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Abstract

In these lectures, we will give a general introduction to the discontinuous Galerkin
(DG) methods for solving time dependent, convection dominated partial differential
equations (PDEs), including the hyperbolic conservation laws, convection diffusion
equations, and PDEs containing higher order spatial derivatives such as the KdV
equations and other nonlinear dispersive wave equations. We will discuss cell en-
tropy inequalities, nonlinear stability, and error estimates. The important ingredient
of the design of DG schemes, namely the adequate choice of numerical fluxes, will
be explained in detail. Issues related to the implementation of the DG method will
also be addressed.

1 Introduction

Discontinuous Galerkin (DG) methods are a class of finite element methods using com-
pletely discontinuous basis functions, which are usually chosen as piecewise polynomials.
Since the basis functions can be completely discontinuous, these methods have the flex-
ibility which is not shared by typical finite element methods, such as the allowance of
arbitrary triangulation with hanging nodes, complete freedom in changing the polyno-
mial degrees in each element independent of that in the neighbors (p adaptivity), and
extremely local data structure (elements only communicate with immediate neighbors
regardless of the order of accuracy of the scheme) and the resulting embarrassingly high
parallel efficiency (usually more than 99% for a fixed mesh, and more than 80% for a
dynamic load balancing with adaptive meshes which change often during time evolution),
see, e.g. [5]. A very good example to illustrate the capability of the discontinuous Galerkin
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method in h-p adaptivity, efficiency in parallel dynamic load balancing, and excellent res-
olution properties is the successful simulation of the Rayleigh-Taylor flow instabilities in
[38].

The first discontinuous Galerkin method was introduced in 1973 by Reed and Hill
[37], in the framework of neutron transport, i.e. a time independent linear hyperbolic
equation. A major development of the DG method is carried out by Cockburn et al. in a
series of papers [14, 13, 12, 10, 15], in which they have established a framework to easily
solve nonlinear time dependent problems, such as the Euler equations of gas dynamics,
using explicit, nonlinearly stable high order Runge-Kutta time discretizations [44] and DG
discretization in space with exact or approximate Riemann solvers as interface fluxes and
total variation bounded (TVB) nonlinear limiters [41] to achieve non-oscillatory properties
for strong shocks.

The DG method has found rapid applications in such diverse areas as aeroacoustics,
electro-magnetism, gas dynamics, granular flows, magneto-hydrodynamics, meteorology,
modeling of shallow water, oceanography, oil recovery simulation, semiconductor device
simulation, transport of contaminant in porous media, turbomachinery, turbulent flows,
viscoelastic flows and weather forecasting, among many others. For more details, we refer
to the survey paper [11], and other papers in that Springer volume, which contains the
conference proceedings of the First International Symposium on Discontinuous Galerkin
Methods held at Newport, Rhode Island in 1999. The lecture notes [8] is a good reference
for many details, as well as the extensive review paper [17]. More recently, there are two
special issues devoted to the discontinuous Galerkin method [18, 19], which contain many
interesting papers in the development of the method in all aspects including algorithm
design, analysis, implementation and applications.

2 Time discretization

In these lectures, we will concentrate on the method of lines DG methods, that is, we
do not discretize the time variable. Therefore, we will briefly discuss the issue of time
discretization at the beginning.

For hyperbolic problems or convection dominated problems such as high Reynolds
number Navier-Stokes equations, we often use a class of high order nonlinearly stable
Runge-Kutta time discretizations. A distinctive feature of this class of time discretiza-
tions is that they are convex combinations of first order forward Euler steps, hence they
maintain strong stability properties in any semi-norm (total variation semi-norm, maxi-
mum norm, entropy condition, etc.) of the forward Euler step. Thus one only needs to
prove nonlinear stability for the first order forward Euler step, which is relatively easy
in many situations (e.g. TVD schemes, see for example Section 3.2.2 below), and one
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automatically obtains the same strong stability property for the higher order time dis-
cretizations in this class. These methods were first developed in [44] and [42], and later
generalized in [20] and [21]. The most popular scheme in this class is the following third
order Runge-Kutta method for solving

ut = L(u, t)

where L(u, t) is a spatial discretization operator (it does not need to be, and often is not,
linear!):

u(1) = un + ΔtL(un, tn)

u(2) =
3

4
un +

1

4
u(1) +

1

4
ΔtL(u(1), tn + Δt) (2.1)

un+1 =
1

3
un +

2

3
u(2) +

2

3
ΔtL(u(2), tn +

1

2
Δt).

Schemes in this class which are higher order or are of low storage also exist. For details,
see the survey paper [43] and the review paper [21].

If the PDEs contain high order spatial derivatives with coefficients not very small, then
explicit time marching methods such as the Runge-Kutta methods described above suffer
from severe time step restrictions. It is an important and active research subject to study
efficient time discretization for such situations, while still maintaining the advantages of
the DG methods, such as their local nature and parallel efficiency. See, e.g. [46] for a
study of several time discretization techniques for such situations. We will not further
discuss this important issue though in these lectures.

3 Discontinuous Galerkin method for conservation

laws

The discontinuous Galerkin method was first designed as an effective numerical methods
for solving hyperbolic conservation laws, which may have discontinuous solutions. In this
section we will discuss the algorithm formulation, stability analysis, and error estimates
for the discontinuous Galerkin method solving hyperbolic conservation laws.

3.1 Two dimensional steady state linear equations

We now present the details of the original DG method in [37] for the two dimensional
steady state linear convection equation

aux + buy = f(x, y), 0 ≤ x, y ≤ 1 (3.1)
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where a and b are constants. Without loss of generality we assume a > 0, b > 0. The
equation (3.1) is well-posed when equipped with the inflow boundary condition

u(x, 0) = g1(x), 0 ≤ x ≤ 1 and u(0, y) = g2(y), 0 ≤ y ≤ 1. (3.2)

For simplicity, we assume a rectangular mesh to cover the computational domain [0, 1]2,
consisting of cells

Ii,j = {(x, y) : xi− 1
2
≤ x ≤ xi+ 1

2
, yj− 1

2
≤ y ≤ yj+ 1

2
}

for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, where

0 = x 1
2

< x 3
2

< · · · < xNx+ 1
2

= 1

and
0 = y 1

2
< y 3

2
< · · · < yNy+ 1

2
= 1

are discretizations in x and y over [0, 1]. We also denote

Δxi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ Nx; Δyj = yj+ 1

2
− yj− 1

2
, 1 ≤ j ≤ Ny;

and

h = max

(
max

1≤i≤Nx

Δxi, max
1≤j≤Ny

Δyj

)
.

We assume the mesh is regular, namely there is a constant c > 0 independent of h such
that

Δxi ≥ ch, 1 ≤ i ≤ Nx; Δyj ≥ ch, 1 ≤ j ≤ Ny.

We define a finite element space consisting of piecewise polynomials

V k
h =

{
v : v|Ii,j

∈ P k(Ii,j); 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
(3.3)

where P k(Ii,j) denotes the set of polynomials of degree up to k defined on the cell Ii,j.
Notice that functions in V k

h may be discontinuous across cell interfaces.
The discontinuous Galerkin (DG) method for solving (3.1) is defined as follows: find

the unique function uh ∈ V k
h such that, for all test functions vh ∈ V k

h and all 1 ≤ i ≤ Nx

and 1 ≤ j ≤ Ny, we have

− ∫ ∫
Ii,j

(auh(vh)x + buh(vh)y) dxdy + a
∫ y

j+ 1
2

y
j− 1

2

ûh(xi+ 1
2
, y)vh(x

−
i+ 1

2

, y)dy

−a
∫ y

j+1
2

y
j− 1

2

ûh(xi− 1
2
, y)vh(x

+
i− 1

2

, y)dy + b
∫ x

i+1
2

x
i− 1

2

ûh(x, yj+ 1
2
)vh(x, y−

j+ 1
2

)dx (3.4)

−b
∫ x

i+1
2

x
i− 1

2

ûh(x, yj− 1
2
)vh(x, y+

j− 1
2

)dx = 0.
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Here, ûh is the so-called “numerical flux”, which is a single valued function defined at the
cell interfaces and in general depends on the values of the numerical solution uh from both
sides of the interface, since uh is discontinuous there. For the simple linear convection
PDE (3.1), the numerical flux can be chosen according to the upwind principle, namely

ûh(xi+ 1
2
, y) = uh(x

−
i+ 1

2

, y), ûh(x, yj+ 1
2
) = uh(x, y−

j+ 1
2

).

Notice that, for the boundary cell i = 1, the numerical flux for the left edge is defined
using the given boundary condition

ûh(x 1
2
, y) = g2(y).

Likewise, for the boundary cell j = 1, the numerical flux for the bottom edge is is defined
by

ûh(x, y 1
2
) = g1(x).

We now look at the implementation of the scheme (3.4). If a local basis of P k(Ii,j) is
chosen and denoted as ϕ�

i,j(x, y) for � = 1, 2, · · · , K = (k + 1)(k + 2)/2, we can express
the numerical solution as

uh(x, y) =
K∑

�=1

u�
i,jϕ

�
i,j(x, y), (x, y) ∈ Ii,j

and we should solve for the coefficients

ui,j =

⎛⎜⎝ u1
i,j
...

uK
i,j

⎞⎟⎠
which, according to the scheme (3.4), satisfies the linear equation

Ai,jui,j = rhs (3.5)

where Ai,j is a K × K matrix whose (�, m)-th entry is given by

a�,m
i,j = −

∫ ∫
Ii,j

(
aϕm

i,j(x, y)(ϕ�
i,j(x, y))x + bϕm

i,j(x, y)(ϕ�
i,j(x, y))y

)
dxdy (3.6)

+a

∫ y
j+1

2

y
j− 1

2

ϕm
i,j(xi+ 1

2
, y)ϕ�

i,j(xi+ 1
2
, y)dy + b

∫ x
i+1

2

x
i− 1

2

ϕm
i,j(x, yj+ 1

2
)ϕ�

i,j(x, yj+ 1
2
)dx,

and the �-th entry of the right-hand-side vector is given by

rhs� = a

∫ y
j+ 1

2

y
j− 1

2

uh(x
−
i− 1

2

, y)ϕ�
i,j(xi− 1

2
, y)dy + b

∫ x
i+1

2

x
i− 1

2

uh(x, y−
j− 1

2

)ϕ�
i,j(x, yj− 1

2
)dx
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which depends on the information of uh in the left cell Ii−1,j and the bottom cell Ii,j−1,
if they are in the computational domain, or on the boundary condition, if one or both of
these cells are outside the computational domain. It is easy to verify that the matrix Ai,j

in (3.5) with entries given by (3.6) is invertible, hence the numerical solution uh in the cell
Ii,j can be easily obtained by solving the small linear system (3.5), once the solution at the
left and bottom cells Ii−1,j and Ii,j−1 are already known, or if one or both of these cells are
outside the computational domain. Therefore, we can obtain the numerical solution uh

in the following ordering: first we obtain it in the cell I1,1, since both its left and bottom
boundaries are equipped with the prescribed boundary conditions (3.2). We then obtain
the solution in the cells I2,1 and I1,2. For I2,1, the numerical solution uh in its left cell I1,1

is already available, and its bottom boundary is equipped with the prescribed boundary
condition (3.2). Similar argument goes for the cell I1,2. The next group of cells to be
solved are I3,1, I2,2, I1,3. It is clear that we can obtain the solution uh sequentially in this
way for all cells in the computational domain.

