Lecture 8: Fast Linear Solvers (Part 6)

Nonsymmetric System of Linear Equations

- The CG method requires to A to be an n × n symmetric positive definite matrix to solve Ax = b.
- If *A* is nonsymmetric:
 - Convert the system to a symmetric positive definite one
 - Modify CG to handle general matrices

Normal Equation Approach

The normal equations corresponding to $A\mathbf{x} = \mathbf{b}$ are $A^T A \mathbf{x} = A^T \mathbf{b}$

- If A is nonsingular then $A^T A$ is symmetric positive definite and the CG method can be applied to solve $A^T A \mathbf{x} = A^T \mathbf{b}$ (CG normal residual -- CGNR).
- Alternatively, we can first solve $AA^T y = b$ for y, then $x = A^T y$.
- Disadvantages:
 - Each iteration requires $A^T A$ or $A A^T$
 - Condition number of $A^T A$ or $A A^T$ is square of that of A. However, CG works well if condition number is small

Arnoldi Iteration

- The Arnoldi method is an orthogonal projection onto a Krylov subspace $K_m(A, \mathbf{r}_0)$ for $n \times n$ nonsymmetric matrix A. Here $m \ll n$.
- Arnoldi reduces A to a Hessenberg form.

Upper Hessenberg matrix: zero entries below the first subdiagonal.

[2	3	4	1]
2	5	1	9
0	2	1	2
0	0	3	2

Lower Hessenberg matrix: zero entries above the first superdiagonal.

$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 2 & 5 & 1 & 0 \\ 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 2 \end{bmatrix}$$

Mechanics of Arnoldi Iteration

- For $A \in \mathbb{R}^{n \times n}$, a given vector $\mathbf{r}_0 \in \mathbb{R}^n$ defines a sequence of Krylov subspaces $K_m(A, \mathbf{r}_0)$. Matrix $K_m = [\mathbf{r}_0 | A \mathbf{r}_0 | A^2 \mathbf{r}_0 | \dots | A^{m-1} \mathbf{r}_0] \in \mathbb{R}^{n \times m}$ is the corresponding Krylov matrix.
- The Gram-Schmidt procedure for forming an orthonormal basis for K_m is called the Arnoldi process.
 - **Theorem.** The Arnoldi procedure generates a reduced QR factorization of Krylov matrix K_m in the form $K_m = V_m R_m$ with $V_m \in R^{n \times m}$ and having orthonormal columns and with a triangular matrix $R_m \in R^{m \times m}$. Furthermore, with the $m \times m upper$ Hessenberg matrix H_m , we have $V_m^T A V_m = H_m$.

Let H_m be a $m \times m$ Hessenberg matrix:

$$H_m = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1m} \\ h_{21} & h_{22} & \dots & h_{2m} \\ 0 & \ddots & \ddots & \vdots \\ 0 & \dots & h_{m,m-1} & h_{mm} \end{bmatrix}$$

Let $(m + 1) \times m \overline{H}_m$ be the extended matrix of H_m :
$$\overline{H}_m = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1m} \\ h_{21} & h_{22} & \dots & h_{2m} \\ 0 & \ddots & \ddots & \vdots \\ 0 & \dots & h_{m,m-1} & h_{mm} \\ 0 & \dots & 0 & h_{m+1,m} \end{bmatrix}$$

The Arnoldi iteration produces matrices V_m, V_{m+1} and \overline{H}_m for matrix A satisfying:
$$AV_m = V_{m+1}\overline{H}_m = V_m H_m + \mathbf{w}_m \mathbf{e}_m^T$$

Here
$$V_m$$
, V_{m+1} have orthonormal columns
 $V_m = [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \dots | \boldsymbol{v}_m], \quad V_{m+1} = [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \dots | \boldsymbol{v}_m | \boldsymbol{v}_{m+1}]$

The *m*th column of the equation:

$$A\boldsymbol{v}_m = h_{1m}\boldsymbol{v}_1 + h_{2m}\boldsymbol{v}_2 + \dots + h_{mm}\boldsymbol{v}_m + h_{m+1,m}\boldsymbol{v}_{m+1}$$

