Lecture 8: Fast Linear Solvers (Part 6)

Nonsymmetric System of Linear Equations

- The CG method requires to A to be an $n \times n$ symmetric positive definite matrix to solve $A \boldsymbol{x}=\boldsymbol{b}$.
- If A is nonsymmetric:
- Convert the system to a symmetric positive definite one
- Modify CG to handle general matrices

Normal Equation Approach

The normal equations corresponding to $A \boldsymbol{x}=\boldsymbol{b}$ are $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$

- If A is nonsingular then $A^{T} A$ is symmetric positive definite and the CG method can be applied to solve $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$ (CG normal residual -- CGNR).
- Alternatively, we can first solve $A A^{T} \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}, then $\boldsymbol{x}=A^{T} \boldsymbol{y}$.
- Disadvantages:
- Each iteration requires $A^{T} A$ or $\mathrm{A} A^{T}$
- Condition number of $A^{T} A$ or $\mathrm{A} A^{T}$ is square of that of A. However, CG works well if condition number is small

Arnoldi Iteration

- The Arnoldi method is an orthogonal projection onto a Krylov subspace $\mathrm{K}_{m}\left(A, \boldsymbol{r}_{0}\right)$ for $n \times n$ nonsymmetric matrix A. Here $m \ll n$.
- Arnoldi reduces A to a Hessenberg form.

Upper Hessenberg matrix: zero entries below the first subdiagonal.

$$
\left[\begin{array}{llll}
2 & 3 & 4 & 1 \\
2 & 5 & 1 & 9 \\
0 & 2 & 1 & 2 \\
0 & 0 & 3 & 2
\end{array}\right]
$$

Lower Hessenberg matrix: zero entries above the first superdiagonal.

$$
\left[\begin{array}{llll}
3 & 2 & 0 & 0 \\
2 & 5 & 1 & 0 \\
1 & 2 & 1 & 2 \\
3 & 4 & 3 & 2
\end{array}\right]
$$

Mechanics of Arnoldi Iteration

- For $A \in R^{n \times n}$, a given vector $\boldsymbol{r}_{0} \in R^{n}$ defines a sequence of Krylov subspaces $\mathrm{K}_{m}\left(A, \boldsymbol{r}_{0}\right)$. Matrix
$\mathrm{K}_{m}=\left[\boldsymbol{r}_{0}\left|A \boldsymbol{r}_{0}\right| A^{2} \boldsymbol{r}_{0}|\ldots| A^{m-1} \boldsymbol{r}_{0}\right] \in R^{n \times m}$ is the corresponding Krylov matrix.
- The Gram-Schmidt procedure for forming an orthonormal basis for K_{m} is called the Arnoldi process.
- Theorem. The Arnoldi procedure generates a reduced QR factorization of Krylov matrix K_{m} in the form $\mathrm{K}_{m}=V_{m} R_{m}$ with $V_{m} \in R^{n \times m}$ and having orthonormal columns and with a triangular matrix $R_{m} \in R^{m \times m}$. Furthermore, with the $m \times m$ - upper Hessenberg matrix H_{m}, we have $V_{m}^{T} A V_{m}=$ H_{m}.

Let H_{m} be a $m \times m$ Hessenberg matrix:

$$
H_{m}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 m} \\
h_{21} & h_{22} & \ldots & h_{2 m} \\
0 & \ddots & \ddots & \vdots \\
0 & \ldots & h_{m, m-1} & h_{m m}
\end{array}\right]
$$

Let $(m+1) \times m \bar{H}_{m}$ be the extended matrix of H_{m} :

$$
\bar{H}_{m}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 m} \\
h_{21} & h_{22} & \ldots & h_{2 m} \\
0 & \ddots & \ddots & \vdots \\
0 & \cdots & h_{m, m-1} & h_{m m} \\
0 & \cdots & 0 & h_{m+1, m}
\end{array}\right]
$$

The Arnoldi iteration produces matrices V_{m}, V_{m+1} and \bar{H}_{m} for matrix A satisfying:

$$
A V_{m}=V_{m+1} \bar{H}_{m}=V_{m} H_{m}+\boldsymbol{w}_{m} \boldsymbol{e}_{m}^{T}
$$

Here V_{m}, V_{m+1} have orthonormal columns

$$
V_{m}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \ldots \mid \boldsymbol{v}_{m}\right], \quad V_{m+1}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \ldots\left|\boldsymbol{v}_{m}\right| \boldsymbol{v}_{m+1}\right]
$$

