · · · , al) =

∑l
i=1 θiai, for some θi ≥ 0

and
∑l

i=1 θi = 1.

In order to find these candidates of u
(m)
h (0), |m| = m, we take a (m− 1)th order partial

derivative of uh(x− xi) (and also polynomials in adjacent cells), and express

∂m−1uh(x− xi) = Lh(x− xi) +Rh(x− xi),

where Lh is the linear part (containing the zeroth and first degree terms) and Rh is the

remainder. Clearly, every coefficient in the first degree terms of Lh is in the set {u(m)
h (0) :

|m| = m}. And for every m subject to |m| = m, one can always take some (m− 1)th order

partial derivatives of uh(x− xi) so that u
(m)
h (0) is a coefficient in a first degree term of Lh.

Thus, a “candidate” for a coefficient in a first degree term of Lh is also the candidate for the
corresponding u

(m)
h (0).
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In order to find a set of candidates for all coefficients in the first degree terms of Lh(x−xi),
we need to know the new approximate cell averages of Lh(x − xi) on d + 1 distinct mesh
cells adjacent to cell Ki, which is a key step. Assume Kj0 ,Kj1 , · · · ,Kjd ∈ {Kj} are these cells
and Lj0 , Lj1 , · · · , Ljd are the corresponding new approximate cell averages. For example, in
order to obtain Lj1 , we first compute

Aj1 =
1

|Kj1 |

∫
Kj1

∂m−1uh,j1(x− xj1)dx,

then

Dj1 =
1

|Kj1 |

∫
Kj1

R̃h(x− xi)dx,

where R̃h(x−xi) is the Rh(x−xi) with its coefficients replaced by previously computed new
values. Finally we can set Lj1 = Aj1 −Dj1 .

More details for the HR implementation of our one-dimensional test problems in this
paper can be found in [25].

3 Numerical Examples

3.1 One-dimensional Tests

3.1.1 1D Burgers’ equation with a smooth solution

We first test the capability of the constrained RKDG method to achieve the desired order
of accuracy with a large CFL number, using the 1D scalar Burgers’ equation

ut +

(
1

2
u2

)
x

= 0 ,

with periodic boundary conditions and the initial condition u(x, 0) = 1
2
+sin(πx), −1 ≤ x ≤

1.
The uniform mesh is used to solve this test problem. The cell size, denoted by h, is listed

in Tables shown in this section. Tables 1 and 2 show the accuracy test results for the 3rd and
4th order accurate constrained RKDG methods. From Table 1, we can see that the 3rd order
constrained RKDG method is stable with the CFL number close to 1. Tables 2 and 3 show
that the 4th order constrained RKDG method becomes unstable when the CFL number is
equal to 0.7; while the 4th order constrained RKDG method is stable when the CFL number
is equal to 0.6. For the RKDG method, we found that the 3rd order RKDG method is stable
when CFL < 0.23, and the 4th order RKDG method is stable when CFL < 0.17. See Tables
4 and 5 for the accuracy test results of the 3rd and 4th order RKDG methods respectively.

3.1.2 1D Euler equations with discontinuous solutions

We assess the resolution and the non-oscillatory property of numerical solutions computed
by the constrained RKDG method and limited by HR. We compute solutions of the 1D Euler
equations

ut + f(u)x = 0
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Table 1: Accuracy test results of the 3rd order constrained RKDG method solving the 1D
Burgers’ equation. CFL = 0.9.

h L1 error order L∞ error order
1/40 5.11E-5 - 7.84E-4 -
1/80 6.30E-6 3.02 9.89E-5 2.99
1/160 7.83E-7 3.01 1.25E-5 2.98
1/320 9.76E-8 3.00 1.56E-6 3.00
1/640 1.22E-8 3.00 1.95E-7 3.00
1/1280 1.52E-9 3.00 2.44E-8 3.00
1/2560 1.90E-10 3.00 3.05E-9 3.00
1/5120 2.40E-11 2.98 3.64E-10 3.07

Table 2: Accuracy test results of the 4th order constrained RKDG method solving the 1D
Burgers’ equation. CFL = 0.6.