Clearly, this method does not involve any large system solvers and is very easy to
implement. In [25], Lesaint and Raviart proved that this method is convergent with the
optimal order of accuracy, namely O(hk+1), in L2 norm, when piecewise tensor product
polynomials of degree k are used as basis functions. Numerical experiments indicate that
the convergence rate is also optimal when the usual piecewise polynomials of degree k
(3.3) are used instead.

Notice that, even though the method (3.4) is designed for the steady state problem
(3.1), it can be easily used on initial-boundary value problems of linear time dependent
hyperbolic equations: we just need to identify the time variable t as one of the spatial
variables. It is also easily generalizable to higher dimensions.

The method described above can be easily designed and efficiently implemented on
arbitrary triangulations. L2 error estimates of O(hk+1/2) where k is again the polynomial
degree and h is the mesh size can be obtained when the solution is sufficiently smooth,
for arbitrary meshes, see, e.g. [24]. This estimate is actually sharp for the most general
situation [33], however in many cases the optimal O(hk+1) error bound can be proved
[39, 9]. In actual numerical computations, one almost always observe the optimal O(hk+1)
accuracy.

Unfortunately, even though the method (3.4) is easy to implement, accurate, and
efficient, it cannot be easily generalized to linear systems, where the characteristic infor-
mation comes from different directions, or to nonlinear problems, where the characteristic
wind direction depends on the solution itself.
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3.2 One dimensional time dependent conservation laws

The difficulties mentioned at the end of the last subsection can be by-passed when the DG
discretization is only used for the spatial variables, and the time discretization is achieved
by the explicit Runge-Kutta methods such as (2.1). This is the approach of the so-called
Runge-Kutta discontinuous Galerkin (RKDG) method [14, 13, 12, 10, 15].

We start our discussion with the one dimensional conservation law

ut + f(u)x = 0. (3.7)

As before, we assume the following mesh to cover the computational domain [0, 1], con-
sisting of cells Ii = [xi− 1

2
, xi+ 1

2
], for 1 ≤ i ≤ N , where

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 1.

We again denote

Δxi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ N ; h = max

1≤i≤N
Δxi.

We assume the mesh is regular, namely there is a constant c > 0 independent of h such
that

Δxi ≥ ch, 1 ≤ i ≤ N.

We define a finite element space consisting of piecewise polynomials

V k
h =

{
v : v|Ii

∈ P k(Ii); 1 ≤ i ≤ N
}

(3.8)

where P k(Ii) denotes the set of polynomials of degree up to k defined on the cell Ii. The
semi-discrete DG method for solving (3.7) is defined as follows: find the unique function
uh = uh(t) ∈ V k

h such that, for all test functions vh ∈ V k
h and all 1 ≤ i ≤ N , we have∫

Ii

(uh)t(vh)dx −
∫

Ii

f(uh)(vh)xdx + f̂i+ 1
2
vh(x

−
i+ 1

2

) − f̂i− 1
2
vh(x

+
i− 1

2

) = 0. (3.9)

Here, f̂i+ 1
2

is again the numerical flux, which is a single valued function defined at the cell
interfaces and in general depends on the values of the numerical solution uh from both
sides of the interface

f̂i+ 1
2

= f̂(uh(x
−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t)).

We use the so-called monotone fluxes from finite difference and finite volume schemes for
solving conservation laws, which satisfy the following conditions:

• Consistency: f̂(u, u) = f(u);
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• Continuity: f̂(u−, u+) is at least Lipschitz continuous with respect to both argu-
ments u− and u+.

• Monotonicity: f̂(u−, u+) is a non-decreasing function of its first argument u− and
a non-increasing function of its second argument u+. Symbolically f̂(↑, ↓).

Well known monotone fluxes include the Lax-Friedrichs flux

f̂LF (u−, u+) =
1

2

(
f(u−) + f(u+) − α(u+ − u−)

)
, α = max

u
|f ′(u)|;

the Godunov flux

f̂God(u−, u+) =

{
minu−≤u≤u+ f(u), if u− < u+

maxu+≤u≤u− f(u), if u− ≥ u+ ;

and the Engquist-Osher flux

f̂EO =

∫ u−

0

max(f ′(u), 0)du +

∫ u+

0

min(f ′(u), 0)du + f(0).

We refer to, e.g., [26] for more details about monotone fluxes.

3.2.1 Cell entropy inequality and L2 stability

It is well known that weak solutions of (3.7) may not be unique and the unique, physi-
cally relevant weak solution (the so-called entropy solution) satisfies the following entropy
inequality

U(u)t + F (u)x ≤ 0 (3.10)

in distribution sense, for any convex entropy U(u) satisfying U ′′(u) ≥ 0 and the corre-
sponding entropy flux F (u) =

∫ u
U ′(u)f ′(u)du. It will be nice if a numerical approxima-

tion to (3.7) also shares a similar entropy inequality as (3.10). It is usually quite difficult
to prove a discrete entropy inequality for finite difference or finite volume schemes, espe-
cially for high order schemes and when the flux function f(u) in (3.7) is not convex or
concave, see, e.g. [28, 32]. However, it turns out that it is easy to prove that the DG
scheme (3.9) satisfies a cell entropy inequality [23].

Proposition 3.1. The solution uh to the semi-discrete DG scheme (3.9) satisfies the
following cell entropy inequality

d

dt

∫
Ii

U(uh) dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (3.11)
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for the square entropy U(u) = u2

2
, for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x
−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t))

satisfying F̂ (u, u) = F (u).

Proof: We introduce a short-hand notation

Bi(uh; vh) =

∫
Ii

(uh)t(vh)dx −
∫

Ii

f(uh)(vh)xdx + f̂i+ 1
2
vh(x

−
i+ 1

2

) − f̂i− 1
2
vh(x

+
i− 1

2

). (3.12)

If we take vh = uh in the scheme (3.9), we obtain

Bi(uh; uh) =

∫
Ii

(uh)t(uh)dx−
∫

Ii

f(uh)(uh)xdx+ f̂i+ 1
2
uh(x

−
i+ 1

2

)− f̂i− 1
2
uh(x

+
i− 1

2

) = 0. (3.13)

If we denote F̃ (u) =
∫ u

f(u)du, then (3.13) becomes

Bi(uh; uh) =

∫
Ii

U(uh)tdx− F̃ (uh(x
−
i+ 1

2

))+ F̃ (uh(x
+
i− 1

2

))+ f̂i+ 1
2
uh(x

−
i+ 1

2

)− f̂i− 1
2
uh(x

+
i− 1

2

) = 0

or

Bi(uh; uh) =

∫
Ii

U(uh)tdx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0 (3.14)

where
F̂i+ 1

2
= −F̃ (uh(x

−
i+ 1

2

)) + f̂i+ 1
2
uh(x

−
i+ 1

2

) (3.15)

and

Θi− 1
2

= −F̃ (uh(x
−
i− 1

2

)) + f̂i− 1
2
uh(x

−
i− 1

2

) + F̃ (uh(x
+
i− 1

2

)) − f̂i− 1
2
uh(x

+
i− 1

2

). (3.16)

It is easy to verify that the numerical entropy flux F̂ defined by (3.15) is consistent with
the entropy flux F (u) =

∫ u
U ′(u)f ′(u)du for U(u) = u2

2
. It is also easy to verify

Θ = −F̃ (u−
h ) + f̂u−

h + F̃ (u+
h ) − f̂u+

h = (u+
h − u−

h )(F̃ ′(ξ) − f̂) ≥ 0

where we have dropped the subscript i − 1
2

since all quantities are evaluated there in
Θi− 1

2
. A mean value theorem is applied and ξ is a value between u− and u+, and we have

used the fact F̃ ′(ξ) = f(ξ) and the monotonicity of the flux function f̂ to obtain the last
inequality. This finishes the proof of the cell entropy inequality (3.11).

We note that the proof does not depend on the accuracy of the scheme, namely it
holds for the piecewise polynomial space (3.8) with any degree k. Also, the same proof
can be given for the multi-dimensional DG scheme on any triangulation.
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The cell entropy inequality trivially implies an L2 stability of the numerical solution.

Proposition 3.2. For periodic or compactly supported boundary conditions, the solution
uh to the semi-discrete DG scheme (3.9) satisfies the following L2 stability

d

dt

∫ 1

0

(uh)
2dx ≤ 0 (3.17)

or
‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (3.18)

Here and below, an unmarked norm is the usual L2 norm.

Proof: We simply sum up the cell entropy inequality (3.11) over i. The flux terms
telescope and there is no boundary term left because of the periodic or compact supported
boundary condition. (3.17), and hence (3.18), is now immediate.

Notice that both the cell entropy inequality (3.11) and the L2 stability (3.17) are valid
even when the exact solution of the conservation law (3.7) is discontinuous.

3.2.2 Limiters and total variation stability

For discontinuous solutions, the cell entropy inequality (3.11) and the L2 stability (3.17),
although helpful, are not enough to control spurious numerical oscillations near discon-
tinuities. In practice, especially for problems containing strong discontinuities, we often
need to apply nonlinear limiters to control these oscillations and to obtain provable total
variation stability.