The m th column of the equation:

$$
\begin{aligned}
A \boldsymbol{v}_{m} & =h_{1 m} \boldsymbol{v}_{1}+h_{2 m} \boldsymbol{v}_{2}+\cdots+h_{m m} \boldsymbol{v}_{m} \\
& +h_{m+1, m} \boldsymbol{v}_{m+1}
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
h_{1 m}=A \boldsymbol{v}_{m} \cdot \boldsymbol{v}_{1} \\
\vdots \\
h_{m+1, m}=\left\|A \boldsymbol{v}_{m}-h_{1 m} \boldsymbol{v}_{1} \ldots-h_{m m} \boldsymbol{v}_{m}\right\| \\
\boldsymbol{v}_{m+1}=\left(A \boldsymbol{v}_{m}-h_{1 m} \boldsymbol{v}_{1} \ldots-h_{m m} \boldsymbol{v}_{m}\right) / h_{m+1, m}
\end{gathered}
$$

Arnoldi Algorithm

\[

\]

- $V_{m}^{T} V_{m}=I_{m \times m}$.
- If Arnoldi process breaks down at $m t h$ step, $\boldsymbol{w}_{m}=\mathbf{0}$ is still welldefined but not \boldsymbol{v}_{m+1}, and the algorithm stop.
- In this case, the last row of \bar{H}_{m} is set to zero, $h_{m+1, m}=0$

Stable Arnoldi Algorithm

Choose \boldsymbol{x}_{0} and let $\boldsymbol{v}_{1}=\boldsymbol{x}_{0} /\left\|\boldsymbol{x}_{0}\right\|$.
for $j=1, \ldots, m$
$\boldsymbol{w}=A \boldsymbol{v}_{j}$
for $i=1, \ldots, j$

$$
\begin{gathered}
h_{i j}=<\boldsymbol{w}, \boldsymbol{v}_{i}> \\
\boldsymbol{w}=\boldsymbol{w}-h_{i j} \boldsymbol{v}_{i}
\end{gathered}
$$

endfor

$$
\begin{aligned}
& h_{j+1, j}=\|\boldsymbol{w}\|_{2} \\
& \text { if } h_{j+1, j}=0 \text {, then stop } \\
& \boldsymbol{v}_{j+1}=\boldsymbol{w} / h_{j+1, j}
\end{aligned}
$$

endfor

Generalized Minimum Residual (GMRES) Method

Let the Krylov space associated with $A \boldsymbol{x}=\boldsymbol{b}$ be $\mathrm{K}_{k}\left(A, \boldsymbol{r}_{0}\right)=$ $\operatorname{span}\left\{\boldsymbol{r}_{0}, A \boldsymbol{r}_{0}, A^{2} \boldsymbol{r}_{0}, \ldots, A^{k-1} \boldsymbol{r}_{0}\right\}$, where $\boldsymbol{r}_{0}=\boldsymbol{b}-A \boldsymbol{x}_{0}$ for some initial guess \boldsymbol{x}_{0}.

The $k t h(k \geq 1)$ iteration of GMRES is the solution to the least squares problem:

$$
\begin{gathered}
\text { minimize }{ }_{\boldsymbol{x} \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2} \text {, i.e. } \\
\text { Find } \boldsymbol{x}_{k} \in \boldsymbol{x}_{0}+\mathrm{K}_{k} \text { such that } \\
\left\|\boldsymbol{b}-A \boldsymbol{x}_{\boldsymbol{k}}\right\|_{2}=\text { min }_{\boldsymbol{x} \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2}
\end{gathered}
$$

- Remark: the GMRES was proposed in "Y. Saad and M. Schultz, GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869."

If $\boldsymbol{x} \in \boldsymbol{x}_{0}+\mathrm{K}_{k}$, then $\boldsymbol{x}=\boldsymbol{x}_{0}+\sum_{j=0}^{k-1} \gamma_{j} A^{j} \boldsymbol{r}_{0}$.
So $\boldsymbol{b}-A \boldsymbol{x}=\boldsymbol{b}-A \boldsymbol{x}_{0}-\sum_{j=0}^{k-1} \gamma_{j} A^{j+1} \boldsymbol{r}_{0}=\boldsymbol{r}_{0}-$ $\sum_{j=1}^{k} \gamma_{j-1} A^{j} \boldsymbol{r}_{0}$.

- Theorem (Kelly). Let A be a nonsingular diagonalizable matrix. Assume that A has only k distinct eigenvalues. Then GMRES will terminate in at most k iterations.
- Least Square via QR factorization

Let $A \in R^{m \times n}(m \geq n)$, and $\boldsymbol{b} \in R^{m}$ be given. Find $\boldsymbol{x} \in R^{n}$ so that the norm of $\boldsymbol{r}=\boldsymbol{b}-A \boldsymbol{x}$ is minimized.