h L1 error order L∞ error order
1/40 1.10E-6 - 2.75E-5 -
1/80 7.20E-8 3.93 1.86E-6 3.89
1/160 4.69E-9 3.94 1.20E-7 3.95
1/320 2.97E-10 3.98 7.49E-9 4.00
1/640 1.91E-11 3.96 4.70E-10 3.99

Table 3: Accuracy test results of the 4th order constrained RKDG method solving the 1D
Burgers’ equation. CFL = 0.7.

h L1 error order L∞ error order
1/40 1.16E-6 - 2.82E-5 -
1/80 7.43E-8 3.96 1.86E-6 3.94
1/160 1.45E-7 - 7.51E-6 -
1/320 6.34E-3 - 4.99E-1 -
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with u = (ρ, ρv, E)T , f(u) = (ρv, ρv2 + p, v(E + p))T , p = (γ − 1)(E − 1
2
ρv2) and γ = 1.4.

Example 3.1.2.1. 1D Shu-Osher problem [21]. It is the Euler equations with an initial
data

(ρ, v, p) = (3.857143, 2.629369, 10.333333), for x < −4,
(ρ, v, p) = (1 + 0.2 sin(5x), 0, 1), for x ≥ −4.

We compute the numerical solutions using 300 equal size cells and the 4th order constrained
RKDG method and the 4th order RKDG method respectively. The density profiles of the
solutions are plotted at the time T = 1.8 in Fig. 1. We can clearly see that the 4th order con-
strained RKDG solution and the 4th order RKDG solution have almost identical resolution
for this test problem.

Example 3.1.2.2. 1D Woodward-Colella blast wave problem [22]. It is the Euler equations
with an initial data

(ρ, ρv, E) = (1, 0, 2500), for 0 < x < 0.1,
(ρ, ρv, E) = (1, 0, 0.025), for 0.1 < x < 0.9,
(ρ, ρv, E) = (1, 0, 250), for 0.9 < x < 1.

We compute the numerical solutions using 400 equal size cells and the 4th order constrained
RKDG method and the 4th order RKDG method respectively. The density profiles of the
solutions are plotted at the time T = 0.038 in Fig. 2. We can clearly see that the 4th

Table 4: Accuracy test results of the 3rd order RKDG method solving the 1D Burgers’
equation. CFL = 0.23.

h L1 error order L∞ error order
1/40 3.62E-6 - 4.93E-5 -
1/80 4.49E-7 3.01 6.68E-6 2.88
1/160 5.56E-8 3.01 8.75E-7 2.93
1/320 6.90E-9 3.01 1.12E-7 2.97
1/640 3.24E-3 - 2.80E-1 -

Table 5: Accuracy test results of the 4th order RKDG method solving the 1D Burgers’
equation. CFL = 0.17.

h L1 error order L∞ error order
1/40 5.50E-8 - 8.75E-7 -
1/80 3.44E-9 4.00 5.51E-8 3.99
1/160 2.18E-10 3.98 3.49E-9 3.98
1/320 1.38E-11 3.98 2.20E-10 3.99
1/640 3.21E-10 - 5.97E-8 -
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Figure 1: Solutions of the 1D Shu-Osher problem computed on 300 cells. (a) The 4th order
RKDG solution compared with the “exact” solution; (b) The 4th order constrained RKDG
solution compared with the “exact” solution.

order constrained RKDG solution and the 4th order RKDG solution have almost identical
resolution for the 1D Woodward-Colella blast wave problem.

Example 3.1.2.3. 1D Lax problem [7]. It is the Euler equations with the Lax’s initial data:
the density ρ, momentum ρv and total energy E are 0.445, 0.311 and 8.928 in (−1, 0); and
are 0.5, 0 and 1.4275 in (0, 1). We compute the numerical solutions using 200 equal size cells
and the 4th order constrained RKDG method and the 4th order RKDG method respectively.
The density profiles of the solutions are plotted at the time T = 0.26 in Fig. 3. We can
clearly see that the 4th order constrained RKDG solution and the 4th order RKDG solution
have almost identical resolution for the 1D Lax test problem.

From these 1D compressible gas flow test problems, we conclude that the constraint
RKDG method combined with HR limiter, gives good quality results for problems containing
strong shock waves in the solution.