Therefore,

$$h_{1m} = A\boldsymbol{v}_m \cdot \boldsymbol{v}_1$$

$$\vdots$$

$$h_{m+1,m} = ||A\boldsymbol{v}_m - h_{1m}\boldsymbol{v}_1 \dots - h_{mm}\boldsymbol{v}_m||$$

$$\boldsymbol{v}_{m+1} = (A\boldsymbol{v}_m - h_{1m}\boldsymbol{v}_1 \dots - h_{mm}\boldsymbol{v}_m)/h_{m+1,m}$$

Arnoldi Algorithm

 $v_1 = r_0 / \|r_0\|_2$ $w_1 = A v_1 - (A v_1, v_1) v_1, \qquad v_2 = w_1 / \|w_1\|_2$ $w_i = A v_i - (A v_i, v_1) v_1 - \ldots - (A v_i, v_j) v_j, \qquad v_{j+1} = w_j / ||w_j||_2$ $w_m = A v_m - (A v_m, v_1) v_1 - \ldots - (A v_m, v_m) v_m, \qquad v_{m+1} = w_m / \|w_m\|_2$

Choose \boldsymbol{r}_0 and let $\boldsymbol{v}_1 = \boldsymbol{r}_0/||\boldsymbol{r}_0||$ for j = 1, ..., m - 1 $\boldsymbol{w} = A\boldsymbol{v}_i - \sum_{i=1}^j ((A\boldsymbol{v}_i)^T \boldsymbol{v}_i) \boldsymbol{v}_i$ $v_{i+1} = w/||w||_2$

endfor

Remark: Choose v_1 . Then for j = 1, ..., m - 1, first multiply the current Arnoldi vector v_i by A, and orthonormalize Av_i against all previous Arnoldi vectors.

- $V_m^T V_m = I_{m \times m}$.
- If Arnoldi process breaks down at mth step, $w_m = 0$ is still welldefined but not v_{m+1} , and the algorithm stop.
- In this case, the last row of \overline{H}_m is set to zero, $h_{m+1,m} = 0$

Stable Arnoldi Algorithm

Choose
$$x_0$$
 and let $v_1 = x_0/||x_0||$.
for $j = 1, ..., m$
 $w = Av_j$
for $i = 1, ..., j$
 $h_{ij} = \langle w, v_i \rangle$
 $w = w - h_{ij}v_i$
endfor
 $h_{j+1,j} = ||w||_2$
if $h_{j+1,j} = 0$, then stop
 $v_{j+1} = w/h_{j+1,j}$
endfor

Generalized Minimum Residual (GMRES) Method

Let the Krylov space associated with $A\mathbf{x} = \mathbf{b}$ be $K_k(A, \mathbf{r}_0) = span\{\mathbf{r}_0, A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\}$, where $\mathbf{r}_0 = \mathbf{b} - A \mathbf{x}_0$ for some initial guess \mathbf{x}_0 .

The kth ($k \ge 1$) iteration of GMRES is the solution to the least squares problem:

$$\begin{aligned} \min inimize_{x \in x_0 + K_k} || \boldsymbol{b} - A\boldsymbol{x} ||_2, \text{ i.e.} \\ \text{Find } \boldsymbol{x}_k \in \boldsymbol{x}_0 + K_k \text{ such that} \\ || \boldsymbol{b} - A\boldsymbol{x}_k ||_2 &= \min_{x \in x_0 + K_k} || \boldsymbol{b} - A\boldsymbol{x} ||_2 \end{aligned}$$

 Remark: the GMRES was proposed in "Y. Saad and M. Schultz, GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869." If $x \in x_0 + K_k$, then $x = x_0 + \sum_{j=0}^{k-1} \gamma_j A^j r_0$. So $b - Ax = b - Ax_0 - \sum_{j=0}^{k-1} \gamma_j A^{j+1} r_0 = r_0 - \sum_{j=1}^{k} \gamma_{j-1} A^j r_0$.

- Theorem (Kelly). Let A be a nonsingular diagonalizable matrix. Assume that A has only k distinct eigenvalues. Then GMRES will terminate in at most k iterations.
- Least Square via QR factorization

Let $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, and $b \in \mathbb{R}^m$ be given. Find $x \in \mathbb{R}^n$ so that the norm of r = b - Ax is minimized.

