
Lecture 8: Fast Linear Solvers 
(Part 6) 
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Nonsymmetric System of Linear Equations 

• The CG method requires to 𝐴 to be an 𝑛 × 𝑛 
symmetric positive definite matrix to solve 
𝐴𝒙 = 𝒃.  

• If 𝐴 is nonsymmetric: 

– Convert the system to a symmetric positive definite 
one 

– Modify CG to handle general matrices 
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Normal Equation Approach 

The normal equations corresponding to 𝐴𝒙 = 𝒃 are 
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 

•  If 𝐴 is nonsingular then 𝐴𝑇𝐴 is symmetric positive 
definite and the CG method can be applied to solve 
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (CG normal residual -- CGNR). 

• Alternatively, we can first solve A𝐴𝑇𝒚 = 𝒃 for 𝒚, then 
𝒙 = 𝐴𝑇𝒚. 

• Disadvantages: 

– Each iteration requires 𝐴𝑇𝐴 or A𝐴𝑇 

– Condition number of 𝐴𝑇𝐴 or A𝐴𝑇 is square of that of 𝐴. 
However, CG works well if condition number is small 
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Arnoldi Iteration 

• The Arnoldi method is an orthogonal projection onto a 
Krylov subspace Κ𝑚(𝐴,𝒓0) for 𝑛 × 𝑛 nonsymmetric matrix 
𝐴. Here 𝑚 ≪ 𝑛.  

• Arnoldi reduces 𝐴 to a Hessenberg form. 

Upper Hessenberg matrix: zero entries below the first subdiagonal.  
2 3 4 1
2 5 1 9
0 2 1 2
0 0 3 2

 

 

Lower Hessenberg matrix: zero entries above the first superdiagonal.  
3 2 0 0
2 5 1 0
1 2 1 2
3 4 3 2
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Mechanics of Arnoldi Iteration 

• For 𝐴 ∈ 𝑅𝑛×𝑛, a given vector 𝒓0 ∈ 𝑅𝑛 defines a sequence 
of Krylov subspaces Κ𝑚(𝐴, 𝒓0). Matrix  
Κ𝑚 = [𝒓0|𝐴𝒓0|𝐴

2𝒓0| … |𝐴𝑚−1𝒓0] ∈ 𝑅𝑛×𝑚 is the 
corresponding Krylov matrix.   

• The Gram-Schmidt procedure for forming an 
orthonormal basis for Κ𝑚 is called the Arnoldi process. 

– Theorem. The Arnoldi procedure generates a reduced QR 
factorization of Krylov matrix Κ𝑚 in the form Κ𝑚 = 𝑉𝑚𝑅𝑚 with 
𝑉𝑚 ∈ 𝑅𝑛×𝑚 and having orthonormal columns and with a 
triangular matrix 𝑅𝑚 ∈ 𝑅𝑚×𝑚. Furthermore, with the 
𝑚 × 𝑚 − 𝑢𝑝𝑝𝑒𝑟 Hessenberg matrix 𝐻𝑚, we have 𝑉𝑚

𝑇𝐴𝑉𝑚 =
𝐻𝑚. 



Let 𝐻𝑚 be a 𝑚 × 𝑚 Hessenberg matrix: 

𝐻𝑚 =

ℎ11 ℎ12 … ℎ1𝑚

ℎ21 ℎ22 … ℎ2𝑚

0 ⋱ ⋱ ⋮
0 … ℎ𝑚,𝑚−1 ℎ𝑚𝑚

 

Let (𝑚 + 1) × 𝑚 𝐻 𝑚 be the extended matrix of 𝐻𝑚: 

𝐻 𝑚 =

ℎ11 ℎ12 … ℎ1𝑚

ℎ21 ℎ22 … ℎ2𝑚

0 ⋱ ⋱ ⋮
0 … ℎ𝑚,𝑚−1 ℎ𝑚𝑚

0 … 0 ℎ𝑚+1,𝑚

  