Algorithm

1. Compute the QR factorization $A=\hat{Q} \hat{R}$
2. Compute vector $\hat{Q}^{*} \boldsymbol{b}$
3. Solve the upper triangular system $\hat{R} \boldsymbol{x}=\widehat{Q}^{*} \boldsymbol{b}$ for \boldsymbol{x} Reference: Numerical Linear Algebra, L.N. Trefethen, D. Bau, III

GMRES Implementation

- The $k t h(k \geq 1)$ iteration of GMRES is the solution to the least squares problem:

$$
\operatorname{minimize}_{x \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2}
$$

- Suppose we have used Arnoldi process constructed an orthogonal basis V_{k} for $\mathrm{K}_{k}\left(A, \boldsymbol{r}_{0}\right)$.
$-\boldsymbol{r}_{0}=\beta V_{k} \boldsymbol{e}_{1}$, where $\boldsymbol{e}_{1}=(1,0,0, \ldots)^{T}, \beta=\left\|\boldsymbol{r}_{0}\right\|_{2}$
- Any vector $\boldsymbol{z} \in \mathrm{K}_{k}\left(A, \boldsymbol{r}_{0}\right)$ can be written as $\boldsymbol{z}=$ $\sum_{l=1}^{k} y_{l} \boldsymbol{v}_{l}^{k}$, where \boldsymbol{v}_{l}^{k} is the lth column of V_{k}. Denote $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)^{T} \in R^{k}$.

$$
\boldsymbol{z}=V_{k} \boldsymbol{y}
$$

Since $\boldsymbol{x}-\boldsymbol{x}_{0}=V_{k} \boldsymbol{y}$ for some coefficient vector $\boldsymbol{y} \in$ R^{k}, we must have $\boldsymbol{x}_{k}=\boldsymbol{x}_{0}+V_{k} \boldsymbol{y}$ where \boldsymbol{y} minimizes $\left\|\boldsymbol{b}-A\left(\boldsymbol{x}_{0}+V_{k} \boldsymbol{y}\right)\right\|_{2}=\left\|\boldsymbol{r}_{0}-A V_{k} \boldsymbol{y}\right\|_{2}$.

- The $k t h(k \geq 1)$ iteration of GMRES now is equivalent to a least squares problem in R^{k}, i.e.

$$
\begin{aligned}
& \text { minimize }_{\boldsymbol{x} \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2} \\
& \quad=\text { minimize }_{y \in R^{k}}\left\|\boldsymbol{r}_{0}-A V_{k} \boldsymbol{y}\right\|_{2}
\end{aligned}
$$

- Remark: This is a linear least square problem, which can be solved by QR factorization. However, $A V_{k}$ must be computed at each iteration.
- The associate normal equation is $\left(A V_{k}\right)^{T} A V_{k} \boldsymbol{y}=\left(A V_{k}\right)^{T} \boldsymbol{r}_{0}$.
- But we will solve it differently.
- Let \boldsymbol{x}_{k} be $k t h$ iterative solution of GMRES.

Define: $\boldsymbol{r}_{k}=\boldsymbol{b}-A \boldsymbol{x}_{k}=\boldsymbol{r}_{0}-A\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{0}\right)=$ $\beta V_{k+1} \boldsymbol{e}_{1}-A\left(\boldsymbol{x}_{0}+V_{k} \boldsymbol{y}-\boldsymbol{x}_{0}\right)=\beta V_{k+1} \boldsymbol{e}_{1}-$ $V_{k+1} \bar{H}_{k} \boldsymbol{y}^{k}=V_{k+1}\left(\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right)$

Using orthonomality of V_{k+1} :

$$
\begin{aligned}
& \operatorname{minimize}_{x \in x_{0}+K_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2} \\
& \quad=\text { minimize }_{y \in R^{k}}\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\|_{2}
\end{aligned}
$$

Algorithm 3.4.2. gmresa $(x, b, A, \epsilon, k \max , \rho)$

1. $r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho, k=0$
2. While $\rho>\epsilon\|b\|_{2}$ and $k<k \max$ do
(a) $k=k+1$
(b) for $j=1, \ldots, k$

$$
h_{j k}=\left(A v_{k}\right)^{T} v_{j}
$$

(c) $v_{k+1}=A v_{k}-\sum_{j=1}^{k} h_{j k} v_{j}$
(d) $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
(e) $v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$
(f) $e_{1}=(1,0, \ldots, 0)^{T} \in R^{k+1}$

Minimize $\left\|\beta e_{1}-\bar{H}_{k} y^{k}\right\|_{R^{k+1}}$ over R^{k} to obtain y^{k}.
(g) $\rho=\left\|\beta e_{1}-\bar{H}_{k} y^{k}\right\|_{R^{k+1}}$.
3. $x_{k}=x_{0}+V_{k} y^{k}$.
"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations" .