Algorithm

- 1. Compute the QR factorization $A = \hat{Q}\hat{R}$
- 2. Compute vector $\hat{Q}^* \boldsymbol{b}$
- 3. Solve the upper triangular system $\hat{R}x = \hat{Q}^*b$ for xReference: Numerical Linear Algebra, L.N. Trefethen, D. Bau, III

GMRES Implementation

- The *kth* ($k \ge 1$) iteration of GMRES is the solution to the least squares problem: $minimize_{x \in x_0 + K_k} || \boldsymbol{b} - A \boldsymbol{x} ||_2$
- Suppose we have used Arnoldi process constructed an orthogonal basis V_k for $K_k(A, \boldsymbol{r}_0)$.
 - $r_0 = \beta V_k e_1$, where $e_1 = (1,0,0,...)^T$, $\beta = ||r_0||_2$
 - Any vector $z \in K_k(A, r_0)$ can be written as $z = \sum_{l=1}^k y_l v_l^k$, where v_l^k is the *lth* column of V_k . Denote $y = (y_1, y_2, ..., y_k)^T \in R^k$. $z = V_k y$

Since $\mathbf{x} - \mathbf{x}_0 = V_k \mathbf{y}$ for some coefficient vector $\mathbf{y} \in R^k$, we must have $\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}$ where \mathbf{y} minimizes $||\mathbf{b} - A(\mathbf{x}_0 + V_k \mathbf{y})||_2 = ||\mathbf{r}_0 - AV_k \mathbf{y}||_2$.

• The *kth* ($k \ge 1$) iteration of GMRES now is equivalent to a least squares problem in \mathbb{R}^k , i.e.

$$\begin{array}{l} \min i nimize_{x \in x_0 + K_k} || \boldsymbol{b} - A \boldsymbol{x} ||_2 \\ = \min i nimize_{y \in R^k} || \boldsymbol{r}_0 - A V_k \boldsymbol{y} ||_2 \end{array}$$

- Remark: This is a linear least square problem, which can be solved by QR factorization. However, AV_k must be computed at each iteration.
- The associate normal equation is $(AV_k)^T A V_k y = (AV_k)^T r_0$.
- But we will solve it differently.

• Let x_k be *kth* iterative solution of GMRES.

Define:
$$\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k = \mathbf{r}_0 - A(\mathbf{x}_k - \mathbf{x}_0) = \beta V_{k+1}\mathbf{e}_1 - A(\mathbf{x}_0 + V_k\mathbf{y} - \mathbf{x}_0) = \beta V_{k+1}\mathbf{e}_1 - V_{k+1}\overline{H}_k\mathbf{y}^k = V_{k+1}(\beta \mathbf{e}_1 - \overline{H}_k\mathbf{y}^k)$$

Using orthonomality of V_{k+1} :

$$\begin{array}{l} minimize_{\boldsymbol{x}\in\boldsymbol{x}_{0}+\boldsymbol{K}_{k}}||\boldsymbol{b}-A\boldsymbol{x}||_{2} \\ = minimize_{\boldsymbol{y}\in\boldsymbol{R}^{k}}||\boldsymbol{\beta}\boldsymbol{e}_{1}-\overline{H}_{k}\boldsymbol{y}^{k}||_{2} \end{array}$$

ALGORITHM 3.4.2. gmresa $(x, b, A, \epsilon, kmax, \rho)$ 1. r = b - Ax, $v_1 = r/||r||_2$, $\rho = ||r||_2$, $\beta = \rho$, k = 0

2. While
$$\rho > \epsilon ||b||_2$$
 and $k < kmax$ do
(a) $k = k + 1$
(b) for $j = 1, ..., k$
 $h_{jk} = (Av_k)^T v_j$
(c) $v_{k+1} = Av_k - \sum_{j=1}^k h_{jk} v_j$
(d) $h_{k+1,k} = ||v_{k+1}||_2$
(e) $v_{k+1} = v_{k+1}/||v_{k+1}||_2$
(f) $e_1 = (1, 0, ..., 0)^T \in \mathbb{R}^{k+1}$
Minimize $||\beta e_1 - \overline{H}_k y^k||_{\mathbb{R}^{k+1}}$ over \mathbb{R}^k to obtain y^k .
(g) $\rho = ||\beta e_1 - \overline{H}_k y^k||_{\mathbb{R}^{k+1}}$.

