Monte Carlo Simulation

(a)

(b)

Figure 3.6. Buffon's needle experiment: (a) depicts the experiment where a needle of length L is randomly dropped between two lines a distance D apart. In (b), y denotes the distance between the needle's midpoint and the closest line: θ is the angle of the needle to the horizontal.

The needle crosses a line if $y \leq L / 2 \sin (\theta)$
Q : What's the probability p that the needle will intersect on of these lines?

- Let y be the distance between the needle's midpoint and the closest line, and θ be the angle of the needle to the horizontal.
- Assume that y takes uniformly distributed values between 0 and $\mathrm{D} / 2$; and θ takes uniformly distributed values between 0 and π.

- Let $L=D=1$.
- The probability is the ratio of the area of the shaded region to the area of rectangle.
- $p=\frac{\int_{0}^{\pi \frac{1}{2}} \sin \theta d \theta}{\pi / 2}=2 / \pi$

Hit and miss method:
The volume of the external region is V_{e} and the fraction of hits is f_{h}. Then the volume of the region to be integrated is
$V=V_{e} f_{h}$.

Algorithm of Monte Carlo

- Define a domain of possible inputs.
- Generate inputs randomly from a probability distribution over the domain.
- Perform a deterministic computation on the inputs.
- aggregate the results from all deterministic computation.

Monte Carlo Integration (sampling)

$$
A=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x
$$

Where $\Delta x=\frac{b-a}{N}, x_{i}=a+(i-0.5) \Delta x$.

$$
A \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Which can be interpreted as taking the average over f in the interval, i.e., $A \approx(b-a)<f>$, where $<f>=\frac{\sum_{i=1}^{N} f\left(x_{i}\right)}{N}$.