$\operatorname{minimize}_{y \in R^{k}}\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\|_{2}$

Theorem. Let $n \times k(k \leq n)$ matrix B be with linearly independent columns (full column rank). Let $B=Q R$ be a $Q R$ factorization of B. Then for each $\boldsymbol{b} \in R^{n}$, the equation $B \boldsymbol{u}=\boldsymbol{b}$ has a unique least-square solution, given by $\widehat{\boldsymbol{u}}=R^{-1} Q^{T} \boldsymbol{b}$.

Using Householder reflection to do QR factorization gives $\bar{H}_{k}=Q_{k+1} \bar{R}_{k}$ where $Q_{k+1} \in R^{(k+1) \times(k+1)}$ is orthogonal and $\bar{R}_{k} \in R^{(k+1) \times k}$ has the form $\bar{R}_{k}=\left[\begin{array}{c}R_{k} \\ 0\end{array}\right]$, where $R_{k} \in R^{k \times k}$ is upper triangular.

- \boldsymbol{v}_{j} may become nonorthogonal as a result of round off errors.
$-\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\|_{2}$ which depends on orthogonality, will not hold and the residual could be inaccurate.
- Replace the loop in Step 2c of Algorithm gmresa with

$$
\begin{aligned}
& v_{k+1}=A v_{k} \\
& \text { for } j=1, \ldots k \\
& \quad v_{k+1}=v_{k+1}-\left(v_{k+1}^{T} v_{j}\right) v_{j}
\end{aligned}
$$

We illustrate this point with a simple example from [128], doing the computations in MATLAB. Let $\delta=10^{-7}$ and define

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
\delta & \delta & 0 \\
\delta & 0 & \delta
\end{array}\right)
$$

We orthogonalize the columns of A with classical Gram-Schmidt to obtain

$$
V=\left(\begin{array}{lll}
1.0000 e+00 & 1.0436 e-07 & 9.9715 e-08 \\
1.0000 e-07 & 1.0456 e-14 & -9.9905 e-01 \\
1.0000 e-07 & -1.0000 e+00 & 4.3568 e-02
\end{array}\right)
$$

The columns of V_{U} are not orthogonal at all. In fact $v_{2}^{T} v_{3} \approx-.004$. For modified Gram-Schmidt

$$
V=\left(\begin{array}{lll}
1.0000 e+00 & 1.0436 e-07 & 1.043 \mid 6 e-07 \\
1.0000 e-07 & 1.0456 e-14 & -1.0000 e+00 \\
1.0000 e-07 & -1.0000 e+00 & 4.3565 e-16
\end{array}\right)
$$

Here $\left|v_{i}^{T} v_{j}-\delta_{i j}\right| \leq 10^{-8}$ for all i, j.

Algorithm 3.4.3. $\operatorname{gmresb}(x, b, A, \epsilon, k m a x, \rho)$ 1. $r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho, k=0$
2. While $\rho>\epsilon\|b\|_{2}$ and $k<k \max$ do
(a) $k=k+1$
(b) $v_{k+1}=A v_{k}$
for $j=1, \ldots k$
i. $h_{j k}=v_{k+1}^{T} v_{j}$
ii. $v_{k+1}=v_{k+1}-h_{j k} v_{j}$
(c) $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
(d) $v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$
(e) $e_{1}=(1,0, \ldots, 0)^{T} \in R^{k+1}$

Minimize $\left\|\beta e_{1}-\bar{H}_{k} y^{k}\right\|_{R^{k+1}}$ to obtain $y^{k} \in R^{k}$.
(f) $\rho=\left\|\beta e_{1}-\bar{H}_{k} y^{k}\right\|_{R^{k+1}}$.
3. $x_{k}=x_{0}+V_{k} y^{k}$.

Modified Gram-Schmidt Process with Reorthogonalization

- $v_{k+1}=A v_{k}$
for $j=1, \ldots, k$
$h_{j k}=v_{k+1}^{T} v_{j}$
$v_{k+1}=v_{k+1}-h_{j k} v_{j}$
- $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
- If loss of orthogonality is detected

For $j=1, \ldots, k$
$h_{t m p}=v_{k+1}^{T} v_{j}$
$h_{j k}=h_{j k}+h_{t m p}$
$v_{k+1}=v_{k+1}-h_{t m p} v_{j}$

- $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
- $v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$

Test Reorthogonalization
If $\left|\mid A v_{k}\left\|_{2}+\delta\right\| v_{k+1} \|_{2}=\right.$
$\left\|A v_{k}\right\|_{2}$ to working precision.
$\delta=10^{-3}$

Givens Rotations

$\operatorname{minimize}_{y \in R^{k}}\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\|_{2}$ involves QR factorization.
Do QR factorizations of \bar{H}_{k} by Givens Rotations.