For simplicity, we first consider the forward Euler time discretization of the semi-
discrete DG scheme (3.9). Starting from a preliminary solution un,pre

h ∈ V k
h at time level

n (for the initial condition, u0,pre
h is taken to be the L2 projection of the analytical initial

condition u(·, 0) into V k
h ), we would like to “limit” or ”pre-process” it to obtain a new

function un
h ∈ V k

h before advancing it to the next time level: find un+1,pre
h ∈ V k

h such that,
for all test functions vh ∈ V k

h and all 1 ≤ i ≤ N , we have∫
Ii

un+1,pre
h − un

h

Δt
vhdx −

∫
Ii

f(un
h)(vh)xdx + f̂n

i+ 1
2
vh(x

−
i+ 1

2

) − f̂n
i− 1

2
vh(x

+
i− 1

2

) = 0 (3.19)

where Δt = tn+1 − tn is the time step. This limiting procedure to go from un,pre
h to un

h

should satisfy the following two conditions:

• It should not change the cell averages of un,pre
h . That is, the cell averages of un

h and
un,pre

h are the same. This is for the conservation property of the DG method.
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• It should not affect the accuracy of the scheme in smooth regions. That is, in the
smooth regions this limiter does not change the solution, un

h(x) = un,pre
h (x).

There are many limiters discussed in the literature, and this is still an active research
area, especially for multi-dimensional systems, see, e.g. [60]. We will only present an
example [13] here.

We denote the cell average of the solution uh as

ūi =
1

Δxi

∫
Ii

uhdx (3.20)

and further denote

ũi = uh(x
−
i+ 1

2

) − ūi, ˜̃ui = ūi − uh(x
+
i− 1

2

). (3.21)

The limiter should not change ūi but it may change ũi and/or ˜̃ui. In particular, the
minmod limiter [13] changes ũi and ˜̃ui into

ũ
(mod)
i = m(ũi, Δ+ūi, Δ−ūi), ˜̃u

(mod)
i = m(˜̃ui, Δ+ūi, Δ−ūi), (3.22)

where
Δ+ūi = ūi+1 − ūi, Δ−ūi = ūi − ūi−1,

and the minmod function m is defined by

m(a1, · · · , a�) =

{
s min(|a1|, · · · , |a�|), if s = sign(a1) = · · · sign(a�);
0, otherwise.

(3.23)

The limited function u
(mod)
h is then recovered to maintain the old cell average (3.20) and

the new point values given by (3.22), that is

u
(mod)
h (x−

i+ 1
2

) = ūi + ũ
(mod)
i , u

(mod)
h (x+

i− 1
2

) = ūi − ˜̃u
(mod)
i (3.24)

by the definition (3.21). This recovery is unique for P k polynomials with k ≤ 2. For

k > 2, we have extra freedom in obtaining u
(mod)
h . We could for example choose u

(mod)
h to

be the unique P 2 polynomial satisfying (3.20) and (3.24).
Before discussing the total variation stability of the DG scheme (3.19) with the pre-

processing, we first present a simple Lemma due to Harten [22].

Lemma 3.1 (Harten) If a scheme can be written in the form

un+1
i = un

i + Ci+ 1
2
Δ+un

i − Di− 1
2
Δ−un

i (3.25)
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with periodic or compactly supported boundary conditions, where Ci+ 1
2

and Di− 1
2

may
be nonlinear functions of the grid values un

j for j = i − p, · · · , i + q with some p, q ≥ 0,
satisfying

Ci+ 1
2
≥ 0, Di+ 1

2
≥ 0, Ci+ 1

2
+ Di+ 1

2
≤ 1, ∀i (3.26)

then the scheme is TVD
TV (un+1) ≤ TV (un)

where the total variation seminorm is defined by

TV (u) =
∑

i

|Δ+ui|.

Proof: Taking the forward difference operation on (3.25) yields

Δ+un+1
i = Δ+un

i + Ci+ 3
2
Δ+un

i+1 − Ci+ 1
2
Δ+un

i − Di+ 1
2
Δ+un

i + Di− 1
2
Δ−un

i

= (1 − Ci+ 1
2
− Di+ 1

2
)Δ+un

i + Ci+ 3
2
Δ+un

i+1 + Di− 1
2
Δ−un

i .

Thanks to (3.26) and using the periodic or compactly supported boundary condition, we
can take the absolute value on both sides of the above equality and sum up over i to
obtain∑

i

|Δ+un+1
i | ≤

∑
i

(1−Ci+ 1
2
−Di+ 1

2
)|Δ+un

i |+
∑

i

Ci+ 1
2
|Δ+un

i |+
∑

i

Di+ 1
2
|Δ+un

i | =
∑

i

|Δ+un
i |

This finishes the proof.

We define the “total variation in the means” semi-norm, or TVM, as

TV M(uh) =
∑

i

|Δ+ūi|.

We then have the following stability result.

Proposition 3.3. For periodic or compactly supported boundary conditions, the solution
un

h of the DG scheme (3.19), with the “pre-processing” by the limiter, is total variation
diminishing in the means (TVDM), that is

TV M(un+1
h ) ≤ TV M(un

h). (3.27)

Proof: Taking vh = 1 for x ∈ Ii in (3.19) and dividing both sides by Δxi, we obtain, by
noticing (3.24),

ūn+1,pre
i = ūi − λi

(
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi−1 + ũi−1, ūi − ˜̃ui)

)
12



where λi = Δt
Δxi

, and all quantities on the right hand side are at the time level n. We can
write the right hand side of the above equality in the Harten form (3.25) if we define Ci+ 1

2

and Di− 1
2

as follows

Ci+ 1
2

= −λi
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

Δ+ūi
, (3.28)

Di− 1
2

= λi
f̂(ūi + ũi, ūi − ˜̃ui) − f̂(ūi−1 + ũi−1, ūi − ˜̃ui)

Δ−ūi
.

We now need to verify that Ci+ 1
2

and Di− 1
2

defined in (3.28) satisfy (3.26). Indeed, we
can write Ci+ 1

2
as

Ci+ 1
2

= −λif̂2

(
1 −

˜̃ui+1

Δ+ūi
+

˜̃ui

Δ+ūi

)
(3.29)

in which

0 ≤ −λif̂2 = −λi
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

(ūi+1 − ˜̃ui+1) − (ūi − ˜̃ui)
≤ λiL2 (3.30)

where we have used the monotonicity and Lipschitz continuity of f̂ , and L2 is the Lipschitz
constant of f̂ with respect to its second argument. Also, since un

h is the pre-processed
solution by the minmod limiter, ˜̃ui+1 and ˜̃ui are the modified values defined by (3.22),
hence

0 ≤
˜̃ui+1

Δ+ūi

≤ 1, 0 ≤
˜̃ui

Δ+ūi

≤ 1. (3.31)

Therefore, we have, by (3.29), (3.30) and (3.31),

0 ≤ Ci+ 1
2
≤ 2λiL2.

Similarly, we can show that
0 ≤ Di+ 1

2
≤ 2λi+1L1

where L1 is the Lipschitz constant of f̂ with respect to its first argument. This proves
(3.26) if we take the time step so that

λ ≤ 1

2(L1 + L2)

where λ = maxi λi. The TVDM property (3.27) then follows from the Harten Lemma and
the fact that the limiter does not change cell averages, hence TV M(un+1

h ) = TV M(un+1,pre
h ).

13



Even though the previous proposition is proved only for the first order Euler forward
time discretization, the special TVD (or strong stability preserving, SSP) Runge-Kutta
time discretizations [44, 21] allow us to obtain the same stability result for the fully
discretized RKDG schemes.

Proposition 3.4. Under the same conditions as those in Proposition 3.3, the solution
un

h of the DG scheme (3.19), with the Euler forward time discretization replaced by any
SSP Runge-Kutta time discretization [21] such as (2.1), is TVDM.

We still need to verify that the limiter (3.22) does not affect accuracy in smooth
regions. If uh is an approximation to a (locally) smooth function u, then a simple Taylor
expansion gives

ũi =
1

2
ux(xi)Δxi + O(h2), ˜̃ui =

1

2
ux(xi)Δxi + O(h2),

while

Δ+ūi =
1

2
ux(xi)(Δxi + Δxi+1) + O(h2), Δ−ūi =

1

2
ux(xi)(Δxi + Δxi−1) + O(h2).

Clearly, when we are in a smooth and monotone region, namely when ux(xi) is away
from zero, the first argument in the minmod function (3.22) is of the same sign as the
second and third arguments and is smaller in magnitude (for a uniform mesh it is about
half of their magnitude), when h is small. Therefore, since the minmod function (3.23)
picks the smallest argument (in magnitude) when all the arguments are of the same sign,

the modified values ũ
(mod)
i and ˜̃u

(mod)
i in (3.22) will take the unmodified values ũi and ˜̃ui,

respectively. That is, the limiter does not affect accuracy in smooth, monotone regions.
On the other hand, the TVD limiter (3.22) does kill accuracy at smooth extrema.

This is demonstrated by numerical results and is a consequence of the general results
about TVD schemes, that they are at most second order accurate for smooth but non-
monotone solutions [31]. Therefore, in practice we often use a total variation bounded
(TVB) corrected limiter

m̃(a1, · · · , a�) =

{
a1, if |a1| ≤ Mh2;
m(a1, · · · , a�), otherwise

instead of the original minmod function (3.23), where the TVB parameter M has to be
chosen adequately [13]. The DG scheme would then be total variation bounded in the
means (TVBM) and uniformly high order accurate for smooth solutions. We will not
discuss more details here and refer the readers to [13].

We would like to remark that the limiters discussed in this subsection are first used for
finite volume schemes [30]. When discussing limiters, the DG methods and finite volumes
schemes have many similarities.
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3.2.3 Error estimates for smooth solutions

If we assume the exact solution of (3.7) is smooth, we can obtain optimal L2 error esti-
mates. Such error estimates can be obtained for the general nonlinear conservation law
(3.7) and for fully discretized RKDG methods, see [58]. However, for simplicity we will
give here the proof only for the semi-discrete DG scheme and the linear version of (3.7):

ut + ux = 0 (3.32)

for which the monotone flux is taken as the simple upwind flux f̂(u−, u+) = u−. Of course
the proof is the same for ut + aux = 0 with any constant a.