$$3. \ x_k = x_0 + V_k y^k.$$

"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations".

$$minimize_{y \in R^k} ||\beta e_1 - \overline{H}_k y^k||_2$$

Theorem. Let $n \times k$ ($k \le n$) matrix B be with linearly independent columns (full column rank). Let B = QR be a QR factorization of B. Then for each $\boldsymbol{b} \in R^n$, the equation $B\boldsymbol{u} = \boldsymbol{b}$ has a unique least-square solution, given by $\hat{\boldsymbol{u}} = R^{-1}Q^T\boldsymbol{b}$.

Using Householder reflection to do QR factorization gives $\overline{H}_k = Q_{k+1}\overline{R}_k$ where $Q_{k+1} \in R^{(k+1)\times(k+1)}$ is orthogonal and $\overline{R}_k \in R^{(k+1)\times k}$ has the form $\overline{R}_k = \begin{bmatrix} R_k \\ 0 \end{bmatrix}$, where $R_k \in R^{k \times k}$ is upper triangular.

- *v_j* may become nonorthogonal as a result of round off errors.
 - $-||\beta e_1 \overline{H}_k y^k||_2$ which depends on orthogonality, will not hold and the residual could be inaccurate.
 - Replace the loop in Step 2c of Algorithm gmresa with

$$v_{k+1} = Av_k$$

for $j = 1, ..., k$
 $v_{k+1} = v_{k+1} - (v_{k+1}^T v_j)v_j$.

We illustrate this point with a simple example from [128], doing the computations in MATLAB. Let $\delta = 10^{-7}$ and define

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ \delta & \delta & 0 \\ \delta & 0 & \delta \end{array}\right).$$

We orthogonalize the columns of A with classical Gram–Schmidt to obtain

$$V = \begin{pmatrix} 1.0000e + 00 & 1.0436e - 07 & 9.9715e - 08\\ 1.0000e - 07 & 1.0456e - 14 & -9.9905e - 01\\ 1.0000e - 07 & -1.0000e + 00 & 4.3568e - 02 \end{pmatrix}$$

The columns of V_U are not orthogonal at all. In fact $v_2^T v_3 \approx -.004$. For modified Gram–Schmidt

$$V = \begin{pmatrix} 1.0000e + 00 & 1.0436e - 07 & 1.0436e - 07 \\ 1.0000e - 07 & 1.0456e - 14 & -1.0000e + 00 \\ 1.0000e - 07 & -1.0000e + 00 & 4.3565e - 16 \end{pmatrix}$$

Here $|v_i^T v_j - \delta_{ij}| \le 10^{-8}$ for all i, j.

"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations".

ALGORITHM 3.4.3. gmresb
$$(x, b, A, \epsilon, kmax, \rho)$$

1. $r = b - Ax, v_1 = r/||r||_2, \rho = ||r||_2, \beta = \rho, k = 0$
2. While $\rho > \epsilon ||b||_2$ and $k < kmax$ do
(a) $k = k + 1$
(b) $v_{k+1} = Av_k$
for $j = 1, ..., k$
i. $h_{jk} = v_{k+1}^T v_j$
ii. $v_{k+1} = v_{k+1} - h_{jk}v_j$
(c) $h_{k+1,k} = ||v_{k+1}||_2$
(d) $v_{k+1} = v_{k+1}/||v_{k+1}||_2$
(e) $e_1 = (1, 0, ..., 0)^T \in \mathbb{R}^{k+1}$
Minimize $||\beta e_1 - \overline{H}_k y^k||_{\mathbb{R}^{k+1}}$ to obtain $y^k \in \mathbb{R}^k$.
(f) $\rho = ||\beta e_1 - \overline{H}_k y^k||_{\mathbb{R}^{k+1}}$.
3. $x_k = x_0 + V_k y^k$.

"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations" .