- A 2×2 Givens rotation is a matrix of the form $G=\left[\begin{array}{cc}C & -s \\ s & c\end{array}\right]$ where $c=\cos (\theta), s=\sin (\theta)$ for $\theta \in[-\pi, \pi]$. The orthogonal matrix G rotates the vector $(c,-s)^{T}$, which makes an angle of $-\theta$ with the x-axis, through an angle θ so that it overlaps the x-axis.

$$
G\left[\begin{array}{c}
c \\
-S
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

An $N \times N$ Givens rotation $G_{j}(c, s)$ replaces a 2×2 block on the diagonal of the $N \times N$ identity matrix with a 2×2 Givens rotations. $G_{j}(c, s)$ is with a 2×2 Givens rotations in rows and columns j and $j+1$.

$$
G=\left(\begin{array}{ccccccc}
1 & 0 & & \cdots & & & 0 \\
0 & \ddots & \ddots & & & & \\
& \ddots & c & -s & & & \\
\vdots & & s & c & 0 & & \vdots \\
& & & 0 & 1 & \ddots & \\
& & & & \ddots & \ddots & 0 \\
0 & & & \cdots & & 0 & 1
\end{array}\right)
$$

- Givens rotations can be used in reducing Hessenberg matrices to triangular form. This can be done in $O(N)$ floating-point operations.
- Let H be an $N \times M(N \geq M)$ upper Hessenberg matrix with rank M. We reduce H to triangular form by first multiplying the matrix by a Givens rotations that zeros h_{21} (values of h_{11} and subsequent columns are changed)
- Step 1: Define $G_{1}\left(c_{1}, s_{1}\right)$ by $c_{1}=h_{11} / \sqrt{h_{11}^{2}+h_{21}^{2}}$ and $s_{1}=-h_{21} / \sqrt{h_{11}^{2}+h_{21}^{2}}$. Replace H by $G_{1} H$.
- Step 2: Define $G_{2}\left(c_{2}, s_{2}\right)$ by $c_{2}=h_{22} / \sqrt{h_{22}^{2}+h_{32}^{2}}$ and
 Remark: G_{2} does not affect the first column of H.
- Step j: Define $G_{j}\left(c_{j}, s_{j}\right)$ by $c_{j}=h_{j j} / \sqrt{h_{j j}^{2}+h_{j+1, j}^{2}}$ and $s_{j}=-h_{j+1, j} / \sqrt{h_{j j}^{2}+h_{j+1, j}^{2}}$. Replace H by $G_{j} H$.

Setting $Q=G_{N} \ldots G_{1} . R=Q H$ is upper triangular.

Let $\bar{H}_{k}=Q R$ by Givens rotations matrices. minimize ${ }_{y \in R^{k}}\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\| \|_{2}$

$$
\begin{aligned}
& =\operatorname{minimize}_{y \in R^{k}}\left\|Q\left(\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right)\right\|_{2} \\
& =\text { minimize }_{y \in R^{k}}\left\|\beta Q \boldsymbol{e}_{1}-R \boldsymbol{y}^{k}\right\|_{2}
\end{aligned}
$$

AlGorithm 3.5.1. $\operatorname{gmres}(x, b, A, \epsilon, k \max , \rho)$

1. $r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho$,
$k=0 ; g=\rho(1,0, \ldots, 0)^{T} \in R^{k \max +1}$
2. While $\rho>\epsilon\|b\|_{2}$ and $k<k m a x$ do
(a) $k=k+1$
(b) $v_{k+1}=A v_{k}$
for $j=1, \ldots k$
i. $h_{j k}=v_{k+1}^{T} v_{j}$
ii. $v_{k+1}=v_{k+1}-h_{j k} v_{j}$
(c) $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
(d) Test for loss of orthogonality and reorthogonalize if necessary.
(e) $v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$
(f) i. If $k>1$ apply Q_{k-1} to the k th column of H.
ii. $\nu=\sqrt{h_{k, k}^{2}+h_{k+1, k}^{2}}$.
iii. $c_{k}=h_{k, k} / \nu, s_{k}=-h_{k+1, k} / \nu$
$h_{k, k}=c_{k} h_{k, k}-s_{k} h_{k+1, k}, h_{k+1, k}=0$
iv. $g=G_{k}\left(c_{k}, s_{k}\right) g$.
(g) $\rho=\left|(g)_{k+1}\right|$.
3. Set $r_{i, j}=h_{i, j}$ for $1 \leq i, j \leq k$.