3.2 Two-dimensional Tests

We start with the 2D Burgers’ equation

ut +
(
1
2
u2
)
x
+
(
1
2
u2
)
y
= 0, in (0, T )× Ω, (3.1)

with a smooth solution to assess the limit of the CFL number for the 3rd order constrained
RKDG method. We then employ the Euler equations for gas dynamics to assess the res-
olution of the constrained RKDG method. The 2D Euler equations can be expressed in a
conservative form as

ut + f(u)x + g(u)y = 0 , (3.2)
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Figure 2: Solutions of the 1D blast wave problem computed on 400 cells. (a) The 4th order
RKDG solution compared with the “exact” solution; (b) The 4th order constrained RKDG
solution compared with the “exact” solution.

where u = (ρ, ρu, ρv, E), f(u) = (ρu, ρu2 + p, ρuv, u(E + p)), and g(u) = (ρv, ρuv, ρv2 +
p, v(E + p)). Here ρ is the density, (u, v) is the velocity, E is the total energy, p is the
pressure, and E = p

γ−1
+ 1

2
ρ(u2 + v2). γ is equal to 1.4 for all test cases.

To assess the CFL condition for the constrained RKDG method on 2D triangular meshes,
we use the following definition of the CFL number, which is the maximum of

△t(|u|+ c)

D
,

where D is the diameter of the inscribed circle of a triangle, c is the speed of sound and |u|,
defined by (|u| =

√
u2 + v2), is the speed of flow both evaluated by the local cell average

value.

3.2.1 2D Burgers’ equation with a smooth solution

To assess the CFL condition for the 3rd order constrained RKDG method, we first utilize the
2D Burgers’ equation (3.1) with the following initial condition and the periodic boundary
condition

u(t = 0, x, y) = 1
4
+ 1

2
sin(2π(x+ y)), (x, y) ∈ Ω,

where the domain Ω is the square [0, 1] × [0, 1]. At T = 0.1, the exact solution is smooth.
The convergence test is conducted on triangular meshes. See Fig. 4 for a typical mesh. The
typical triangle edge length, denoted by h, is listed in Tables shown in this section. The
errors presented are for u.

We found that the 2D 3rd order constrained RKDG method is stable when CFL ≤ 0.36;
while the 2D 3rd order RKDG method is stable when CFL ≤ 0.23. Tables 6 and 7 show
the accuracy test results of the constrained RKDG method when CFL = 0.34 and 0.36
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Figure 3: Solutions of the 1D Lax shock tube problem computed on 200 cells. (a) The 4th

order constrained RKDG solution compared with the “exact” solution; (b) The 4th order
RKDG solution compared with the “exact” solution.

respectively. Tables 8 and 9 show the accuracy test results of the RKDG method when CFL
= 0.22 and 0.23 respectively.

The constrained RKDG method improves the CFL number over the RKDG method by
about 50% for the 3rd order case on triangular meshes for solving the 2D Burgers’ equation.
Moreover, we note that the magnitude of L1 and L∞ errors of the numerical solution of this
test problem computed by the constrained RKDG method is less than that computed by the
RKDG method. See Tables 6 and 8 for this comparison.

Table 6: Accuracy test results of the 3rd order constrained RKDG method solving the 2D
Burgers’ equation. CFL = 0.34.

h L1 error order L∞ error order
1/8 7.93E-3 - 5.34E-2 -
1/16 1.37E-3 2.53 1.60E-2 1.74
1/32 1.97E-4 2.80 3.51E-3 2.19
1/64 2.76E-5 2.84 4.65E-4 2.92
1/128 3.81E-6 2.86 7.41E-5 2.65
1/256 5.25E-7 2.86 1.19E-5 2.64
1/512 7.15E-8 2.88 2.07E-6 2.52

3.2.2 2D Euler equations with a smooth solution

A two-dimensional gas dynamics problem [19] for the Euler equations is used to assess the
CFL condition for the 3rd order constrained RKDG method on triangular meshes again. The

12
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Figure 4: Representative mesh for accuracy test.