Proposition 3.5. The solution uh of the DG scheme (3.9) for the PDE (3.32) with a
smooth solution u satisfies the following error estimate

‖u − uh‖ ≤ Chk+1 (3.33)

where C depends on u and its derivatives but is independent of h.

Proof: The DG scheme (3.9), when using the notation in (3.12), can be written as

Bi(uh; vh) = 0 (3.34)

for all vh ∈ Vh and for all i. It is easy to verify that the exact solution of the PDE (3.32)
also satisfies

Bi(u; vh) = 0 (3.35)

for all vh ∈ Vh and for all i. Subtracting (3.34) from (3.35) and using the linearity of Bi

with respect to its first argument, we obtain the error equation

Bi(u − uh; vh) = 0 (3.36)

for all vh ∈ Vh and for all i.
We now define a special projection P into Vh. For a given smooth function w, the

projection Pw is the unique function in Vh which satisfies, for each i,∫
Ii

(Pw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k−1(Ii); Pw(x−
i+ 1

2

) = w(xi+ 1
2
). (3.37)

Standard approximation theory [7] implies, for a smooth function w,

‖Pw(x) − w(x)‖ ≤ Chk+1 (3.38)

where here and below C is a generic constant depending on w and its derivatives but
independent of h (which may not have the same value in different places). In particular,
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in (3.38), C = C̃‖w‖Hk+1 where ‖w‖Hk+1 is the standard Sobolev (k + 1) norm and C̃ is
a constant independent of w.

We now take:
vh = Pu − uh (3.39)

in the error equation (3.36), and denote

eh = Pu − uh, εh = u − Pu (3.40)

to obtain
Bi(eh; eh) = −Bi(εh; eh). (3.41)

For the left hand side of (3.41), we use the cell entropy inequality (see (3.14)) to obtain

Bi(eh; eh) =
1

2

d

dt

∫
Ii

(eh)
2dx + F̂i+ 1

2
− F̂i− 1

2
+ Θi− 1

2
(3.42)

where Θi− 1
2
≥ 0. As to the right hand side of (3.41), we first write out all the terms

−Bi(εh; eh) = −
∫

Ii

(εh)tehdx +

∫
Ii

εh(eh)xdx − (εh)
−
i+ 1

2

(eh)
−
i+ 1

2

+ (εh)
−
i− 1

2

(eh)
+
i+ 1

2

.

Noticing the properties (3.37) of the projection P , we have∫
Ii

εh(eh)xdx = 0

because (eh)x is a polynomial of degree at most k − 1, and

(εh)
−
i+ 1

2

= ui+ 1
2
− (Pu)−

i+ 1
2

= 0

for all i. Therefore, the right hand side of (3.41) becomes

−Bi(εh; eh) = −
∫

Ii

(εh)tehdx ≤ 1

2

(∫
Ii

((εh)t)
2dx +

∫
Ii

(eh)
2dx

)
(3.43)

Plugging (3.42) and (3.43) into the equality (3.41), summing up over i, and using the
approximation result (3.38), we obtain

d

dt

∫ 1

0

(eh)
2dx ≤

∫ 1

0

(eh)
2dx + Ch2k+2.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0)− uh(·, 0)‖ ≤ Chk+1

(usually the initial condition uh(·, 0) is taken as the L2 projection of the analytical initial
condition u(·, 0)), and the approximation result (3.38) finally give us the error estimate
(3.33).

16



3.3 Comments for multi-dimensional cases

Even though we have only discussed the two dimensional steady state and one dimen-
sional time dependent cases in previous subsections, Most of the results also hold for
multi-dimensional cases with arbitrary triangulations. For example, the semi-discrete DG
method for the two dimensional time dependent conservation law

ut + f(u)x + g(u)y = 0 (3.44)

is defined as follows. The computational domain is partitioned into a collection of cells
	i, which in 2D could be rectangles, triangles, etc., and the numerical solution is a
polynomial of degree k in each cell 	i. The degree k could change with the cell, and
there is no continuity requirement of the two polynomials along an interface of two cells.
Thus, instead of only one degree of freedom per cell as in a finite volume scheme, namely
the cell average of the solution, there are now K = (k+1)(k+2)

2
degrees of freedom per cell

for a DG method using piecewise k-th degree polynomials in 2D. These K degrees of
freedom are chosen as the coefficients of the polynomial when expanded in a local basis.
One could use a locally orthogonal basis to simplify the computation, but this is not
essential.

The DG method is obtained by multiplying (3.44) by a test function v(x, y) (which is
also a polynomial of degree k in the cell), integrating over the cell 	j, and integrating by
parts:

d

dt

∫
�j

u(x, y, t)v(x, y)dxdy −
∫
�j

F (u) · ∇v dxdy +

∫
∂�j

F (u) · n v ds = 0 (3.45)

where F = (f, g), and n is the outward unit normal of the cell boundary ∂	j . The line
integral in (3.45) is typically discretized by a Gaussian quadrature of sufficiently high
order of accuracy, ∫

∂�j

F · n v ds ≈ |∂	j|
q∑

k=1

ωkF (u(Gk, t)) · n v(Gk),

where F (u(Gk, t)) · n is replaced by a numerical flux (approximate or exact Riemann
solvers). For scalar equations the numerical flux can be taken as any of the monotone
fluxes discussed in Section 3.2 along the normal direction of the cell boundary. For
example, one could use the simple Lax-Friedrichs flux, which is given by

F (u(Gk, t)) · n ≈ 1

2

[(
F (u−(Gk, t)) + F (u+(Gk, t))

) · n − α
(
u+(Gk, t) − u−(Gk, t)

)]
where α is taken as an upper bound for the eigenvalues of the Jacobian in the n direction,
and u− and u+ are the values of u inside the cell 	j and outside the cell 	j (inside the
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neighboring cell) at the Gaussian point Gk. v(Gk) is taken as v−(Gk), namely the value of
v inside the cell 	j at the Gaussian point Gk. The volume integral term

∫
�j

F (u)·∇v dxdy

can be computed either by a numerical quadrature or by a quadrature free implementation
[2] for special systems such as the compressible Euler equations. Notice that if a locally
orthogonal basis is chosen, the time derivative term d

dt

∫
�j

u(x, y, t)v(x, y)dxdy would be

explicit and there is no mass matrix to invert. However, even if the local basis is not
orthogonal, one still only needs to invert a small K ×K local mass matrix (by hand) and
there is never a global mass matrix to invert as in a typical finite element method.

For scalar equations (3.44), the cell entropy inequality described in Proposition 3.1
holds for arbitrary triangulation. The limiter described in Section 3.2.2 can also be defined
for arbitrary triangulation, see [10]. Instead of the TVDM property given in Proposition
3.3, for multi-dimensional cases we can prove the maximum norm stability of the limited
scheme, see [10]. The optimal error estimate given in Proposition 3.5 can be proved for
tensor product meshes and basis functions, and for certain specific triangulations when
the usual piecewise k-th degree polynomial approximation spaces are used [39, 9]. For the

most general cases, an L2 error estimate of half an order lower O(hk+ 1
2 ) can be proved

[24], which is actually sharp [33].
For nonlinear hyperbolic equations including symmetrizable systems, if the solution of

the PDE is smooth, L2 error estimates of O(hk+1/2+Δt2) where Δt is the time step can be
obtained for the fully discrete Runge-Kutta discontinuous Galerkin method with second
order Runge-Kutta time discretization. For upwind fluxes the optimal O(hk+1 + Δt2)
error estimate can be obtained. See [58, 59].

As an example of the excellent numerical performance of the RKDG scheme, we show
in Figures 3.1 and 3.2 the solution of the second order (piecewise linear) and seventh order
(piecewise polynomial of degree 6) DG methods for the linear transport equation

ut + ux = 0, or ut + ux + uy = 0,

on the domain (0, 2π) × (0, T ) or (0, 2π)2 × (0, T ) with the characteristic function of the
interval (π

2
, 3π

2
) or the square (π

2
, 3π

2
)2 as initial condition and periodic boundary conditions

[17]. Notice that the solution is for a very long time, t = 100π (50 time periods), with
a relatively coarse mesh. We can see that the second order scheme smears the fronts,
however the seventh order scheme maintains the shape of the solution almost as well
as the initial condition! The excellent performance can be achieved by the DG method
on multi-dimensional linear systems using unstructured meshes, hence it is a very good
method for solving, e.g. Maxwell equations of electromagnetism and linearized Euler
equations of aeroacoustics.

To demonstrate that the DG method also works well for nonlinear systems, we show in
Figure 3.3 the DG solution of the forward facing step problem by solving the compressible
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Figure 3.1: Transport equation: Comparison of the exact and the RKDG solutions at
T = 100π with second order (P 1, left) and seventh order (P 6, right) RKDG methods.
One dimensional results with 40 cells, exact solution (solid line) and numerical solution
(dashed line and symbols, one point per cell).
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Figure 3.2: Transport equation: Comparison of the exact and the RKDG solutions at
T = 100π with second order (P 1, left) and seventh order (P 6, right) RKDG methods.
Two dimensional results with 40 × 40 cells.
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Figure 3.3: Forward facing step. Zoomed-in region. Δx = Δy = 1
320

. Top: P 1 elements;
bottom: P 2 elements.

Euler equations of gas dynamics [15]. We can see that the roll-ups of the contact line
caused by a physical instability are resolved well, especially by the third order DG scheme.

In summary, we can say the following about the discontinuous Galerkin methods for
conservation laws:

1. They can be used for arbitrary triangulation, including those with hanging nodes.
Moreover, the degree of the polynomial, hence the order of accuracy, in each cell
can be independently decided. Thus the method is ideally suited for h-p (mesh size
and order of accuracy) refinements and adaptivity.

2. The methods have excellent parallel efficiency. Even with space time adaptivity and
load balancing the parallel efficiency can still be over 80%, see [38].