Set $(w)_{i}=(g)_{i}$ for $1 \leq i \leq k$.
Solve the upper triangular system $R y^{k}=w$.
4. $x_{k}=x_{0}+V_{k} y^{k}$.

Preconditioning

Basic idea: using GMRES on a modified system such as $M^{-1} A \boldsymbol{x}=M^{-1} \boldsymbol{b}$.
The matrix $M^{-1} A$ need not to be formed explicitly. However, $M \boldsymbol{w}=\boldsymbol{v}$ need to be solved whenever needed.

Left preconditioning

$$
M^{-1} A \boldsymbol{x}=M^{-1} \boldsymbol{b}
$$

Right preconditioning

$$
A M^{-1} \boldsymbol{u}=\boldsymbol{b} \text { with } \boldsymbol{x}=M^{-1} \boldsymbol{u}
$$

Split preconditioning: M is factored as $M=M_{L} M_{R}$

$$
M_{L}^{-1} A M_{R}^{-1} \boldsymbol{u}=M_{L}^{-1} \boldsymbol{b} \text { with } \boldsymbol{x}=M_{R}^{-1} \boldsymbol{u}
$$

GMRES with Left Preconditioning

ALGORITHM 9.4: GMRES with Left Preconditioning

1. Compute $r_{0}=M^{-1}\left(b-A x_{0}\right), \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$
2. For $j=1, \ldots, m$ Do:
3. Compute $w:=M^{-1} A v_{j}$
4. For $i=1, \ldots, j$, Do:
5. $\quad h_{i, j}:=\left(w, v_{i}\right)$
6. $w:=w-h_{i, j} v_{i}$
7. EndDo
8. Compute $h_{j+1, j}=\|w\|_{2}$ and $v_{j+1}=w / h_{j+1, j}$
9. EndDo
10. Define $V_{m}:=\left[v_{1}, \ldots, v_{m}\right], H_{m}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq m}$
11. Compute $y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-H_{m} y\right\|_{2}$, and $x_{m}=x_{0}+V_{m} y_{m}$
12. If satisfied Stop, else set $x_{0}:=x_{m}$ and GoTo 1

The Arnoldi process constructs an orthogonal basis for
$\operatorname{Span}\left\{\boldsymbol{r}_{0}, M^{-1} A \boldsymbol{r}_{0},\left(M^{-1} A\right)^{2} \boldsymbol{r}_{0}, \ldots\left(M^{-1} A\right)^{k-1} \boldsymbol{r}_{0}\right\}$.
Sadd. Iterative Methods for Sparse Linear Systems

GMRES with Right Preconditioning

Right preconditioned GMRES is based on solving $A M^{-1} \boldsymbol{u}=\boldsymbol{b}$ with $\boldsymbol{x}=M^{-1} \boldsymbol{u}$.

- The initial residual is: $\boldsymbol{b}-A M^{-1} \boldsymbol{u}_{0}=\boldsymbol{b}-A \boldsymbol{x}_{0}$.
- This means all subsequent vectors of the Krylov subspace can be obtained without any references to the \boldsymbol{u}.
- At the end of right preconditioned GMRES:

$$
\begin{gathered}
\boldsymbol{u}_{m}=\boldsymbol{u}_{0}+\sum_{i=1}^{m} \boldsymbol{v}_{i} \eta_{i} \text { with } \boldsymbol{u}_{0}=M \boldsymbol{x}_{0} \\
\boldsymbol{x}_{m}=\boldsymbol{x}_{0}+M^{-1} \sum_{i=1}^{m} \boldsymbol{v}_{i} \eta_{i}
\end{gathered}
$$

GMRES with Right Preconditioning

ALGORITHM 9.5: GMRES with Right Preconditioning

1. Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$, and $v_{1}=r_{0} / \beta$
2. For $j=1, \ldots, m$ Do:
3. Compute $w:=A M^{-1} v_{j}$
4. For $i=1, \ldots, j$, Do:
5. $\quad h_{i, j}:=\left(w, v_{i}\right)$
6. $w:=w-h_{i, j} v_{i}$
7. EndDo
8. Compute $h_{j+1, j}=\|w\|_{2}$ and $v_{j+1}=w / h_{j+1, j}$
9. Define $V_{m}:=\left[v_{1}, \ldots, v_{m}\right], H_{m}=\left\{h_{i, j}\right\}_{1 \leq i \leq j+1 ; 1 \leq j \leq m}$
10. EndDo
11. Compute $y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\bar{H}_{m} y\right\|_{2}$, and $x_{m}=x_{0}+M^{-1} V_{m} y_{m}$.
12. If satisfied Stop, else set $x_{0}:=x_{m}$ and GoTo 1 .