The Arnoldi iteration produces matrices 𝑉𝑚, 𝑉𝑚+1 and  𝐻 𝑚 for matrix 𝐴 
satisfying: 

𝐴𝑉𝑚 = 𝑉𝑚+1𝐻 𝑚 = 𝑉𝑚𝐻𝑚 + 𝒘𝑚𝒆𝑚
𝑇  

Here 𝑉𝑚, 𝑉𝑚+1 have orthonormal columns 
𝑉𝑚 = [𝒗1 𝒗2 … |𝒗𝑚],    𝑉𝑚+1 = [𝒗1 𝒗2 … |𝒗𝑚|𝒗𝑚+1] 
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The 𝑚th column of the equation: 
𝐴𝒗𝑚 = ℎ1𝑚𝒗1 + ℎ2𝑚𝒗2 + ⋯+ ℎ𝑚𝑚𝒗𝑚

+ ℎ𝑚+1,𝑚𝒗𝑚+1 

Therefore,  
ℎ1𝑚 = 𝐴𝒗𝑚 ∙ 𝒗1 

⋮
ℎ𝑚+1,𝑚 = ||𝐴𝒗𝑚 − ℎ1𝑚𝒗1 …− ℎ𝑚𝑚𝒗𝑚|| 

𝒗𝑚+1 = (𝐴𝒗𝑚 − ℎ1𝑚𝒗1 …− ℎ𝑚𝑚𝒗𝑚)/ℎ𝑚+1,𝑚 
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Arnoldi Algorithm 

Choose 𝒓0 and let 𝒗1 = 𝒓0/| 𝒓0 | 
for 𝑗 = 1,… ,𝑚 − 1 

    𝒘 = 𝐴𝒗𝑗 −  ((𝐴𝒗𝑗)
𝑇𝒗𝑖)𝒗𝑖

𝑗
𝑖=1  

    𝒗𝑗+1 = 𝒘/||𝒘||2 
endfor 
Remark: Choose 𝒗1.  Then for 𝑗 = 1, … ,𝑚 − 1, first multiply the current Arnoldi 
vector  𝒗𝑗  by A, and orthonormalize 𝐴𝒗𝑗 against all previous Arnoldi vectors.  
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• 𝑉𝑚
𝑇𝑉𝑚 = 𝐼𝑚×𝑚.  

• If Arnoldi process breaks down at 𝑚𝑡ℎ step, 𝒘𝑚 = 𝟎 is still well-
defined but not 𝒗𝑚+1, and the algorithm stop.  

•  In this case, the last row of 𝐻 𝑚 is set to zero, ℎ𝑚+1,𝑚 = 0 



Stable Arnoldi Algorithm 

Choose 𝒙0 and let 𝒗1 = 𝒙0/| 𝒙0 | .  

for 𝑗 = 1,… ,𝑚 

     𝒘 = 𝐴𝒗𝑗 

      for 𝑖 = 1,… , 𝑗 

           ℎ𝑖𝑗 =< 𝒘, 𝒗𝑖 > 

            𝒘 = 𝒘 − ℎ𝑖𝑗𝒗𝑖  

       endfor 

       ℎ𝑗+1,𝑗 = ||𝒘||2 

        if ℎ𝑗+1,𝑗 = 0, then stop 

        𝒗𝑗+1 = 𝒘/ℎ𝑗+1,𝑗 

endfor 
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Generalized Minimum Residual (GMRES) Method 

Let the Krylov space associated with 𝐴𝒙 = 𝒃 be Κ𝑘 𝐴, 𝒓0 =
𝑠𝑝𝑎𝑛 𝒓0, 𝐴𝒓0, 𝐴

2𝒓0, … , 𝐴𝑘−1𝒓0 , where 𝒓0 = 𝒃 − 𝐴 𝒙0 for 
some initial guess 𝒙0. 
  
The 𝑘𝑡ℎ (𝑘 ≥ 1) iteration of  GMRES is the solution to the 
least squares problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘
||𝒃 − 𝐴𝒙||2, i.e.  