Table 7: Accuracy test results of the 3rd order constrained RKDG method solving the 2D
Burgers’ equation. CFL = 0.36.

h L1 error order L∞ error order
1/8 8.18E-3 - 5.32E-2 -
1/16 1.37E-3 2.58 1.60E-2 1.73
1/32 1.97E-4 2.80 3.50E-3 2.19
1/64 2.93E-5 2.75 4.64E-4 2.92
1/128 4.83E-6 2.60 1.04E-4 2.16
1/256 1.77E-4 - 4.94E-1 -

Table 8: Accuracy test results of the 3rd order RKDG method solving the 2D Burgers’
equation. CFL = 0.22.

h L1 error order L∞ error order
1/8 1.23E-2 - 7.12E-2 -
1/16 2.31E-3 2.41 1.16E-2 2.62
1/32 3.61E-4 2.68 2.99E-3 1.96
1/64 5.49E-5 2.72 7.00E-4 2.07
1/128 8.06E-6 2.77 1.86E-4 1.91
1/256 1.17E-6 2.78 4.32E-5 2.11
1/512 1.68E-7 2.80 9.66E-6 2.16
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exact solution is given by ρ = 1 + 0.5 sin(x + y − (u + v)t), u = 1.0, v = −0.7 and p = 1.
The convergence test is conducted on triangular meshes in the spatial domain [0, 1] × [0, 1]
from the time T = 0 to T = 0.1. The typical triangle edge length, denoted by h, is listed in
Tables shown in this section. The errors presented are for the density.

We found that the 2D 3rd order constrained RKDG method is stable when CFL < 0.36;
while the 3rd order RKDG method is stable when CFL < 0.25. Tables 10 and 11 show
the accuracy test results of the constrained RKDG method when CFL = 0.35 and 0.36
respectively. Tables 12 and 13 show the accuracy test results of the RKDG method when
CFL = 0.24 and 0.25 respectively.

The constrained RKDG method improves the CFL number over the RKDG method by
about 50% for the 3rd order case on triangular meshes for this test problem. We also note
that the magnitude of L1 error of the numerical solution of this gas dynamics test problem
computed by the constrained RKDG method becomes less than that computed by the RKDG
method under the mesh refinement. See also Tables 10 and 12 for comparing L1 errors.

Table 9: Accuracy test results of the 3rd order RKDG method solving the 2D Burgers’
equation. CFL = 0.23.

h L1 error order L∞ error order
1/8 1.23E-2 - 7.11E-2 -
1/16 2.30E-3 2.42 1.16E-2 2.62
1/32 3.61E-4 2.67 2.99E-3 1.96
1/64 5.50E-5 2.71 7.00E-4 2.10
1/128 8.38E-6 2.71 1.86E-4 1.91
1/256 Solution blows up - Solution blows up -

Table 10: Accuracy test results of the 3rd order constrained RKDG method solving the 2D
Euler equations with smooth sine evolution. CFL = 0.35.

h L1 error order L∞ error order
1/4 8.32E-5 - 2.58E-4 -
1/8 1.36E-5 2.61 3.03E-5 3.09
1/16 1.77E-6 2.94 5.17E-6 2.55
1/32 2.23E-7 2.99 8.09E-7 2.68
1/64 2.72E-8 3.04 8.91E-8 3.18
1/128 1.36E-9 4.32 1.32E-8 2.75
1/256 1.33E-10 3.35 1.43E-9 3.21
1/512 1.66E-11 3.00 2.64E-10 2.44

14



Table 11: Accuracy test results of the 3rd order constrained RKDG method solving the 2D
Euler equations with smooth sine evolution. CFL = 0.36.

h L1 error order L∞ error order
1/4 8.32E-5 - 2.58E-4 -
1/8 1.36E-5 2.61 3.03E-5 3.09
1/16 1.77E-6 2.94 5.17E-6 2.55
1/32 2.23E-7 2.99 8.09E-7 2.68
1/64 2.72E-8 3.04 8.91E-8 3.18
1/128 3.39E-9 3.00 1.32E-8 2.75
1/256 1.33E-10 4.67 2.27E-9 2.54
1/512 Solution blows up - Solution blows up -

Table 12: Accuracy test results of the 3rd order RKDG method solving the 2D Euler equa-
tions with smooth sine evolution. CFL = 0.24.

h L1 error order L∞ error order
1/4 2.15E-5 - 5.93E-5 -
1/8 4.62E-6 2.22 1.18E-5 2.33
1/16 7.49E-7 2.62 2.54E-6 2.22
1/32 1.06E-7 2.82 4.29E-7 2.57
1/64 3.23E-8 1.71 5.79E-8 2.89
1/128 1.70E-9 4.25 1.13E-8 2.36
1/256 2.56E-10 2.73 1.46E-9 2.95
1/512 3.41E-11 2.91 1.98E-10 2.88

