Monte Carlo Simulation

Figure 3.6. Buffon's needle experiment: (a) depicts the experiment where a needle of length L is randomly dropped between two lines a distance D apart. In (b), y denotes the distance between the needle's midpoint and the closest line; θ is the angle of the needle to the horizontal.

The needle crosses a line if $y \le L/2\sin(\theta)$ Q: What's the probability p that the needle will intersect on of these lines?

- Let y be the distance between the needle's midpoint and the closest line, and θ be the angle of the needle to the horizontal.
- Assume that y takes uniformly distributed values between 0 and D/2; and θ takes uniformly distributed values between 0 and π .

- Let L = D = 1.
- The probability is the ratio of the area of the shaded region to the area of rectangle.

•
$$p = \frac{\int_0^{\pi_1} \sin\theta \, d\theta}{\pi/2} = 2/\pi$$

Hit and miss method:

The volume of the external region is V_e and the fraction of hits is f_h . Then the volume of the region to be integrated is $V = V_e f_h$.

Algorithm of Monte Carlo

- Define a domain of possible inputs.
- Generate inputs randomly from a probability distribution over the domain.
- Perform a deterministic computation on the inputs.
- aggregate the results from all deterministic computation.

Monte Carlo Integration (sampling)

$$A = \lim_{N \to \infty} \sum_{i=1}^{N} f(x_i) \Delta x$$

Where $\Delta x = \frac{b-a}{N}$, $x_i = a + (i - 0.5)\Delta x$.

$$A \approx \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$

Which can be interpreted as taking the average over f in the interval, i.e., $A \approx (b-a) < f >$, where $< f > = \frac{\sum_{i=1}^{N} f(x_i)}{N}$.