
Lecture 8: Fast Linear Solvers
(Part 6)

1

Nonsymmetric System of Linear Equations

• The CG method requires to 𝐴 to be an 𝑛 × 𝑛
symmetric positive definite matrix to solve
𝐴𝒙 = 𝒃.

• If 𝐴 is nonsymmetric:

– Convert the system to a symmetric positive definite
one

– Modify CG to handle general matrices

2

Normal Equation Approach

The normal equations corresponding to 𝐴𝒙 = 𝒃 are
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃

• If 𝐴 is nonsingular then 𝐴𝑇𝐴 is symmetric positive
definite and the CG method can be applied to solve
𝐴𝑇𝐴𝒙 = 𝐴𝑇𝒃 (CG normal residual -- CGNR).

• Alternatively, we can first solve A𝐴𝑇𝒚 = 𝒃 for 𝒚, then
𝒙 = 𝐴𝑇𝒚.

• Disadvantages:

– Each iteration requires 𝐴𝑇𝐴 or A𝐴𝑇

– Condition number of 𝐴𝑇𝐴 or A𝐴𝑇 is square of that of 𝐴.
However, CG works well if condition number is small

3

Arnoldi Iteration

• The Arnoldi method is an orthogonal projection onto a
Krylov subspace Κ𝑚(𝐴,𝒓0) for 𝑛 × 𝑛 nonsymmetric matrix
𝐴. Here 𝑚 ≪ 𝑛.

• Arnoldi reduces 𝐴 to a Hessenberg form.

Upper Hessenberg matrix: zero entries below the first subdiagonal.
2 3 4 1
2 5 1 9
0 2 1 2
0 0 3 2

Lower Hessenberg matrix: zero entries above the first superdiagonal.
3 2 0 0
2 5 1 0
1 2 1 2
3 4 3 2

4

5

Mechanics of Arnoldi Iteration

• For 𝐴 ∈ 𝑅𝑛×𝑛, a given vector 𝒓0 ∈ 𝑅𝑛 defines a sequence
of Krylov subspaces Κ𝑚(𝐴, 𝒓0). Matrix
Κ𝑚 = [𝒓0|𝐴𝒓0|𝐴

2𝒓0| … |𝐴𝑚−1𝒓0] ∈ 𝑅𝑛×𝑚 is the
corresponding Krylov matrix.

• The Gram-Schmidt procedure for forming an
orthonormal basis for Κ𝑚 is called the Arnoldi process.

– Theorem. The Arnoldi procedure generates a reduced QR
factorization of Krylov matrix Κ𝑚 in the form Κ𝑚 = 𝑉𝑚𝑅𝑚 with
𝑉𝑚 ∈ 𝑅𝑛×𝑚 and having orthonormal columns and with a
triangular matrix 𝑅𝑚 ∈ 𝑅𝑚×𝑚. Furthermore, with the
𝑚 × 𝑚 − 𝑢𝑝𝑝𝑒𝑟 Hessenberg matrix 𝐻𝑚, we have 𝑉𝑚

𝑇𝐴𝑉𝑚 =
𝐻𝑚.

Let 𝐻𝑚 be a 𝑚 × 𝑚 Hessenberg matrix:

𝐻𝑚 =

ℎ11 ℎ12 … ℎ1𝑚

ℎ21 ℎ22 … ℎ2𝑚

0 ⋱ ⋱ ⋮
0 … ℎ𝑚,𝑚−1 ℎ𝑚𝑚

Let (𝑚 + 1) × 𝑚 𝐻 𝑚 be the extended matrix of 𝐻𝑚:

𝐻 𝑚 =

ℎ11 ℎ12 … ℎ1𝑚

ℎ21 ℎ22 … ℎ2𝑚

0 ⋱ ⋱ ⋮
0 … ℎ𝑚,𝑚−1 ℎ𝑚𝑚

0 … 0 ℎ𝑚+1,𝑚

The Arnoldi iteration produces matrices 𝑉𝑚, 𝑉𝑚+1 and 𝐻 𝑚 for matrix 𝐴
satisfying:

𝐴𝑉𝑚 = 𝑉𝑚+1𝐻 𝑚 = 𝑉𝑚𝐻𝑚 + 𝒘𝑚𝒆𝑚
𝑇

Here 𝑉𝑚, 𝑉𝑚+1 have orthonormal columns
𝑉𝑚 = [𝒗1 𝒗2 … |𝒗𝑚], 𝑉𝑚+1 = [𝒗1 𝒗2 … |𝒗𝑚|𝒗𝑚+1]

6

The 𝑚th column of the equation:
𝐴𝒗𝑚 = ℎ1𝑚𝒗1 + ℎ2𝑚𝒗2 + ⋯+ ℎ𝑚𝑚𝒗𝑚

+ ℎ𝑚+1,𝑚𝒗𝑚+1

Therefore,
ℎ1𝑚 = 𝐴𝒗𝑚 ∙ 𝒗1

⋮
ℎ𝑚+1,𝑚 = ||𝐴𝒗𝑚 − ℎ1𝑚𝒗1 …− ℎ𝑚𝑚𝒗𝑚||

𝒗𝑚+1 = (𝐴𝒗𝑚 − ℎ1𝑚𝒗1 …− ℎ𝑚𝑚𝒗𝑚)/ℎ𝑚+1,𝑚

7

Arnoldi Algorithm

Choose 𝒓0 and let 𝒗1 = 𝒓0/| 𝒓0 |
for 𝑗 = 1,… ,𝑚 − 1

 𝒘 = 𝐴𝒗𝑗 − ((𝐴𝒗𝑗)
𝑇𝒗𝑖)𝒗𝑖

𝑗
𝑖=1

 𝒗𝑗+1 = 𝒘/||𝒘||2
endfor
Remark: Choose 𝒗1. Then for 𝑗 = 1, … ,𝑚 − 1, first multiply the current Arnoldi
vector 𝒗𝑗 by A, and orthonormalize 𝐴𝒗𝑗 against all previous Arnoldi vectors.

8

9

• 𝑉𝑚
𝑇𝑉𝑚 = 𝐼𝑚×𝑚.

• If Arnoldi process breaks down at 𝑚𝑡ℎ step, 𝒘𝑚 = 𝟎 is still well-
defined but not 𝒗𝑚+1, and the algorithm stop.

• In this case, the last row of 𝐻 𝑚 is set to zero, ℎ𝑚+1,𝑚 = 0

Stable Arnoldi Algorithm

Choose 𝒙0 and let 𝒗1 = 𝒙0/| 𝒙0 | .

for 𝑗 = 1,… ,𝑚

 𝒘 = 𝐴𝒗𝑗

 for 𝑖 = 1,… , 𝑗

 ℎ𝑖𝑗 =< 𝒘, 𝒗𝑖 >

 𝒘 = 𝒘 − ℎ𝑖𝑗𝒗𝑖

 endfor

 ℎ𝑗+1,𝑗 = ||𝒘||2

 if ℎ𝑗+1,𝑗 = 0, then stop

 𝒗𝑗+1 = 𝒘/ℎ𝑗+1,𝑗

endfor

 10

Generalized Minimum Residual (GMRES) Method

Let the Krylov space associated with 𝐴𝒙 = 𝒃 be Κ𝑘 𝐴, 𝒓0 =
𝑠𝑝𝑎𝑛 𝒓0, 𝐴𝒓0, 𝐴

2𝒓0, … , 𝐴𝑘−1𝒓0 , where 𝒓0 = 𝒃 − 𝐴 𝒙0 for
some initial guess 𝒙0.

The 𝑘𝑡ℎ (𝑘 ≥ 1) iteration of GMRES is the solution to the
least squares problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘
||𝒃 − 𝐴𝒙||2, i.e.

Find 𝒙𝑘 ∈ 𝒙0 + Κ𝑘 such that
||𝒃 − 𝐴𝒙𝑘||2 = 𝑚𝑖𝑛𝒙∈𝒙0+Κ𝑘

||𝒃 − 𝐴𝒙||2

• Remark: the GMRES was proposed in “Y. Saad and M. Schultz,

GMRES a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7
(1986), pp. 856–869.”

11

If 𝒙 ∈ 𝒙0 + Κ𝑘, then 𝒙 = 𝒙0 + 𝛾𝑗𝐴
𝑗𝒓0

𝑘−1
𝑗=0 .