The Arnoldi process constructs an orthogonal basis for
$\operatorname{Span}\left\{\boldsymbol{r}_{0}, A M^{-1} \boldsymbol{r}_{0},\left(A M^{-1}\right)^{2} \boldsymbol{r}_{0}, \ldots\left(A M^{-1}\right)^{k-1} \boldsymbol{r}_{0}\right\}$.

Sadd. Iterative Methods for Sparse Linear Systems.

Split Preconditioning

- M can be a factorization of the form $M=L U$.
- Then $L^{-1} A U^{-1} \boldsymbol{u}=L^{-1} \boldsymbol{b}$, with $\boldsymbol{x}=U^{-1} \boldsymbol{u}$.
- Need to operate on the initial residual by $L^{-1}(\boldsymbol{b}-$ $A x_{0}$)
- Need to operate on the linear combination $U^{-1}\left(V_{m} \boldsymbol{y}_{m}\right)$ in forming the approximate solution

Comparison of Left and Right Preconditioning

- Spectra of $M^{-1} A, A M^{-1}$ and $L^{-1} A U^{-1}$ are identical.
- In principle, one should expect convergence to be similar.
- When M is ill-conditioned, the difference could be substantial.

Jacobi Preconditioner

Iterative method for solving $A x=b$ takes the form: $\boldsymbol{x}_{k+1}=M^{-1} N \boldsymbol{x}_{k}+M^{-1} \boldsymbol{b}$ where M and N split A into $A=M-N$.

- Define $G=M^{-1} N=M^{-1}(M-A)=I-M^{-1} A$ and $\boldsymbol{f}=M^{-1} \boldsymbol{b}$.
- Iterative method is to solve $(I-G) \boldsymbol{x}=\boldsymbol{f}$, which can be written as $M^{-1} A \boldsymbol{x}=M^{-1} \boldsymbol{b}$.

Jacobi iterative method: $\boldsymbol{x}_{k+1}=G_{J A} \boldsymbol{x}_{k}+\boldsymbol{f}$ where
$G_{J A}=\left(I-D^{-1} A\right)$ and $\boldsymbol{f}=D^{-1} \boldsymbol{b}$

- $M=D$ for Jacobi method.

SOR/SSOR Preconditioner

- Define: $A=D-E-F$
- Gauss-Seidel: $G_{G S}=I-(D-E)^{-1} A$
- $M_{S O R}=\frac{1}{w}(D-w E)$

A symmetric SOR (SSOR) consists of:

$$
\begin{gathered}
(D-w E) \boldsymbol{x}_{k+\frac{1}{2}}=[w F+(1-w) D] \boldsymbol{x}_{k}+w \boldsymbol{b} \\
(D-w F) \boldsymbol{x}_{k+1}=[w E+(1-w) D] \boldsymbol{x}_{k+\frac{1}{2}}+w \boldsymbol{b}
\end{gathered}
$$

This gives

$$
\boldsymbol{x}_{k+1}=G_{S S O R} \boldsymbol{x}_{k}+\boldsymbol{f}
$$

Where
$G_{S S O R}=(D-w F)^{-1}(w E+(1-w) D)(D-w E)^{-1}(w F+$
$(1-w) D)$

- $M_{S S O R}=(D-w E) D^{-1}(D-w F) ; M_{S G S}=(D-E) D^{-1}(D-F) ;$
- Note: SSOR usually is used when A is symmetric

Take symmetric GS for example: $M_{S G S}=(D-E) D^{-1}(D-F)$

- Define: $L=(D-E) D^{-1}=I-E D^{-1}$ and $U=D-F$.
- L is a lower triangular matrix and U is a upper triangular matrix.
- To solve $M_{S G S} \boldsymbol{w}=\boldsymbol{x}$ for \boldsymbol{w}, a forward solve and a backward solve are used:
- Solve $\left(I-E D^{-1}\right) \boldsymbol{z}=\boldsymbol{x}$ for \boldsymbol{z}
- Solve $(D-F) \boldsymbol{w}=\boldsymbol{z}$ for \boldsymbol{w}

Incomplete LU(0) Factorization

Define: $N Z(X)=\left\{(i, j) \mid X_{i, j} \neq 0\right\}$ Incomplete LU (ILU(0)):