Table 13: Accuracy test results of the 3rd order RKDG solution solving the 2D Euler equa-
tions with smooth sine evolution. CFL = 0.25.

h L1 error order L∞ error order
1/4 2.15E-5 - 5.86E-5 -
1/8 4.62E-6 2.22 1.18E-5 2.31
1/16 7.49E-7 2.62 2.54E-6 2.22
1/32 1.06E-7 2.82 4.29E-7 2.57
1/64 3.23E-8 1.71 5.79E-8 2.89
1/128 5.68E-9 2.51 1.13E-8 2.36
1/256 Solution blows up - Solution blows up -
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3.2.3 2D Euler equations with discontinuous solutions

We test 2D problems with discontinuities in solutions to assess the non-oscillatory property
of numerical solutions computed by the 2D constrained RKDG method together with HR
limiter, again using the Euler equations for gas dynamics.

Example 3.2.3.1. 2D Lax problem. This test problem is set by modifying the Lax shock
tube problem taken from [7]. We solve the Euler equations in a rectangular domain of
[−1, 1] × [0, 0.2], with a triangulation of approximately 101 vertices in the x-direction and
11 vertices in the y-direction. The initial data is

(ρ, u, p) =

{
(0.445, 0.698, 3.528), if x ≤ 0
(0.5, 0, 0.571), if x > 0 .

(3.3)

Initially, the y-component of the velocity is zero. The density profile at t = 0.26 is shown
here. Figures 5(a) and 5(b) are obtained by interpolating the numerical solutions along the
line y = 0.1 on 101 equally spaced points. We can see that both of the 3rd order RKDG
and constrained RKDG methods computed numerical solutions with almost identical and
high resolution and with almost no noise after a component-wise HR limiting for this test
problem.

−1 −0.5 0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

D
en

si
ty

 

 

P2 RKDG
Exact

(a)

−1 −0.5 0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

D
en

si
ty

 

 

P2 CCRKDG
Exact

(b)

Figure 5: Solutions of the 2D Lax problem. Third-order results. Density ρ. (a) The 3rd

order RKDG solution; (b) The 3rd order constrained RKDG solution.

Example 3.2.3.2. 2D Shu-Osher problem. This test problem is set by modifying the Shu-
Osher problem [21]. We solve the Euler equations in a rectangular domain of [−5, 5]× [0, 0.1]
with a triangulation of about 301 vertices in the x-direction and 4 vertices in the y-direction.
The initial data is

(ρ, u, p) =

{
(3.857143, 2.629369, 10.333333) if x ≤ −4
(1 + 0.2 sin(5x), 0, 1) if x ≥ −4 .

(3.4)
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Initially, the y-velocity is zero. At t = 1.8, the density profiles along y = 0.05 are shown
in Figures 6(a) and 6(b). Both of the 3rd order RKDG and constrained RKDG methods
computed solutions with almost identical and high resolution and with almost no noise after
a component-wise HR limiting for the 2D Shu-Osher test problem.
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Figure 6: Solutions of the 2D Shu-Osher problem. Third-order results. Density ρ. (a) The
3rd order RKDG solution; (b) The 3rd order constrained RKDG solution.

Example 3.2.3.3. Double Mach reflection. The Double Mach reflection problem is taken
from [22]. We solve the Euler equations in a rectangular computational domain of [0, 4] ×
[0, 1]. A reflecting wall lies at the bottom of the domain starting from x = 1

6
. Initially a

right-moving Mach 10 shock is located at x = 1
6
, y = 0, making a 600 angle with the x axis

and extends to the top of the computational domain at y = 1. The reflective boundary
condition is used at the wall.

We test our method on unstructured meshes with the triangle edge length roughly equal
to 1

400
. The density contour of the flow in the [0, 3] × [0, 1] region at the time t = 0.2 is

shown with 30 equally spaced contour lines. Fig. 7 is the contour plot of the numerical
solutions computed by the 3rd order RKDG and constrained RKDG methods respectively.
Fig. 8 shows the “blown-up” portion around the double Mach region. We can see that while
both of the RKDG and constrained RKDG methods successfully reproduce the vortex sheet
roll-up; the solution computed by the constrained RKDG method is better than the one
computed by the RKDG method, namely the constrained RKDG method picks up more
roll-up and computes smoother contour lines.