Modified Gram-Schmidt Process with Reorthogonalization

- $v_{k+1} = Av_k$ for $j = 1, \dots, k$ $h_{jk} = v_{k+1}^T v_j$ $v_{k+1} = v_{k+1} - h_{jk}v_j$
- $h_{k+1,k} = \|v_{k+1}\|_2$
- If loss of orthogonality is detected For j = 1, ..., k $h_{tmp} = v_{k+1}^T v_j$ $h_{jk} = h_{jk} + h_{tmp}$ $v_{k+1} = v_{k+1} - h_{tmp} v_j$
- $h_{k+1,k} = \|v_{k+1}\|_2$
- $v_{k+1} = v_{k+1} / \|v_{k+1}\|_2$

Test Reorthogonalization If $||Av_k||_2 + \delta ||v_{k+1}||_2 =$ $||Av_k||_2$ to working precision. $\delta = 10^{-3}$

Givens Rotations

minimize_{$y \in R^k$} $||\beta e_1 - \overline{H}_k y^k||_2$ involves QR factorization.

Do QR factorizations of \overline{H}_k by Givens Rotations.

• A 2 × 2 Givens rotation is a matrix of the form $G = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ where $c = \cos(\theta)$, $s = \sin(\theta)$ for $\theta \in [-\pi, \pi]$. The orthogonal matrix G rotates the vector $(c, -s)^T$, which makes an angle of $-\theta$ with the *x*-axis, through an angle θ so that it overlaps the *x*-axis.

$$G\begin{bmatrix} c\\-s\end{bmatrix} = \begin{bmatrix} 1\\0\end{bmatrix}$$

An $N \times N$ Givens rotation $G_j(c, s)$ replaces a 2×2 block on the diagonal of the $N \times N$ identity matrix with a 2×2 Givens rotations. $G_j(c, s)$ is with a 2×2 Givens rotations in rows and columns j and j + 1.

- Givens rotations can be used in reducing Hessenberg matrices to triangular form. This can be done in O(N) floating-point operations.
- Let H be an $N \times M(N \ge M)$ upper Hessenberg matrix with rank M. We reduce H to triangular form by first multiplying the matrix by a Givens rotations that zeros h_{21} (values of h_{11} and subsequent columns are changed)

- Step 1: Define $G_1(c_1, s_1)$ by $c_1 = h_{11}/\sqrt{h_{11}^2 + h_{21}^2}$ and $s_1 = -h_{21}/\sqrt{h_{11}^2 + h_{21}^2}$. Replace H by G_1H .
- Step 2: Define $G_2(c_2, s_2)$ by $c_2 = h_{22}/\sqrt{h_{22}^2 + h_{32}^2}$ and $s_2 = -h_{32}/\sqrt{h_{22}^2 + h_{32}^2}$. Replace H by G_2H . Remark: G_2 does not affect the first column of H.
- Step j: Define $G_j(c_j, s_j)$ by $c_j = h_{jj} / \sqrt{h_{jj}^2 + h_{j+1,j}^2}$ and $s_j = -h_{j+1,j} / \sqrt{h_{jj}^2 + h_{j+1,j}^2}$. Replace H by $G_j H$.

Setting $Q = G_N \dots G_1$. R = QH is upper triangular.

Let $\overline{H}_k = QR$ by Givens rotations matrices. $minimize_{y \in R^k} ||\beta e_1 - \overline{H}_k y^k||_2$ $= minimize_{y \in R^k} ||Q(\beta e_1 - \overline{H}_k y^k)||_2$ $= minimize_{y \in R^k} ||\beta Q e_1 - R y^k||_2$ ALGORITHM 3.5.1. $gmres(x, b, A, \epsilon, kmax, \rho)$ 1. r = b - Ax, $v_1 = r/||r||_2$, $\rho = ||r||_2$, $\beta = \rho$, k = 0; $g = \rho(1, 0, ..., 0)^T \in R^{kmax+1}$