Find 𝒙𝑘 ∈ 𝒙0 + Κ𝑘 such that 
||𝒃 − 𝐴𝒙𝑘||2 = 𝑚𝑖𝑛𝒙∈𝒙0+Κ𝑘

||𝒃 − 𝐴𝒙||2 

 
• Remark: the GMRES was proposed in “Y. Saad and M. Schultz, 

GMRES a generalized minimal residual algorithm for solving 
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 
(1986), pp. 856–869.” 
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If 𝒙 ∈ 𝒙0 + Κ𝑘, then  𝒙 = 𝒙0 +  𝛾𝑗𝐴
𝑗𝒓0

𝑘−1
𝑗=0 . 

So 𝒃 − 𝐴𝒙 = 𝒃 − 𝐴𝒙0 −  𝛾𝑗𝐴
𝑗+1𝒓0

𝑘−1
𝑗=0 = 𝒓0 −

 𝛾𝑗−1𝐴
𝑗𝒓0

𝑘
𝑗=1 . 
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• Theorem (Kelly). Let A be a nonsingular 
diagonalizable matrix. Assume that A has only k 
distinct eigenvalues. Then GMRES will terminate in at 
most k iterations. 

• Least Square via QR factorization 

Let 𝐴 ∈ 𝑅𝑚×𝑛 (𝑚 ≥ 𝑛), and 𝒃 ∈ 𝑅𝑚 be given. Find  𝒙 ∈ 𝑅𝑛 
so that the norm of  𝒓 = 𝒃 − 𝐴𝒙 is minimized.  

Algorithm 

1. Compute the QR factorization 𝐴 = 𝑄 𝑅  

2. Compute vector 𝑄 ∗𝒃  

3. Solve the upper triangular system 𝑅 𝒙 = 𝑄 ∗𝒃 for 𝒙  

Reference: Numerical Linear Algebra, L.N. Trefethen, D. Bau, III 
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GMRES Implementation 

• The 𝑘𝑡ℎ (𝑘 ≥ 1) iteration of  GMRES is the 
solution to the least squares problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘
||𝒃 − 𝐴𝒙||2 

• Suppose we have used Arnoldi process 
constructed an orthogonal basis 𝑉𝑘 for Κ𝑘 𝐴, 𝒓0 . 

–  𝒓0 = 𝛽𝑉𝑘𝒆1, where 𝒆1 = (1,0,0, … )𝑇, 𝛽 = ||𝒓0||2 

– Any vector 𝒛 ∈ Κ𝑘 𝐴, 𝒓0  can be written as 𝒛 =
 𝑦𝑙𝒗𝑙

𝑘𝑘
𝑙=1 , where 𝒗𝑙

𝑘 is the 𝑙𝑡ℎ column of 𝑉𝑘 . Denote 
𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑘)

𝑇∈ 𝑅𝑘.  

𝒛 = 𝑉𝑘𝒚 
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 Since 𝒙 − 𝒙0 = 𝑉𝑘𝒚 for some coefficient vector 𝒚 ∈
𝑅𝑘, we must have 𝒙𝑘 = 𝒙0 + 𝑉𝑘𝒚 where 𝒚 minimizes 
||𝒃 − 𝐴(𝒙0 + 𝑉𝑘𝒚)||2 = ||𝒓0 − 𝐴𝑉𝑘𝒚||2. 

 

• The 𝑘𝑡ℎ (𝑘 ≥ 1) iteration of  GMRES now is 
equivalent to a least squares problem in 𝑅𝑘 , i.e. 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘
||𝒃 − 𝐴𝒙||2 

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝒓0 − 𝐴𝑉𝑘𝒚||2 

– Remark: This is a linear least square problem, which can be 
solved by QR factorization. However, 𝐴𝑉𝑘 must be computed at 
each iteration.  

– The associate normal equation is  (𝐴𝑉𝑘)
𝑇𝐴𝑉𝑘𝒚 = (𝐴𝑉𝑘)

𝑇𝒓0.  