Example 3.2.3.4. Flow past a forward facing step. This flow problem is again taken from
[22]. The setup of the problem is the following: a right-going Mach 3 uniform flow enters a
wind tunnel of 1 unit wide and 3 units long. The step is 0.2 units high and is located 0.6
units from the left side of the tunnel. The problem is initialized by a uniform, right-going
Mach 3 flow, which has density 1.4, pressure 1.0, and velocity 3.0. The initial state of the
gas is also used at the left side boundary. At the right side boundary, the out-flow boundary
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Figure 7: Double Mach reflection problem. Third-order results. Density ρ. (a) The 3rd order
RKDG solution; (b) The 3rd order constrained RKDG solution.

condition is applied there. Reflective boundary condition is applied along the walls of the
tunnel.

The corner of the step is a singularity. Unlike in [22] and in other studies, we do not
modify our scheme near the corner, which is known to lead to an erroneous entropy layer at
the downstream bottom wall, as well as a spurious Mach stem at the bottom wall. Instead, we
use the approach taken in [3], which is to locally refine the mesh near the corner, to decrease
these artifacts. The edge length of the triangle away from the corner is roughly equal to 1

160
.

Near the corner, the edge length of the triangle is roughly equal to 1
320

. Fig. 9 is the contour
plot of the numerical solutions computed by the 3rd order RKDG and constrained RKDG
methods respectively. Comparing results in Fig. 9, we can see that the resolution of the
solution computed by the constrained RKDG method is better, especially for the contour
lines around the triple point. Smoother contour lines are obtained in the constrained RKDG
case.
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Figure 8: Double Mach reflection problem. Blown-up region around the double Mach stems.
Third-order results. Density ρ. (a) The 3rd order RKDG solution; (b) The 3rd order con-
strained RKDG solution.

3.3 Remark on Computational Cost of Constrained RKDGMethod

To estimate the computational cost of the constrained RKDG method, we use the 2D Burg-
ers’ equation with a smooth solution as a test case. See Section 3.2.1 for the description of
this benchmark problem. We employ a mesh with the triangle edge length roughly equal to
1

128
. The code is written in C and is compiled with “g++ -O3”. Simulations are performed

on a Linux workstation with an Intel i7 2.93 GHz processor. Table 14 shows cpu times spent
by the RKDG and constrained RKDG methods for CFL = 0.2 and 0.3 respectively. To
conclude, when CFL = 0.2, the cpu time of the constrained RKDG method is about 12%
more than that of the RKDG method; while the constrained RKDG method with CFL =
0.3 saves about 26% cpu time over the RKDG method with CFL = 0.2.
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Figure 9: Forward-facing step problem. Third-order results. Density ρ. (a) The 3rd order
RKDG solution; (b) The 3rd order constrained RKDG solution.

4 Concluding Remarks

We have developed a conservation constrained RKDG method for solving conservation Laws.
The new formulation requires the computed RKDG solution in a cell to satisfy additional
conservation constraint in adjacent cells and does not increase the complexity or change the
compactness of the original RKDG method. This conservation constrained RKDG method

Table 14: Cpu time comparison between the RKDG and constrained RKDG methods

CFL = 0.2 CFL = 0.3
RKDG cpu time = 344 sec. -
Constrained RKDG cpu time = 386 sec. cpu time = 255 sec.
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improves the CFL number over the RKDG method as well as the robustness of the RKDG
scheme. The CFL number is improved around 50% for the 3rd order case on 2D triangular
meshes and 250% for the 4th order case in 1D. Moreover, for the multi-dimensional smooth
solution test problems, the constrained RKDG method also reduces the magnitude of the
solution error (as least for L1 error). For the multi-dimensional test problems with discon-
tinuous solutions, the constrained RKDG method together with HR limiter also improves
the resolution of numerical solutions.

In the future, we will explore the higher order (≥ 4) constrained DG formulation in multi-
dimensions with TVD Runge-Kutta time-stepping as well as other time-stepping methods.
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