3. They should be the methods of choice if geometry is complicated or if adaptivity is
important, especially for problems with long time evolution of smooth solutions.
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4. For problems containing strong shocks, the nonlinear limiters are still less robust
than the advanced WENO philosophy. There is a parameter (the TVB constant)
for the user to tune for each problem, see [13, 10, 15]. For rectangular meshes the
limiters work better than for triangular ones. In recent years, WENO based limiters
have been investigated [35, 34, 36].

4 Discontinuous Galerkin method for convection dif-

fusion equations

In this section we discuss the discontinuous Galerkin method for time dependent convec-
tion diffusion equations

ut +

d∑
i=1

fi(u)xi
−

d∑
i=1

d∑
j=1

(aij(u)uxj
)xi

= 0 (4.1)

where (aij(u)) is a symmetric, semi-positive definite matrix. There are several different
formulations of discontinuous Galerkin methods for solving such equations, e.g. [1, 4,
6, 29, 45], however in this section we will only discuss the local discontinuous Galerkin
(LDG) method [16].

For equations containing higher order spatial derivatives, such as the convection dif-
fusion equation (4.1), discontinuous Galerkin methods cannot be directly applied. This is
because the solution space, which consists of piecewise polynomials discontinuous at the
element interfaces, is not regular enough to handle higher derivatives. This is a typical
“non-conforming” case in finite elements. A naive and careless application of the dis-
continuous Galerkin method directly to the heat equation containing second derivatives
could yield a method which behaves nicely in the computation but is “inconsistent” with
the original equation and has O(1) errors to the exact solution [17, 57].

The idea of local discontinuous Galerkin methods for time dependent partial differen-
tial equations with higher derivatives, such as the convection diffusion equation (4.1), is
to rewrite the equation into a first order system, then apply the discontinuous Galerkin
method on the system. A key ingredient for the success of such methods is the correct
design of interface numerical fluxes. These fluxes must be designed to guarantee stability
and local solvability of all the auxiliary variables introduced to approximate the deriva-
tives of the solution. The local solvability of all the auxiliary variables is why the method
is called a “local” discontinuous Galerkin method in [16].

The first local discontinuous Galerkin method was developed by Cockburn and Shu
[16], for the convection diffusion equation (4.1) containing second derivatives. Their work
was motivated by the successful numerical experiments of Bassi and Rebay [3] for the
compressible Navier-Stokes equations.
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In the following we will discuss the stability and error estimates for the LDG method
for convection diffusion equations. We present details only for the one dimensional case
and will mention briefly the generalization to multi-dimensions in Section 4.4.

4.1 LDG scheme formulation

We consider the one dimensional convection diffusion equation

ut + f(u)x = (a(u)ux)x (4.2)

with a(u) ≥ 0. We rewrite this equation as the following system

ut + f(u)x = (b(u)q)x, q − B(u)x = 0 (4.3)

where

b(u) =
√

a(u), B(u) =

∫ u

b(u)du. (4.4)

The finite element space is still given by (3.8). The semi-discrete LDG scheme is defined
as follows. Find uh, qh ∈ V k

h such that, for all test functions vh, ph ∈ V k
h and all 1 ≤ i ≤ N ,

we have ∫
Ii
(uh)t(vh)dx − ∫

Ii
(f(uh) − b(uh)qh)(vh)xdx

+(f̂ − b̂q̂)i+ 1
2
(vh)

−
i+ 1

2

− (f̂ − b̂q̂)i− 1
2
(vh)

+
i− 1

2

= 0, (4.5)∫
Ii

qhphdx +
∫

Ii
B(uh)(ph)xdx − B̂i+ 1

2
(ph)

−
i+ 1

2

+ B̂i− 1
2
(ph)

+
i− 1

2

= 0.

Here, all the “hat” terms are the numerical fluxes, namely single valued functions defined
at the cell interfaces which typically depend on the discontinuous numerical solution from
both sides of the interface. We already know from Section 3 that the convection flux f̂
should be chosen as a monotone flux. However, the upwinding principle is no longer a
valid guiding principle for the design of the diffusion fluxes b̂, q̂ and B̂. In [16], sufficient
conditions for the choices of these diffusion fluxes to guarantee the stability of the scheme
(4.5) are given. Here, we will discuss a particularly attractive choice, called “alternating
fluxes”, defined as

b̂ =
B(u+

h ) − B(u−
h )

u+
h − u−

h

, q̂ = q+
h , B̂ = B(u−

h ). (4.6)

The important point is that q̂ and B̂ should be chosen from different directions. Thus,
the choice

b̂ =
B(u+

h ) − B(u−
h )

u+
h − u−

h

, q̂ = q−h , B̂ = B(u+
h )
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is also fine.
Notice that, from the second equation in the scheme (4.5), we can solve qh explicitly

and locally (in cell Ii) in terms of uh, by inverting the small mass matrix inside the cell
Ii. This is the reason that the method is referred to as the “local” discontinuous Galerkin
method.

4.2 Stability analysis

Similar to the case for hyperbolic conservation laws, we have the following “cell entropy
inequality” for the LDG method (4.5).

Proposition 4.1. The solution uh, qh to the semi-discrete LDG scheme (4.5) satisfies
the following “cell entropy inequality”

1

2

d

dt

∫
Ii

(uh)
2 dx +

∫
Ii

(qh)
2dx + F̂i+ 1

2
− F̂i− 1

2
≤ 0 (4.7)

for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x
−
i+ 1

2

, t), qh(x
−
i+ 1

2

, t); uh(x
+
i+ 1

2

, t), qh(x
+
i+ 1

2

))

satisfying F̂ (u, u) = F (u) − ub(u)q where, as before, F (u) =
∫ u

uf ′(u)du.

Proof: We introduce a short-hand notation

Bi(uh, qh; vh, ph) =

∫
Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) − b(uh)qh)(vh)xdx

+(f̂ − b̂q̂)i+ 1
2
(vh)

−
i+ 1

2

− (f̂ − b̂q̂)i− 1
2
(vh)

+
i− 1

2

(4.8)

+

∫
Ii

qhphdx +

∫
Ii

B(uh)(ph)xdx − B̂i+ 1
2
(ph)

−
i+ 1

2

+ B̂i− 1
2
(ph)

+
i− 1

2

.

If we take vh = uh, ph = qh in the scheme (4.5), we obtain

Bi(uh, qh; uh, qh) =

∫
Ii

(uh)t(uh)dx −
∫

Ii

(f(uh) − b(uh)qh)(uh)xdx

+(f̂ − b̂q̂)i+ 1
2
(uh)

−
i+ 1

2

− (f̂ − b̂q̂)i− 1
2
(uh)

+
i− 1

2

(4.9)

+

∫
Ii

(qh)
2dx +

∫
Ii

B(uh)(qh)xdx − B̂i+ 1
2
(qh)

−
i+ 1

2

+ B̂i− 1
2
(qh)

+
i− 1

2

= 0.
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If we denote F̃ (u) =
∫ u

f(u)du, then (4.9) becomes

Bi(uh, qh; uh, qh) =
1

2

d

dt

∫
Ii

(uh)
2 dx +

∫
Ii

(qh)
2dx + F̂i+ 1

2
− F̂i− 1

2
+ Θi− 1

2
= 0 (4.10)

where
F̂ = −F̃ (u−

h ) + f̂u−
h − b̂q+

h u−
h (4.11)

and
Θ = −F̃ (u−

h ) + f̂u−
h + F̃ (u+

h ) − f̂u+
h , (4.12)

where we have used the definition of the numerical fluxes (4.6). Notice that we have
omitted the subindex i − 1

2
in the definitions of F̂ and Θ. It is easy to verify that the

numerical entropy flux F̂ defined by (4.11) is consistent with the entropy flux F (u) −
ub(u)q. As Θ in (4.12) is the same as that in (3.16) for the conservation law case, we
readily have Θ ≥ 0. This finishes the proof of (4.7).

We again note that the proof does not depend on the accuracy of the scheme, namely
it holds for the piecewise polynomial space (3.8) with any degree k. Also, the same proof
can be given for multi-dimensional LDG schemes on any triangulation.

As before, the cell entropy inequality trivially implies an L2 stability of the numerical
solution.

Proposition 4.2. For periodic or compactly supported boundary conditions, the solution
uh, qh to the semi-discrete LDG scheme (4.5) satisfies the following L2 stability

d

dt

∫ 1

0

(uh)
2dx + 2

∫ 1

0

(qh)
2dx ≤ 0 (4.13)

or

‖uh(·, t)‖ + 2

∫ t

0

‖qh(·, τ)‖dτ ≤ ‖uh(·, 0)‖. (4.14)

Notice that both the cell entropy inequality (4.7) and the L2 stability (4.13) are valid
regardless of whether the convection diffusion equation (4.2) is convection dominate or
diffusion dominate and regardless of whether the exact solution of the PDE is smooth or
not. The diffusion coefficient a(u) can be degenerate (equal to zero) in any part of the
domain. The LDG method is particularly attractive for convection dominated convection
diffusion equations, when traditional continuous finite element methods may be less stable.
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4.3 Error estimates

Again, if we assume the exact solution of (4.2) is smooth, we can obtain optimal L2 error
estimates. Such error estimates can be obtained for the general nonlinear convection
diffusion equation (4.2), see [53]. However, for simplicity we will give here the proof only
for the heat equation:

ut = uxx (4.15)

defined on [0, 1] with periodic boundary conditions.

Proposition 4.3. The solution uh and qh to the semi-discrete DG scheme (4.5) for the
PDE (4.15) with a smooth solution u satisfies the following error estimate∫ 1

0

(u(x, t) − uh(x, t))2 dx +

∫ t

0

∫ 1

0

(ux(x, τ) − qh(x, τ))2 dxdτ ≤ Ch2(k+1) (4.16)

where C depends on u and its derivatives but is independent of h.