- $A=L U+R$ with $N Z(L) \cup N Z(U)=N Z(A)$

$$
r_{i j}=0 \quad \text { for }(i, j) \in N Z(A)
$$

I.e. L and U have no fill-ins at the entries $a_{i j}=0$.

```
for \(i=1\) to \(n\)
    for \(k=1\) to \(i-1\) and if \((i, k) \in N Z(A)\)
        \(a_{i k}=a_{i k} / a_{k j}\)
        for \(\mathrm{j}=k+1\) to \(n\) and if \((i, k) \in N Z(A)\)
\[
a_{i j}=a_{i j}-a_{i k} a_{k j}
\]
end;
end;
end;
```

ILU(0)

Figure 10.2 The $\operatorname{ILU(0)}$ factorization for a five-point matrix.

Parallel GMRES

- J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transactions on Numerical Analyis. 3:160-176, 1995.
- Implementation in PETSc (Portable, Extensible Toolkit for Scientific Computation)
- http://www.mcs.anl.gov/petsc/

Parallel Libraries

ScaLAPACK

- http://www.netlib.org/scalapack/
- Based on LAPACK (Linear Algebra PACKage) and BLAS (Basic Linear Algebra Subroutines)
- Parallelized by "divide and conquer" or block distribution
- Written in Fortran 90
- Successor of LINPACK, which was originally written for vector supercomputers in the 1970s
- Implemented on top of MPI using MIMD, SPMD, and used explicit message passing

PETSc (Portable, Extensible Toolkit for Scientific Computation)

- http://www.mcs.anl.gov/petsc/
- Suite of data structures (core: distributed vectors and matrices) and routines for linea and non-linear solvers
- User (almost) never has to call MPI himself when using PETSc
- Uses two MPI communicators: PETSC_COMM_SELF for the library-internal communication and PETSC_COMM_WORLD for user processes
- Written in C, callable from Fortran
- Has been used to solve systems with over 500 millions unknowns
- Has been shown to scale up to over 6000 processors

PETSc Structure

PETSc PDE Application Codes

ODE Integrators
Visualization
Nonlinear Solvers
Interface
Linear Solvers
Preconditioners + Krylov Methods

Object-Oriented
Matrices, Vectors, Indices
Grid
Management

Profiling Interface

Computation and Communication Kernels MPI, MPI-IO, BLAS, LAPACK

PETSc Numerical Solvers

Nonlinear Solvers

Newton-based Methods		Other
Line Search	Trust Region	

Krylov Subspace Methods							
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other

Preconditioners						
Additive Schwartz	Block	Jacobi	ILU	ICC	LU (Sequential only)	Others

Matrices					
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Block Diagonal (BDIAG)	Dense	Matrix-free	Other

Distributed Arrays

Vectors
Index Sets
Indices
,

Block Indices \quad Stride Other

Parallel Random Number Generator

SPRNG (The Scalable parallel random number generators library)

- http://sprng.cs.fsu.edu/
- Random number sequence does not depend on the number of processors used, but only on the seed a reproducible Monte Carlo simulations in parallel
- SPRNG implements parallel-safe, high-quality random number generators
- C++/Fortran (used to be C/Fortran in previous versions)

Parallel PDE Solver

POOMA (Parallel Object-Oriented Methods and Applications)

- http://acts.nersc.gov/formertools/pooma/index.html
- Collection of templated C++ classes for writing parallel PDE solvers
- Provides high-level data types (abstractions) for fields and particles using data-parallel arrays
- Supports finite-difference simulations on structured, unstructured, and adaptive grids. Also supports particle simulations, hybrid particle-mesh simulations, and Monte Carlo
- Uses mixed message-passing/thread parallelism

Many more...

- Aztec (iterative solvers for sparse linear systems)
- SuperLU (LU decomposition)
- Umfpack (unsymmetric multifrontal LU)
- EISPACK (eigen-solvers)
- Fishpack (cyclic reduction for 2nd \& 4th order FD)
- PARTI (Parallel run-time system)
- Bisect (recursive orthogonal bisection)
- ROMIO (parallel distributed file I/O)
- KINSol (solves the nonlinear algebraic systems) https://computation.IInl.gov/casc/sundials/main.html
- SciPy (Scientific Tools for Phython) http://www.scipy.org/

References:

- C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
- Yousef Sadd. Iterative methods for Sparse Linear Systems
- G. Karypis and V. Kumar. Parallel Threshold-based ILU Factorization. Technical Report \#96-061. U. of Minnesota, Dept. of Computer Science, 1998.
- P.-O. Persson and J. Peraire. Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations. SIAM J. on Sci. Comput. 30(6), 2008.