2. While $\rho > \epsilon \|b\|_2$ and k < kmax do (a) k = k + 1(b) $v_{k+1} = Av_k$ for $j = 1, \ldots, k$ i. $h_{ik} = v_{k+1}^T v_i$ ii. $v_{k+1} = v_{k+1} - h_{jk}v_j$ (c) $h_{k+1,k} = ||v_{k+1}||_2$ (d) Test for loss of orthogonality and reorthogonalize if necessary. (e) $v_{k+1} = v_{k+1} / ||v_{k+1}||_2$ (f) i. If k > 1 apply Q_{k-1} to the kth column of H. ii. $\nu = \sqrt{h_{k,k}^2 + h_{k+1,k}^2}$. iii. $c_k = h_{k,k}/\nu, \ s_k = -h_{k+1,k}/\nu$ $h_{k,k} = c_k h_{k,k} - s_k h_{k+1,k}, \ h_{k+1,k} = 0$ iv. $q = G_k(c_k, s_k)q$.

(g) $\rho = |(g)_{k+1}|.$

3. Set $r_{i,j} = h_{i,j}$ for $1 \le i, j \le k$. Set $(w)_i = (g)_i$ for $1 \le i \le k$. Solve the upper triangular system $Ry^k = w$.

4.
$$x_k = x_0 + V_k y^k$$
.

Preconditioning

Basic idea: using GMRES on a modified system such as $M^{-1}Ax = M^{-1}b$.

The matrix $M^{-1}A$ need not to be formed explicitly. However, Mw = v need to be solved whenever needed.

Left preconditioning

$$M^{-1}A\boldsymbol{x} = M^{-1}\boldsymbol{b}$$

Right preconditioning

$$AM^{-1}u = b$$
 with $x = M^{-1}u$

Split preconditioning: M is factored as $M = M_L M_R$ $M_L^{-1} A M_R^{-1} \boldsymbol{u} = M_L^{-1} \boldsymbol{b}$ with $\boldsymbol{x} = M_R^{-1} \boldsymbol{u}$

GMRES with Left Preconditioning

ALGORITHM 9.4: GMRES with Left Preconditioning

1. Compute
$$r_0 = M^{-1}(b - Ax_0), \beta = ||r_0||_2$$
 and $v_1 = r_0/\beta$
2. For $j = 1, ..., m$ Do:
3. Compute $w := M^{-1}Av_j$
4. For $i = 1, ..., j$, Do:
5. $h_{i,j} := (w, v_i)$
6. $w := w - h_{i,j}v_i$
7. EndDo
8. Compute $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$
9. EndDo
10. Define $V_m := [v_1, ..., v_m], \bar{H}_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
11. Compute $y_m = \operatorname{argmin}_y ||\beta e_1 - \bar{H}_m y||_2$, and $x_m = x_0 + V_m y_m$
12. If satisfied Stop, else set $x_0 := x_m$ and GoTo 1

The Arnoldi process constructs an orthogonal basis for Span{ $r_0, M^{-1}Ar_0, (M^{-1}A)^2r_0, \dots (M^{-1}A)^{k-1}r_0$ }.

GMRES with Right Preconditioning

Right preconditioned GMRES is based on solving $AM^{-1}u = b$ with $x = M^{-1}u$.

- The initial residual is: $\boldsymbol{b} AM^{-1}\boldsymbol{u}_0 = \boldsymbol{b} A\boldsymbol{x}_0$.
 - This means all subsequent vectors of the Krylov subspace can be obtained without any references to the $m{u}$.
- At the end of right preconditioned GMRES:

$$\boldsymbol{u}_{m} = \boldsymbol{u}_{0} + \sum_{i=1}^{m} \boldsymbol{v}_{i} \eta_{i} \quad with \quad \boldsymbol{u}_{0} = M\boldsymbol{x}_{0}$$
$$\boldsymbol{x}_{m} = \boldsymbol{x}_{0} + M^{-1} \sum_{i=1}^{m} \boldsymbol{v}_{i} \eta_{i}$$

GMRES with Right Preconditioning

ALGORITHM 9.5: GMRES with Right Preconditioning

1. Compute
$$r_0 = b - Ax_0$$
, $\beta = ||r_0||_2$, and $v_1 = r_0^{\top}/\beta$
2. For $j = 1, ..., m$ Do:
3. Compute $w := AM^{-1}v_j$
4. For $i = 1, ..., j$, Do:
5. $h_{i,j} := (w, v_i)$
6. $w := w - h_{i,j}v_i$
7. EndDo
8. Compute $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$
9. Define $V_m := [v_1, ..., v_m]$, $\bar{H}_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
10. EndDo
11. Compute $y_m = \operatorname{argmin}_y ||\beta e_1 - \bar{H}_m y||_2$, and $x_m = x_0 + M^{-1}V_m y_m$.
12. If satisfied Stop, else set $x_0 := x_m$ and GoTo 1.