Proof: The DG scheme (4.5), when using the notation in (4.8), can be written as

Bi(uh, qh; vh, ph) = 0 (4.17)

for all vh, ph ∈ Vh and for all i. It is easy to verify that the exact solution u and q = ux

of the PDE (4.15) also satisfies

Bi(u, q; vh, ph) = 0 (4.18)

for all vh, ph ∈ Vh and for all i. Subtracting (4.17) from (4.18) and using the linearity of
Bi with respect to its first two arguments, we obtain the error equation

Bi(u − uh, q − qh; vh, ph) = 0 (4.19)

for all vh, ph ∈ Vh and for all i.
Recall the special projection P defined in (3.37). We also define another special

projection Q as follows. For a given smooth function w, the projection Qw is the unique
function in Vh which satisfies, for each i,∫

Ii

(Qw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k−1(Ii); Qw(x+
i− 1

2

) = w(xi− 1
2
). (4.20)

Similar to P , we also have, by the standard approximation theory [7], that

‖Qw(x) − w(x)‖ ≤ Chk+1 (4.21)
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for a smooth function w, where C is a constant depending on w and its derivatives but
independent of h.

We now take:
vh = Pu − uh, ph = Qq − qh (4.22)

in the error equation (4.19), and denote

eh = Pu − uh, ēh = Qq − qh; εh = u − Pu, ε̄h = q − Qq (4.23)

to obtain
Bi(eh, ēh; eh, ēh) = −Bi(εh, ε̄h; eh, ēh). (4.24)

For the left hand side of (4.24), we use the cell entropy inequality (see (4.10)) to obtain

Bi(eh, ēh; eh, ēh) =
1

2

d

dt

∫
Ii

(eh)
2dx +

∫
Ii

(ēh)
2dx + F̂i+ 1

2
− F̂i− 1

2
+ Θi− 1

2
(4.25)

where Θi− 1
2
≥ 0 (in fact we can easily verify, from (4.12), that Θi− 1

2
= 0 for the special

case of the heat equation (4.15)). As to the right hand side of (4.24), we first write out
all the terms

−Bi(εh, ε̄h; eh, ēh) = −
∫

Ii

(εh)tehdx −
∫

Ii

ε̄h(eh)xdx + (ε̄h)
+
i+ 1

2

(eh)
−
i+ 1

2

− (ε̄h)
+
i− 1

2

(eh)
+
i− 1

2

−
∫

Ii

ε̄hēhdx −
∫

Ii

εh(ēh)xdx + (εh)
−
i+ 1

2

(ēh)
−
i+ 1

2

− (εh)
−
i− 1

2

(ēh)
+
i− 1

2

.

Noticing the properties (3.37) and (4.20) of the projections P and Q, we have∫
Ii

ε̄h(eh)xdx = 0,

∫
Ii

εh(ēh)xdx = 0,

because (eh)x and (ēh)x are polynomials of degree at most k − 1, and

(εh)
−
i+ 1

2

= ui+ 1
2
− (Pu)−

i+ 1
2

= 0, (ε̄h)
+
i+ 1

2

= qi+ 1
2
− (Qq)+

i+ 1
2

= 0

for all i. Therefore, the right hand side of (4.24) becomes

−Bi(εh, ε̄h; eh, ēh) = −
∫

Ii

(εh)tehdx −
∫

Ii

ε̄hēhdx (4.26)

≤ 1

2

(∫
Ii

((εh)t)
2dx +

∫
Ii

(eh)
2dx +

∫
Ii

(ε̄h)
2dx +

∫
Ii

(ēh)
2dx

)
.
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Plugging (4.25) and (4.26) into the equality (4.24), summing up over i, and using the
approximation results (3.38) and (4.21), we obtain

d

dt

∫ 1

0

(eh)
2dx +

∫ 1

0

(ēh)
2dx ≤

∫ 1

0

(eh)
2dx + Ch2k+2

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0)− uh(·, 0)‖ ≤ Chk+1

(usually the initial condition uh(·, 0) is taken as the L2 projection of the analytical initial
condition u(·, 0)), and the approximation results (3.38) and (4.21) finally give us the error
estimate (4.16).

4.4 Multi-dimensions

Even though we have only discussed one dimensional cases in this section, the algorithm
and its analysis can be easily generalized to the multi-dimensional equation (4.1). The
stability analysis is the same as for the one dimensional case in Section 4.2. The optimal
O(hk+1) error estimates can be obtained on tensor product meshes and polynomial spaces,
along the same line as that in Section 4.3. For general triangulations and piecewise
polynomials of degree k, a sub-optimal error estimate of O(hk) can be obtained. We will
not provide the details here and refer to [16, 53].

5 Discontinuous Galerkin method for PDEs contain-

ing higher order spatial derivatives

We now consider the DG method for solving PDEs containing higher order spatial deriva-
tives. Even though there are other possible DG schemes for such PDEs, e.g. those
designed in [6], we will only discuss the local discontinuous Galerkin (LDG) method in
this section.

5.1 LDG scheme for the KdV equations

We first consider PDEs containing third spatial derivatives. These are usually nonlinear
dispersive wave equations, for example the following general KdV type equations

ut +

d∑
i=1

fi(u)xi
+

d∑
i=1

(
r′i(u)

d∑
j=1

gij(ri(u)xi
)xj

)
xi

= 0, (5.1)
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where fi(u), ri(u) and gij(q) are arbitrary (smooth) nonlinear functions. The one-dimensional
KdV equation

ut + (αu + βu2)x + σuxxx = 0, (5.2)

where α, β and σ are constants, is a special case of the general class (5.1).
Stable LDG schemes for solving (5.1) are first designed in [55]. We will concentrate

our discussion for the one-dimensional case. For the one-dimensional generalized KdV
type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0 (5.3)

where f(u), r(u) and g(q) are arbitrary (smooth) nonlinear functions, the LDG method
is based on rewriting it as the following system

ut + (f(u) + r′(u)p)x = 0, p − g(q)x = 0, q − r(u)x = 0. (5.4)

The finite element space is still given by (3.8). The semi-discrete LDG scheme is defined
as follows. Find uh, ph, qh ∈ V k

h such that, for all test functions vh, wh, zh ∈ V k
h and all

1 ≤ i ≤ N , we have ∫
Ii
(uh)t(vh)dx − ∫

Ii
(f(uh) + r′(uh)ph)(vh)xdx

+(f̂ + r̂′p̂)i+ 1
2
(vh)

−
i+ 1

2

− (f̂ + r̂′p̂)i− 1
2
(vh)

+
i− 1

2

= 0, (5.5)∫
Ii

phwhdx +
∫

Ii
g(qh)(wh)xdx − ĝi+ 1

2
(wh)

−
i+ 1

2

+ ĝi− 1
2
(wh)

+
i− 1

2

= 0,∫
Ii

qhzhdx +
∫

Ii
r(uh)(zh)xdx − r̂i+ 1

2
(zh)

−
i+ 1

2

+ r̂i− 1
2
(zh)

+
i− 1

2

= 0.

Here again, all the “hat” terms are the numerical fluxes, namely single valued functions
defined at the cell interfaces which typically depend on the discontinuous numerical solu-
tion from both sides of the interface. We already know from Section 3 that the convection
flux f̂ should be chosen as a monotone flux. It is important to design the other fluxes
suitably in order to guarantee stability of the resulting LDG scheme. In fact, the upwind-
ing principle is still a valid guiding principle here, since the KdV type equation (5.3) is a
dispersive wave equation for which waves are propagating with a direction. For example,
the simple linear equation

ut + uxxx = 0

which corresponds to (5.3) with f(u) = 0, r(u) = u and g(q) = q admits the following
simple wave solution

u(x, t) = sin(x + t),

that is, information propagates from right to left. This motivates the following choice of
numerical fluxes, discovered in [55]:

r̂′ =
r(u+

h ) − r(u−
h )

u+
h − u−

h

, p̂ = p+
h , ĝ = ĝ(q−h , q+

h ), r̂ = r(u−
h ). (5.6)
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Here, −ĝ(q−h , q+
h ) is a monotone flux for −g(q), namely ĝ is a non-increasing function in

the first argument and a non-decreasing function in the second argument. The important
point is again the “alternating fluxes”, namely p̂ and r̂ should come from opposite sides.
Thus

r̂′ =
r(u+

h ) − r(u−
h )

u+
h − u−

h

, p̂ = p−h , ĝ = ĝ(q−h , q+
h ), r̂ = r(u+

h )

would also work.
Notice that, from the third equation in the scheme (5.5), we can solve qh explicitly

and locally (in cell Ii) in terms of uh, by inverting the small mass matrix inside the cell Ii.
Then, from the second equation in the scheme (5.5), we can solve ph explicitly and locally
(in cell Ii) in terms of qh. Thus only uh is the global unknown and the auxiliary variables
qh and ph can be solved in terms of uh locally. This is the reason that the method is
referred to as the “local” discontinuous Galerkin method.

5.1.1 Stability analysis

Similar to the case for hyperbolic conservation laws and convection diffusion equations,
we have the following “cell entropy inequality” for the LDG method (5.5).

Proposition 5.1. The solution uh to the semi-discrete LDG scheme (5.5) satisfies the
following “cell entropy inequality”

1

2

d

dt

∫
Ii

(uh)
2 dx + F̂i+ 1

2
− F̂i− 1

2
≤ 0 (5.7)

for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x
−
i+ 1

2

, t), ph(x
−
i+ 1

2

, t), qh(x
−
i+ 1

2

, t); uh(x
+
i+ 1

2

, t), ph(x
+
i+ 1

2

, t), qh(x
+
i+ 1

2

))

satisfying F̂ (u, u) = F (u) + ur′(u)p − G(q) where F (u) =
∫ u

uf ′(u)du and G(q) =∫ q
qg(q)dq.

Proof: We introduce a short-hand notation

Bi(uh, ph, qh; vh, wh, zh) =

∫
Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) + r′(uh)ph)(vh)xdx

+(f̂ + r̂′p̂)i+ 1
2
(vh)

−
i+ 1

2

− (f̂ + r̂′p̂)i− 1
2
(vh)

+
i− 1

2

(5.8)

+

∫
Ii

phwhdx +

∫
Ii

g(qh)(wh)xdx − ĝi+ 1
2
(wh)

−
i+ 1

2

+ ĝi− 1
2
(wh)

+
i− 1

2

+

∫
Ii

qhzhdx +

∫
Ii

r(uh)(zh)xdx − r̂i+ 1
2
(zh)

−
i+ 1

2

+ r̂i− 1
2
(zh)

+
i− 1

2

.
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If we take vh = uh, wh = qh and zh = −ph in the scheme (5.5), we obtain

Bi(uh, ph, qh; uh, qh,−ph) =

∫
Ii

(uh)t(uh)dx −
∫

Ii

(f(uh) + r′(uh)ph)(uh)xdx

+(f̂ + r̂′p̂)i+ 1
2
(uh)

−
i+ 1

2

− (f̂ + r̂′p̂)i− 1
2
(uh)

+
i− 1

2

(5.9)

+

∫
Ii

phqhdx +

∫
Ii

g(qh)(qh)xdx − ĝi+ 1
2
(qh)

−
i+ 1

2

+ ĝi− 1
2
(qh)

+
i− 1

2

−
∫

Ii

qhphdx −
∫

Ii

r(uh)(ph)xdx + r̂i+ 1
2
(ph)

−
i+ 1

2

− r̂i− 1
2
(ph)

+
i− 1

2

= 0.