– But we will solve it differently.  
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• Let 𝒙𝑘 be 𝑘𝑡ℎ iterative solution of GMRES. 

 

Define: 𝒓𝑘 = 𝒃 − 𝐴𝒙𝑘 = 𝒓0 − 𝐴 𝒙𝑘 − 𝒙0 =
𝛽𝑉𝑘+1𝒆1 − 𝐴 𝒙0 + 𝑉𝑘𝒚 − 𝒙0 = 𝛽𝑉𝑘+1𝒆1 −
𝑉𝑘+1𝐻 𝑘𝒚

𝑘 = 𝑉𝑘+1(𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘) 

 

Using orthonomality of 𝑉𝑘+1: 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘

||𝒃 − 𝐴𝒙||2
= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚

𝑘||2 
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17  “C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations” . 



𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2 

Theorem. Let 𝑛 × 𝑘 (𝑘 ≤ 𝑛) matrix 𝐵 be with linearly 
independent columns (full column rank). Let 𝐵 = 𝑄𝑅 
be a 𝑄𝑅 factorization of 𝐵. Then for each 𝒃 ∈ 𝑅𝑛, the 
equation 𝐵𝒖 = 𝒃 has a unique least-square solution, 
given by 𝒖 = 𝑅−1𝑄𝑇𝒃. 

 

Using Householder reflection to do QR factorization 

gives 𝐻 𝑘 = 𝑄𝑘+1𝑅 𝑘 where 𝑄𝑘+1 ∈ 𝑅(𝑘+1)×(𝑘+1) is 
orthogonal and 𝑅 𝑘 ∈ 𝑅(𝑘+1)×𝑘 has the form 

𝑅 𝑘 =
𝑅𝑘

0
, where 𝑅𝑘 ∈ 𝑅𝑘×𝑘 is upper triangular.  

18 



• 𝒗𝑗  may become nonorthogonal as a result of 

round off errors.  

– ||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2 which depends on orthogonality, will 

not hold and the residual could be inaccurate. 

– Replace the loop in Step 2c of Algorithm gmresa with 

 

19 



20  “C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations” . 



21  “C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations” . 
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Modified Gram-Schmidt Process with 
Reorthogonalization 

Test Reorthogonalization 
 

If 𝐴𝑣𝑘||2 + 𝛿 𝑣𝑘+1||2 =

||𝐴𝑣𝑘||2 to working 
precision.  
 𝛿 = 10−3 



Givens Rotations 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2 involves QR 

factorization.  

Do QR factorizations of 𝐻 𝑘by Givens Rotations.  

 

• A 2 × 2 Givens rotation is a matrix of the form 

𝐺 =
𝑐 −𝑠
𝑠 𝑐

 where 𝑐 = cos (𝜃), 𝑠 = sin (𝜃) for 

𝜃 ∈ [−𝜋, 𝜋]. The orthogonal matrix 𝐺 rotates the 
vector (𝑐, −𝑠)𝑇 ,  which makes an angle of −𝜃 with 
the 𝑥-axis, through an angle 𝜃 so that it overlaps 
the 𝑥-axis.  

𝐺
𝑐
−𝑠

=
1
0
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An 𝑁 × 𝑁 Givens rotation 𝐺𝑗(𝑐, 𝑠) replaces a 2 × 2 
block on the diagonal of the 𝑁 × 𝑁 identity matrix with 
a 2 × 2 Givens rotations. 𝐺𝑗(𝑐, 𝑠) is with a 2 × 2 Givens 
rotations in rows and columns 𝑗 and 𝑗 + 1. 

24 



• Givens rotations can be used in reducing Hessenberg 
matrices to triangular form. This can be done in 𝑂 𝑁  
floating-point operations.  