The Arnoldi process constructs an orthogonal basis for $\text{Span}\{r_0, AM^{-1}r_0, (AM^{-1})^2r_0, \dots (AM^{-1})^{k-1}r_0\}.$

Sadd. Iterative Methods for Sparse Linear Systems.

Split Preconditioning

- *M* can be a factorization of the form M = LU.
- Then $L^{-1}AU^{-1}u = L^{-1}b$, with $x = U^{-1}u$.
 - Need to operate on the initial residual by $L^{-1}(\mathbf{b} A\mathbf{x_0})$
 - Need to operate on the linear combination $U^{-1}(V_m \mathbf{y}_m)$ in forming the approximate solution

Comparison of Left and Right Preconditioning

- Spectra of M⁻¹A, AM⁻¹ and L⁻¹AU⁻¹ are identical.
- In principle, one should expect convergence to be similar.
- When *M* is ill-conditioned, the difference could be substantial.

Jacobi Preconditioner

Iterative method for solving Ax = b takes the form: $x_{k+1} = M^{-1}Nx_k + M^{-1}b$ where M and N split A into A = M - N.

- Define $G = M^{-1}N = M^{-1}(M A) = I M^{-1}A$ and $f = M^{-1}b$.
- Iterative method is to solve $(I G)\mathbf{x} = \mathbf{f}$, which can be written as $M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$.

Jacobi iterative method: $x_{k+1} = G_{JA}x_k + f$ where $G_{JA} = (I - D^{-1}A)$ and $f = D^{-1}b$

• M = D for Jacobi method.

SOR/SSOR Preconditioner

- Define: A = D E F
- Gauss-Seidel: $G_{GS} = I (D E)^{-1}A$

•
$$M_{SOR} = \frac{1}{w} (D - wE)$$

A symmetric SOR (SSOR) consists of:

$$(D - wE)\mathbf{x}_{k+\frac{1}{2}} = [wF + (1 - w)D]\mathbf{x}_{k} + w\mathbf{b}$$
$$(D - wF)\mathbf{x}_{k+1} = [wE + (1 - w)D]\mathbf{x}_{k+\frac{1}{2}} + w\mathbf{b}$$

This gives

$$\boldsymbol{x}_{k+1} = G_{SSOR}\boldsymbol{x}_k + \boldsymbol{f}$$

Where

$$G_{SSOR} = (D - wF)^{-1}(wE + (1 - w)D)(D - wE)^{-1}(wF + (1 - w)D)$$

•
$$M_{SSOR} = (D - wE)D^{-1}(D - wF); M_{SGS} = (D - E)D^{-1}(D - F);$$

• Note: SSOR usually is used when A is symmetric

Take symmetric GS for example:

- $M_{SGS} = (D E)D^{-1}(D F)$
- Define: $L = (D E)D^{-1} = I ED^{-1}$ and U = D F.
- L is a lower triangular matrix and U is a upper triangular matrix.
- To solve M_{SGS} w = x for w, a forward solve and a backward solve are used:
 - Solve $(I ED^{-1})\mathbf{z} = \mathbf{x}$ for \mathbf{z}
 - $-\operatorname{Solve}(D-F)\boldsymbol{w} = \boldsymbol{z} \operatorname{for} \boldsymbol{w}$

Incomplete LU(0) Factorization

Define: $NZ(X) = \{(i, j) | X_{i,j} \neq 0\}$ Incomplete LU (ILU(0)):

• A = LU + R with $NZ(L) \cup NZ(U) = NZ(A)$ $r_{ij} = 0$ for $(i,j) \in NZ(A)$

I.e. L and U have no fill-ins at the entries $a_{ij} = 0$.

```
for i = 1 to n

for k = 1 to i - 1 and if (i, k) \in NZ(A)

a_{ik} = a_{ik}/a_{kj}

for j = k + 1 to n and if (i, k) \in NZ(A)

a_{ij} = a_{ij} - a_{ik}a_{kj}

end;

end;

end;
```

ILU(0)

Figure 10.2 The ILU(0) factorization for a five-point matrix.