If we denote F̃ (u) =
∫ u

f(u)du and G̃(q) =
∫ q

g(q)dq, then (5.9) becomes

Bi(uh, ph, qh; uh, qh,−ph) =
1

2

d

dt

∫
Ii

(uh)
2 dx + F̂i+ 1

2
− F̂i− 1

2
+ Θi− 1

2
= 0 (5.10)

where
F̂ = −F̃ (u−

h ) + f̂u−
h + G̃(q−h ) + r̂′p+

h u−
h − ĝq−h , (5.11)

and

Θ =
(
−F̃ (u−

h ) + f̂u−
h + F̃ (u+

h ) − f̂u+
h

)
+
(
G̃(q−h ) − ĝq−h − G̃(q+

h ) + ĝq+
h

)
, (5.12)

where we have used the definition of the numerical fluxes (5.6). Notice that we have
omitted the subindex i − 1

2
in the definitions of F̂ and Θ. It is easy to verify that the

numerical entropy flux F̂ defined by (5.11) is consistent with the entropy flux F (u) +
ur′(u)p − G(q). The terms inside the first parenthesis for Θ in (5.12) is the same as that
in (3.16) for the conservation law case; those inside the second parenthesis is the same as
those inside the first parenthesis, if we replace qh by uh, −G̃ by F̃ , and −ĝ by f̂ (recall
that −ĝ is a monotone flux). We therefore readily have Θ ≥ 0. This finishes the proof of
(5.7).

We observe once more that the proof does not depend on the accuracy of the scheme,
namely it holds for the piecewise polynomial space (3.8) with any degree k. Also, the
same proof can be given for the multi-dimensional LDG scheme solving (5.1) on any
triangulation.

As before, the cell entropy inequality trivially implies an L2 stability of the numerical
solution.

Proposition 5.2. For periodic or compactly supported boundary conditions, the solution
uh to the semi-discrete LDG scheme (5.5) satisfies the following L2 stability

d

dt

∫ 1

0

(uh)
2dx ≤ 0 (5.13)
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or
‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (5.14)

Again, both the cell entropy inequality (5.7) and the L2 stability (5.13) are valid
regardless of whether the KdV type equation (5.3) is convection dominate or dispersion
dominate and regardless of whether the exact solution of the PDE is smooth or not.
The dispersion flux r′(u)g(r(u)x)x can be degenerate (equal to zero) in any part of the
domain. The LDG method is particularly attractive for convection dominated convection
dispersion equations, when traditional continuous finite element methods may be less
stable. In [55], this LDG method is used to study the dispersion limit of the Burgers
equation, for which the third derivative dispersion term in (5.3) has a small coefficient
which tends to zero.

5.1.2 Error estimates

For error estimates we once again assume the exact solution of (5.3) is smooth. The error
estimates can be obtained for a general class of nonlinear convection dispersion equations
which is a subclass of (5.3), see [53]. However, for simplicity we will give here only the
proof for the linear equation

ut + ux + uxxx = 0 (5.15)

defined on [0, 1] with periodic boundary conditions.

Proposition 5.3. The solution uh to the semi-discrete LDG scheme (5.5) for the PDE
(5.15) with a smooth solution u satisfies the following error estimate

‖u − uh‖ ≤ Chk+ 1
2 (5.16)

where C depends on u and its derivatives but is independent of h.

Proof: The LDG scheme (5.5), when using the notation in (5.8), can be written as

Bi(uh, ph, qh; vh, wh, zh) = 0 (5.17)

for all vh, wh, zh ∈ Vh and for all i. It is easy to verify that the exact solution u, q = ux

and p = uxx of the PDE (5.15) also satisfies

Bi(u, p, q; vh, wh, zh) = 0 (5.18)

for all vh, wh, zh ∈ Vh and for all i. Subtracting (5.17) from (5.18) and using the linearity
of Bi with respect to its first three arguments, we obtain the error equation

Bi(u − uh, p − ph, q − qh; vh, wh, zh) = 0 (5.19)
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for all vh, wh, zh ∈ Vh and for all i.
Recall the special projection P defined in (3.37). We also denote the standard L2

projection as R: for a given smooth function w, the projection Rw is the unique function
in Vh which satisfies, for each i,∫

Ii

(Rw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k(Ii). (5.20)

Similar to P , we also have, by the standard approximation theory [7], that

‖Rw(x) − w(x)‖ +
√

h‖Rw(x) − w(x)‖Γ ≤ Chk+1 (5.21)

for a smooth function w, where C is a constant depending on w and its derivatives but
independent of h, and ‖v‖Γ is the usual L2 norm on the cell interfaces of the mesh, which
for this one dimensional case is

‖v‖2
Γ =

∑
i

(
(v+

i+ 1
2

)2 + (v+
i− 1

2

)2
)

.

We now take:
vh = Pu − uh, wh = Rq − qh, zh = ph − Rp (5.22)

in the error equation (5.19), and denote

eh = Pu− uh, ēh = Rq − qh, ¯̄eh = Rp − ph; εh = u − Pu, ε̄h = q −Rq, ¯̄εh = p −Rp,
(5.23)

to obtain
Bi(eh, ¯̄eh, ēh, ; eh, ēh,−¯̄eh) = −Bi(εh, ¯̄εh, ε̄h; eh, ēh,−¯̄eh). (5.24)

For the left hand side of (5.24), we use the cell entropy inequality (see (5.10)) to obtain

Bi(eh, ¯̄eh, ēh, ; eh, ēh,−¯̄eh) =
1

2

d

dt

∫
Ii

(eh)
2dx + F̂i+ 1

2
− F̂i− 1

2
+ Θi− 1

2
(5.25)

where we can easily verify, based on the formula (5.12) and for the PDE (5.15), that

Θi− 1
2

=
1

2

(
(eh)

+
i− 1

2

− (eh)
−
i− 1

2

)2

+
1

2

(
(ēh)

+
i− 1

2

− (ēh)
−
i− 1

2

)2

. (5.26)

As to the right hand side of (5.24), we first write out all the terms

−Bi(εh, ¯̄εh, ε̄h; eh, ēh,−¯̄eh)

= −
∫

Ii

(εh)tehdx +

∫
Ii

(εh + ¯̄εh)(eh)xdx − (ε−h + ¯̄ε+
h )i+ 1

2
(eh)

−
i+ 1

2

+ (ε−h + ¯̄ε+
h )i− 1

2
(eh)

+
i− 1

2

−
∫

Ii

¯̄εhēhdx −
∫

Ii

ε̄h(ēh)xdx + (ε̄h)
+
i+ 1

2

(ēh)
−
i+ 1

2

− (ε̄h)
+
i− 1

2

(ēh)
+
i− 1

2

+

∫
Ii

ε̄h ¯̄ehdx +

∫
Ii

εh(¯̄eh)xdx − (εh)
−
i+ 1

2

(¯̄eh)
−
i+ 1

2

+ (εh)
−
i− 1

2

(¯̄eh)
+
i− 1

2

.
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Noticing the properties (3.37) and (5.20) of the projections P and R, we have∫
Ii

(εh + ¯̄εh)(eh)xdx = 0,

∫
Ii

¯̄εhēhdx = 0,

∫
Ii

ε̄h(ēh)xdx = 0,∫
Ii

ε̄h ¯̄ehdx = 0,

∫
Ii

εh(¯̄eh)xdx = 0

because (eh)x, (ēh)x and (¯̄eh)x are polynomials of degree at most k− 1, and ēh and ¯̄eh are
polynomials of degree at most k. Also,

(εh)
−
i+ 1

2

= ui+ 1
2
− (Pu)−

i+ 1
2

= 0

for all i. Therefore, the right hand side of (5.24) becomes

−Bi(εh, ¯̄εh, ε̄h; eh, ēh,−¯̄eh)

= −
∫

Ii

(εh)tehdx − (¯̄εh)
+
i+ 1

2

(eh)
−
i+ 1

2

+ (¯̄εh)
+
i− 1

2

(eh)
+
i− 1

2

+ (ε̄h)
+
i+ 1

2

(ēh)
−
i+ 1

2

− (ε̄h)
+
i− 1

2

(ēh)
+
i− 1

2

= −
∫

Ii

(εh)tehdx + Ĥi+ 1
2
− Ĥi− 1

2

+(¯̄εh)
+
i− 1

2

(
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+
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−
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)
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(
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≤ Ĥi+ 1
2
− Ĥi− 1

2
+

1

2

[∫
Ii

((εh)t)
2dx +

∫
Ii

(eh)
2dx

+
(
(¯̄εh)

+
i− 1

2

)2

+
(
(eh)

+
i− 1

2

− (eh)
−
i− 1

2

)2

+
(
(ε̄h)

+
i− 1

2

)2

+
(
(ēh)

+
i− 1

2

− (ēh)
−
i− 1

2

)2
]

.

Plugging (5.25), (5.26) and (5.27) into the equality (5.24), summing up over i, and using
the approximation results (3.38) and (5.21), we obtain

d

dt

∫ 1

0

(eh)
2dx ≤

∫ 1

0

(eh)
2dx + Ch2k+1

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0) − uh(·, 0)‖ ≤ Chk+1.

(usually the initial condition uh(·, 0) is taken as the L2 projection of the analytical initial
condition u(·, 0)), and the approximation results (3.38) and (5.21) finally give us the error
estimate (5.16).