 

• Let 𝐻 be an 𝑁 × 𝑀(𝑁 ≥ 𝑀) upper Hessenberg 
matrix with rank 𝑀. We reduce 𝐻 to triangular form 
by first multiplying the matrix by a Givens rotations 
that zeros ℎ21 (values of ℎ11 and subsequent columns 
are changed) 

 

25 



• Step 1: Define 𝐺1(𝑐1, 𝑠1) by 𝑐1 = ℎ11/ ℎ11
2 + ℎ21

2  and 
𝑠1 = −ℎ21/ ℎ11

2 + ℎ21
2 . Replace 𝐻 by 𝐺1𝐻. 

• Step 2: Define 𝐺2(𝑐2, 𝑠2) by 𝑐2 = ℎ22/ ℎ22
2 + ℎ32

2  and 

𝑠2 = −ℎ32/ ℎ22
2 + ℎ32

2 . Replace 𝐻 by 𝐺2𝐻. 

Remark: 𝐺2 does not affect the first column of 𝐻. 

• … 

• Step j: Define 𝐺𝑗(𝑐𝑗 , 𝑠𝑗) by 𝑐𝑗 = ℎ𝑗𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2  and 

𝑠𝑗 = −ℎ𝑗+1,𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2 . Replace 𝐻 by 𝐺𝑗𝐻. 

 
Setting 𝑄 = 𝐺𝑁 …𝐺1. 𝑅 = 𝑄𝐻 is upper triangular.  

26 



Let 𝐻 𝑘 = 𝑄𝑅 by Givens rotations matrices.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝑄(𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘)||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝑄𝒆1 − 𝑅𝒚𝑘||2 

 

27 



28 



Preconditioning 

Basic idea: using GMRES on a modified system such as 
𝑀−1𝐴𝒙 = 𝑀−1𝒃. 

The matrix 𝑀−1𝐴 need not to be formed explicitly. 
However, 𝑀𝒘 = 𝒗 need to be solved whenever 
needed.  

 

Left preconditioning  
𝑀−1𝐴𝒙 = 𝑀−1𝒃 

Right preconditioning 
𝐴𝑀−1𝒖 = 𝒃  𝑤𝑖𝑡ℎ  𝒙 = 𝑀−1𝒖 

Split preconditioning: 𝑀 is factored as 𝑀 = 𝑀𝐿𝑀𝑅 
𝑀𝐿

−1𝐴𝑀𝑅
−1𝒖 = 𝑀𝐿

−1𝒃  𝑤𝑖𝑡ℎ  𝒙 = 𝑀𝑅
−1𝒖 
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GMRES with Left Preconditioning 

The Arnoldi process constructs an orthogonal basis for 
Span{𝒓0, 𝑀

−1𝐴𝒓0, (𝑀
−1𝐴)2𝒓0, … (𝑀−1𝐴)𝑘−1𝒓0}. 

  
Sadd. Iterative Methods for Sparse Linear Systems 
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GMRES with Right Preconditioning 

Right preconditioned GMRES is based on solving 
𝐴𝑀−1𝒖 = 𝒃  𝑤𝑖𝑡ℎ  𝒙 = 𝑀−1𝒖. 

• The initial residual is: 𝒃 − 𝐴𝑀−1𝒖0 = 𝒃 − 𝐴𝒙0. 

– This means all subsequent vectors of the Krylov subspace 
can be obtained without any references to the 𝒖. 

• At the end of right preconditioned GMRES: 

𝒖𝑚 = 𝒖0 +  𝒗𝑖𝜂𝑖

𝑚

𝑖=1

   𝑤𝑖𝑡ℎ   𝒖0 = 𝑀𝒙0 

𝒙𝑚 = 𝒙0 + 𝑀−1  𝒗𝑖𝜂𝑖

𝑚

𝑖=1
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GMRES with Right Preconditioning 

The Arnoldi process constructs an orthogonal basis for 
Span{𝒓0, 𝐴𝑀−1𝒓0, (𝐴𝑀−1)2𝒓0, … (𝐴𝑀−1)𝑘−1𝒓0}. 
  
Sadd. Iterative Methods for Sparse Linear Systems. 32 



Split Preconditioning 

• 𝑀 can be a factorization of the form 𝑀 = 𝐿𝑈. 