Sadd. Iterative Methods for Sparse Linear Systems.

Parallel GMRES

- J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transactions on Numerical Analyis. 3:160-176, 1995.
- Implementation in PETSc (Portable, Extensible Toolkit for Scientific Computation)
 - <u>http://www.mcs.anl.gov/petsc/</u>

Parallel Libraries

ScaLAPACK

- <u>http://www.netlib.org/scalapack/</u>
- Based on LAPACK (Linear Algebra PACKage) and BLAS (Basic Linear Algebra Subroutines)
- Parallelized by "divide and conquer" or block distribution
- Written in Fortran 90
- Successor of LINPACK, which was originally written for vector supercomputers in the 1970s
- Implemented on top of MPI using MIMD, SPMD, and used explicit message passing

PETSc (Portable, Extensible Toolkit for Scientific Computation)

- http://www.mcs.anl.gov/petsc/
- Suite of data structures (core: distributed vectors and matrices) and routines for linea and non-linear solvers
- User (almost) never has to call MPI himself when using PETSc
- Uses two MPI communicators: PETSC_COMM_SELF for the library-internal communication and PETSC_COMM_WORLD for user processes
- Written in C, callable from Fortran
- Has been used to solve systems with over 500 millions unknowns
- Has been shown to scale up to over 6000 processors

PETSc Structure

PETSc Numerical Solvers

Nonlinear Solvers				Time Steppers			
Newton-based Methods		Other		Euler	Backward Euler	Pseudo Time Stepping	Other
Line Search	Trust Region	Other					Ouler

Krylov Subspace Methods								
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other	

Preconditioners							
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU (Sequential only)	Others	

	-	Matrices			
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Block Diagonal (BDIAG)	Dense	Matrix-free	Other

Distributed Arrays		Index Sets						
		Indices	Block Indices	Stride	Other			
Vectors								

Parallel Random Number Generator

SPRNG (The Scalable parallel random number generators library)

- http://sprng.cs.fsu.edu/
- Random number sequence does not depend on the number of processors used, but only on the seed
 a reproducible Monte Carlo simulations in parallel
- SPRNG implements parallel-safe, high-quality random number generators
- C++/Fortran (used to be C/Fortran in previous versions)

Parallel PDE Solver

POOMA (Parallel Object-Oriented Methods and Applications)

- http://acts.nersc.gov/formertools/pooma/index.html
- Collection of templated C++ classes for writing parallel PDE solvers
- Provides high-level data types (abstractions) for fields and particles using data-parallel arrays
- Supports finite-difference simulations on structured, unstructured, and adaptive grids. Also supports particle simulations, hybrid particle-mesh simulations, and Monte Carlo
- Uses mixed message-passing/thread parallelism

Many more...

- Aztec (iterative solvers for sparse linear systems)
- SuperLU (LU decomposition)
- Umfpack (unsymmetric multifrontal LU)
- EISPACK (eigen-solvers)
- Fishpack (cyclic reduction for 2nd & 4th order FD)
- PARTI (Parallel run-time system)
- Bisect (recursive orthogonal bisection)
- ROMIO (parallel distributed file I/O)
- KINSol (solves the nonlinear algebraic systems) <u>https://computation.llnl.gov/casc/sundials/main.html</u>
- SciPy (Scientific Tools for Phython) http://www.scipy.org/

References:

- C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
- Yousef Sadd. Iterative methods for Sparse Linear Systems
- G. Karypis and V. Kumar. Parallel Threshold-based ILU Factorization. *Technical Report #96-061. U. of Minnesota*, Dept. of Computer Science, 1998.
- P.-O. Persson and J. Peraire. Newton-GMRES
 Preconditioning for Discontinuous Galerkin
 Discretizations of the Navier-Stokes Equations. SIAM J. on Sci. Comput. 30(6), 2008.