We note that the error estimate (5.16) is half an order lower than optimal. Technically,
this is because we are unable to use the special projections as before to eliminate the
interface terms involving ε̄h and ¯̄εh in (5.27). Numerical experiments in [55] indicate that
both the L2 and L∞ errors are of the optimal (k + 1)-th order of accuracy.

33



5.2 LDG schemes for other higher order PDEs

In this subsection we list some of the higher order PDEs for which stable DG methods have
been designed in the literature. We will concentrate on the discussion of LDG schemes.

5.2.1 Bi-harmonic equations

An LDG scheme for solving the time dependent convection bi-harmonic equation

ut +
d∑

i=1

fi(u)xi
+

d∑
i=1

(ai(uxi
)uxixi

)xixi
= 0, (5.28)

where fi(u) and ai(q) ≥ 0 are arbitrary functions, was designed in [56]. The numerical
fluxes are chosen following the same “alternating fluxes” principle similar to the second
order convection diffusion equation (4.1), see (4.6). A cell entropy inequality and the L2

stability of the LDG scheme for the nonlinear equation (5.28) can be proved [56], which
do not depend on the smoothness of the solution of (5.28), the order of accuracy of the
scheme, or the triangulation.

5.2.2 Fifth order convection dispersion equations

An LDG scheme for solving the following fifth order convection dispersion equation

ut +
d∑

i=1

fi(u)xi
+

d∑
i=1

gi(uxixi
)xixixi

= 0, (5.29)

where fi(u) and gi(q) are arbitrary functions, was designed in [56]. The numerical fluxes
are chosen following the same upwinding and “alternating fluxes” principle similar to the
third order KdV type equations (5.1), see (5.6). A cell entropy inequality and the L2

stability of the LDG scheme for the nonlinear equation (5.29) can be proved [56], which
again do not depend on the smoothness of the solution of (5.29), the order of accuracy of
the scheme, or the triangulation.

Stable LDG schemes for similar equations with sixth or higher derivatives can also be
designed along similar lines.

5.2.3 The K(m, n) equations

LDG methods for solving the K(m, n) equations

ut + (um)x + (un)xxx = 0, (5.30)
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where m and n are positive integers, have been designed in [27]. These K(m, n) equations
were introduced by Rosenau and Hyman in [40] to study the so-called compactons, namely
the compactly supported solitary waves solutions. For the special case of m = n being
an odd positive integer, we are able to design LDG schemes which are stable in the Lm+1

norm. For other cases, we can also design LDG schemes based on a linearized stability
analysis, which perform well in numerical simulation for the fully nonlinear equation
(5.30).

5.2.4 The KdV-Burgers type (KdVB) equations

LDG methods for solving the KdV-Burgers type (KdVB) equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0, (5.31)

where f(u), a(u) ≥ 0, r(u) and g(q) are arbitrary functions, have been designed in [49].
The design of numerical fluxes follows the same lines as that for the convection diffusion
equation (4.2) and for the KdV type equation (5.3). A cell entropy inequality and the
L2 stability of the LDG scheme for the nonlinear equation (5.31) can be proved [49],
which again do not depend on the smoothness of the solution of (5.31) and the order
of accuracy of the scheme. The LDG scheme is used in [49] to study different regimes
when one of the dissipation and the dispersion mechanisms dominates, and when they
have comparable influence on the solution. An advantage of the LDG scheme designed in
[49] is that it is stable regardless of which mechanism (convection, diffusion, dispersion)
actually dominates.

5.2.5 The fifth-order KdV type equations

LDG methods for solving the fifth-order KdV type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x + (s′(u)h(s(u)xx)xx)x = 0, (5.32)

where f(u), r(u), g(q), s(u) and h(p) are arbitrary functions, have been designed in [49].
The design of numerical fluxes follows the same lines as that for the KdV type equation
(5.3). A cell entropy inequality and the L2 stability of the LDG scheme for the nonlinear
equation (5.32) can be proved [49], which again do not depend on the smoothness of the
solution of (5.32) and the order of accuracy of the scheme. The LDG scheme is used
in [49] to simulate the solutions of the Kawahara equation, the generalized Kawahara
equation, Ito’s fifth-order mKdV equation, and a fifth-order KdV type equations with
high nonlinearities, which are all special cases of the equations represented by (5.32).
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5.2.6 The fully nonlinear K(n, n, n) equations

LDG methods for solving the fifth-order fully nonlinear K(n, n, n) equations

ut + (un)x + (un)xxx + (un)xxxxx = 0, (5.33)

where n is a positive integer, have been designed in [49]. The design of numerical fluxes
follows the same lines as that for the K(m, n) equations (5.30). For odd n, stability in the
Ln+1 norm of the resulting LDG scheme can be proved for the nonlinear equation (5.33)
[49]. This scheme is used to simulate compacton propagation in [49].

5.2.7 The nonlinear Schrödinger (NLS) equation

In [50], LDG methods are designed for the generalized nonlinear Schrödinger (NLS) equa-
tion

i ut + uxx + i (g(|u|2)u)x + f(|u|2)u = 0, (5.34)

the two-dimensional version

i ut + Δu + f(|u|2)u = 0, (5.35)

and the coupled nonlinear Schrödinger equation{
i ut + i αux + uxx + β u + κv + f(|u|2, |v|2)u = 0
i vt − i αvx + vxx − β u + κv + g(|u|2, |v|2)v = 0,

(5.36)

where f(q) and g(q) are arbitrary functions and α, β and κ are constants. With suitable
choices of the numerical fluxes, the resulting LDG schemes are proved to satisfy a cell
entropy inequality and L2 stability [50]. The LDG scheme is used in [50] to simulate the
soliton propagation and interaction, and the appearance of singularities. The easiness of
h-p adaptivity of the LDG scheme and rigorous stability for the fully nonlinear case make
it an ideal choice for the simulation of Schrödinger equations, for which the solutions often
have quite localized structures such as a point singularity.

5.2.8 The Kadomtsev-Petviashvili (KP) equations

The two dimensional Kadomtsev-Petviashvili (KP) equations

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (5.37)

where σ2 = ±1, are generalizations of the one-dimensional KdV equations and are impor-
tant models for water waves. Because of the x-derivative for the ut term, the equation
(5.37) is well-posed only in a function space with a global constraint, hence it is very

36



difficult to design an efficient LDG scheme which relies on local operations. We have
designed an LDG scheme for (5.37) in [51] by carefully choosing locally supported bases
which satisfy the global constraint needed by the solution of (5.37). The LDG scheme
satisfies a cell entropy inequality and is L2 stable for the fully nonlinear equation (5.37).
Numerical simulations are performed in [51] for both the KP-I equations (σ2 = −1 in
(5.37)) and the KP-II equations (σ2 = 1 in (5.37)). Line solitons and lump-type pulse
solutions have been simulated.

5.2.9 The Zakharov-Kuznetsov (ZK) equation

The two dimensional Zakharov-Kuznetsov (ZK) equation

ut + (3u2)x + uxxx + uxyy = 0 (5.38)

is another generalization of the one-dimensional KdV equations. An LDG scheme is
designed for (5.38) in [51] which is proved to satisfy a cell entropy inequality and to be L2

stable. An L2 error estimate is given in [53]. Various nonlinear waves have been simulated
by this scheme in [51].

5.2.10 The Kuramoto-Sivashinsky type equations

In [52] we have developed an LDG method to solve the Kuramoto-Sivashinsky type equa-
tions

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x + (s(ux)uxx)xx = 0, (5.39)

where f(u), a(u), r(u), g(q) and s(p) ≥ 0 are arbitrary functions. The Kuramoto-
Sivashinsky equation

ut + uux + αuxx + βuxxxx = 0, (5.40)

where α and β ≥ 0 are constants, which is a special case of (5.39), is a canonical evolution
equation which has attracted considerable attention over the last decades. When the
coefficients α and β are both positive, its linear terms describe a balance between long-
wave instability and short-wave stability, with the nonlinear term providing a mechanism
for energy transfer between wave modes. The LDG method developed in [52] can be
proved to satisfy a cell entropy inequality and is therefore L2 stable, for the general
nonlinear equation (5.39). The LDG scheme is used in [52] to simulate chaotic solutions
of (5.40).
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5.2.11 The Ito-type coupled KdV equations

Also in [52] we have developed an LDG method to solve the Ito-type coupled KdV equa-
tions

ut + αuux + βvvx + γuxxx = 0,

vt + β(uv)x = 0, (5.41)

where α, β and γ are constants. An L2 stability is proved for the LDG method. Simulation
for the solution of (5.41) in which the result for u behaves like dispersive wave solution
and the result for v behaves like shock wave solution is performed in [52] using the LDG
scheme.

5.2.12 The Camassa-Holm (CH) equation

An LDG method for solving the Camassa-Holm (CH) equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx, (5.42)

where κ is a constant, is designed in [54]. Because of the uxxt term, the design of an LDG
method is non-standard. By a careful choice of the numerical fluxes, we obtain an LDG
scheme which can be proved to satisfy a cell entropy inequality and to be L2 stable [54].
We have also obtained a sub-optimal O(hk) error estimate in [54].

5.2.13 The Cahn-Hilliard equation

We have designed LDG methods for solving the Cahn-Hilliard equation

ut = ∇ ·
(
b(u)∇(−γΔu + Ψ′(u)

))
, (5.43)

and the Cahn-Hilliard system {
ut = ∇ · (B(u)∇ω),

ω = −γΔu + DΨ(u),
(5.44)

in [47], where {DΨ(u)}l = ∂Ψ(u)
∂ul

and γ is a positive constant. Here b(u) is the non-negative

diffusion mobility and Ψ(u) is the homogeneous free energy density for the scalar case
(5.43). For the system case (5.44), B(u) is the symmetric positive semi-definite mobility
matrix and Ψ(u) is the homogeneous free energy density. The proof of the energy stability
for the LDG scheme is given for the general nonlinear solutions. Many simulation results
are given in [47].
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In [48], a class of LDG methods are designed for the more general Allen-Cahn/Cahn-
Hilliard (AC/CH) system in Ω ∈ R

d (d ≤ 3){
ut = ∇ · [b(u, v)∇(Ψu(u, v) − γΔu)],

ρvt = −b(u, v)[Ψv(u, v) − γΔv].
(5.45)

Energy stability of the LDG schemes is again proved. Simulation results are provided.
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