 

• Then 𝐿−1𝐴𝑈−1𝒖 = 𝐿−1𝒃,   𝑤𝑖𝑡ℎ   𝒙 = 𝑈−1𝒖. 

– Need to operate on the initial residual by 𝐿−1(𝒃 −
𝐴𝒙𝟎)  

– Need to operate on the linear combination 
𝑈−1(𝑉𝑚𝒚𝑚) in forming the approximate solution 

33 



Comparison of Left and Right Preconditioning 

• Spectra of 𝑀−1𝐴, 𝐴𝑀−1 and 𝐿−1𝐴𝑈−1 are 
identical. 

• In principle, one should expect convergence to 
be similar.  

• When 𝑀 is ill-conditioned, the difference could 
be substantial.  
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Jacobi Preconditioner 

Iterative method for solving 𝐴𝑥 = 𝑏 takes the form: 
𝒙𝑘+1 = 𝑀−1𝑁𝒙𝑘 + 𝑀−1𝒃 where 𝑀 𝑎𝑛𝑑 𝑁 split 𝐴 
into 𝐴 = 𝑀 − 𝑁. 

• Define 𝐺 = 𝑀−1𝑁 = 𝑀−1 𝑀 − 𝐴 = 𝐼 − 𝑀−1𝐴  
and 𝒇 = 𝑀−1𝒃.  

• Iterative method is to solve 𝐼 − 𝐺 𝒙 = 𝒇, which 
can be written as 𝑀−1𝐴𝒙 = 𝑀−1𝒃.  

 

Jacobi iterative method: 𝒙𝑘+1 = 𝐺𝐽𝐴𝒙𝑘 + 𝒇 where  
𝐺𝐽𝐴 = (𝐼 − 𝐷−1𝐴) and 𝒇 = 𝐷−1𝒃 

• 𝑀 = 𝐷 for Jacobi method.  
35 



SOR/SSOR Preconditioner 

• Define: 𝐴 = 𝐷 − 𝐸 − 𝐹 
• Gauss-Seidel: 𝐺𝐺𝑆 = 𝐼 − (𝐷 − 𝐸)−1𝐴 

•  𝑀𝑆𝑂𝑅 =
1

𝑤
 (𝐷 − 𝑤𝐸) 
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A symmetric SOR (SSOR) consists of: 
𝐷 − 𝑤𝐸 𝒙

𝑘+
1
2
= 𝑤𝐹 + 1 − 𝑤 𝐷 𝒙𝑘 + 𝑤𝒃 

𝐷 − 𝑤𝐹 𝒙𝑘+1 = 𝑤𝐸 + 1 − 𝑤 𝐷 𝒙
𝑘+

1
2
+ 𝑤𝒃 

This gives 
𝒙𝑘+1 = 𝐺𝑆𝑆𝑂𝑅𝒙𝑘 + 𝒇  

Where 
𝐺𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐹 −1(𝑤𝐸 + 1 − 𝑤 𝐷) 𝐷 − 𝑤𝐸 −1(𝑤𝐹 +
1 − 𝑤 𝐷)    

          
• 𝑀𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐸 𝐷−1(𝐷 − 𝑤𝐹); 𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷−1(𝐷 − 𝐹);  
• Note: SSOR usually is used when 𝐴 is symmetric  



Take symmetric GS for example: 
𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷−1 𝐷 − 𝐹  

• Define: 𝐿 = 𝐷 − 𝐸 𝐷−1 = 𝐼 − 𝐸𝐷−1 and 
𝑈 = 𝐷 − 𝐹. 

• 𝐿 is a lower triangular matrix and 𝑈 is a upper 
triangular matrix.  

• To solve 𝑀𝑆𝐺𝑆𝒘 = 𝒙 for 𝒘, a forward solve and a 
backward solve are used: 

– Solve 𝐼 − 𝐸𝐷−1 𝒛 = 𝒙 for 𝒛 

– Solve 𝐷 − 𝐹 𝒘 = 𝒛 for 𝒘 
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Incomplete LU(0) Factorization 

Define: 𝑁𝑍 𝑋 = {(𝑖, 𝑗)|𝑋𝑖,𝑗 ≠ 0} 

Incomplete LU (ILU(0)): 

• 𝐴 = 𝐿𝑈 + 𝑅 with 𝑁𝑍 𝐿 ∪ 𝑁𝑍 𝑈 = 𝑁𝑍(𝐴) 
𝑟𝑖𝑗 = 0   𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝑁𝑍(𝐴) 

I.e. 𝐿 and 𝑈 have no fill-ins at the entries 𝑎𝑖𝑗 = 0. 
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for 𝑖 = 1 to 𝑛 
    for 𝑘 = 1 to 𝑖 − 1 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴) 
        𝑎𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑗 

        for j = 𝑘 + 1 to 𝑛 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴) 
             𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗 

        end; 
     end; 
end;  



ILU(0) 
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Parallel GMRES 

• J. Erhel. A parallel GMRES version for general sparse matrices. 
Electronic Transactions on Numerical Analyis. 3:160-176, 1995.  

• Implementation in PETSc (Portable, Extensible Toolkit for 
Scientific Computation) 
– http://www.mcs.anl.gov/petsc/  
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Parallel Libraries 

ScaLAPACK 

• http://www.netlib.org/scalapack/ 

• Based on LAPACK (Linear Algebra PACKage) and BLAS 
(Basic Linear Algebra Subroutines) 

• Parallelized by “divide and conquer” or block 
distribution 

• Written in Fortran 90 

• Successor of LINPACK, which was originally written 
for vector supercomputers in the 1970s 

• Implemented on top of MPI using MIMD, SPMD, and 
used explicit message passing 
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PETSc (Portable, Extensible Toolkit for Scientific Computation) 

• http://www.mcs.anl.gov/petsc/ 

• Suite of data structures (core: distributed vectors and 
matrices) and routines for linea and non-linear solvers 

• User (almost) never has to call MPI himself when using 
PETSc 

• Uses two MPI communicators: PETSC_COMM_SELF for the 
library-internal communication and 
PETSC_COMM_WORLD for user processes 

• Written in C, callable from Fortran 

• Has been used to solve systems with over 500 millions 
unknowns 

• Has been shown to scale up to over 6000 processors 
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PETSc Structure 
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PETSc Numerical Solvers 
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Parallel Random Number Generator 

SPRNG (The Scalable parallel random number 
generators library) 

• http://sprng.cs.fsu.edu/ 

• Random number sequence does not depend on the 
number of processors used, but only on the seed 
a  reproducible Monte Carlo simulations in parallel 

• SPRNG implements parallel-safe, high-quality 
random number generators 

• C++/Fortran (used to be C/Fortran in previous 
versions) 
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Parallel PDE Solver 

POOMA (Parallel Object-Oriented Methods and 
Applications) 
• http://acts.nersc.gov/formertools/pooma/index.html 

• Collection of templated C++ classes for writing 
parallel PDE solvers 

• Provides high-level data types (abstractions) for 
fields and particles using data-parallel arrays 

• Supports finite-difference simulations on structured, 
unstructured, and adaptive grids. Also supports 
particle simulations, hybrid particle-mesh 
simulations, and Monte Carlo 

• Uses mixed message-passing/thread parallelism 
46 
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Many more… 
• Aztec (iterative solvers for sparse linear systems) 
• SuperLU (LU decomposition) 
• Umfpack (unsymmetric multifrontal LU) 
• EISPACK (eigen-solvers) 
• Fishpack (cyclic reduction for 2nd & 4th order FD) 
• PARTI (Parallel run-time system) 
• Bisect (recursive orthogonal bisection) 
• ROMIO (parallel distributed file I/O) 
• KINSol (solves the nonlinear algebraic systems) 

https://computation.llnl.gov/casc/sundials/main.html 
• SciPy (Scientific Tools for Phython) http://www.scipy.org/ 
• …  
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