So 𝒃 − 𝐴𝒙 = 𝒃 − 𝐴𝒙0 − 𝛾𝑗𝐴
𝑗+1𝒓0

𝑘−1
𝑗=0 = 𝒓0 −

 𝛾𝑗−1𝐴
𝑗𝒓0

𝑘
𝑗=1 .

12

• Theorem (Kelly). Let A be a nonsingular
diagonalizable matrix. Assume that A has only k
distinct eigenvalues. Then GMRES will terminate in at
most k iterations.

• Least Square via QR factorization

Let 𝐴 ∈ 𝑅𝑚×𝑛 (𝑚 ≥ 𝑛), and 𝒃 ∈ 𝑅𝑚 be given. Find 𝒙 ∈ 𝑅𝑛
so that the norm of 𝒓 = 𝒃 − 𝐴𝒙 is minimized.

Algorithm

1. Compute the QR factorization 𝐴 = 𝑄 𝑅

2. Compute vector 𝑄 ∗𝒃

3. Solve the upper triangular system 𝑅 𝒙 = 𝑄 ∗𝒃 for 𝒙

Reference: Numerical Linear Algebra, L.N. Trefethen, D. Bau, III

13

GMRES Implementation

• The 𝑘𝑡ℎ (𝑘 ≥ 1) iteration of GMRES is the
solution to the least squares problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘
||𝒃 − 𝐴𝒙||2

• Suppose we have used Arnoldi process
constructed an orthogonal basis 𝑉𝑘 for Κ𝑘 𝐴, 𝒓0 .

– 𝒓0 = 𝛽𝑉𝑘𝒆1, where 𝒆1 = (1,0,0, …)𝑇, 𝛽 = ||𝒓0||2

– Any vector 𝒛 ∈ Κ𝑘 𝐴, 𝒓0 can be written as 𝒛 =
 𝑦𝑙𝒗𝑙

𝑘𝑘
𝑙=1 , where 𝒗𝑙

𝑘 is the 𝑙𝑡ℎ column of 𝑉𝑘 . Denote
𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑘)

𝑇∈ 𝑅𝑘.

𝒛 = 𝑉𝑘𝒚

14

 Since 𝒙 − 𝒙0 = 𝑉𝑘𝒚 for some coefficient vector 𝒚 ∈
𝑅𝑘, we must have 𝒙𝑘 = 𝒙0 + 𝑉𝑘𝒚 where 𝒚 minimizes
||𝒃 − 𝐴(𝒙0 + 𝑉𝑘𝒚)||2 = ||𝒓0 − 𝐴𝑉𝑘𝒚||2.

• The 𝑘𝑡ℎ (𝑘 ≥ 1) iteration of GMRES now is
equivalent to a least squares problem in 𝑅𝑘 , i.e.

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘
||𝒃 − 𝐴𝒙||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝒓0 − 𝐴𝑉𝑘𝒚||2

– Remark: This is a linear least square problem, which can be
solved by QR factorization. However, 𝐴𝑉𝑘 must be computed at
each iteration.

– The associate normal equation is (𝐴𝑉𝑘)
𝑇𝐴𝑉𝑘𝒚 = (𝐴𝑉𝑘)

𝑇𝒓0.

– But we will solve it differently.
15

• Let 𝒙𝑘 be 𝑘𝑡ℎ iterative solution of GMRES.

Define: 𝒓𝑘 = 𝒃 − 𝐴𝒙𝑘 = 𝒓0 − 𝐴 𝒙𝑘 − 𝒙0 =
𝛽𝑉𝑘+1𝒆1 − 𝐴 𝒙0 + 𝑉𝑘𝒚 − 𝒙0 = 𝛽𝑉𝑘+1𝒆1 −
𝑉𝑘+1𝐻 𝑘𝒚

𝑘 = 𝑉𝑘+1(𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘)

Using orthonomality of 𝑉𝑘+1:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝒙∈𝒙0+Κ𝑘

||𝒃 − 𝐴𝒙||2
= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚

𝑘||2

16

17 “C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations” .

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2

Theorem. Let 𝑛 × 𝑘 (𝑘 ≤ 𝑛) matrix 𝐵 be with linearly
independent columns (full column rank). Let 𝐵 = 𝑄𝑅
be a 𝑄𝑅 factorization of 𝐵. Then for each 𝒃 ∈ 𝑅𝑛, the
equation 𝐵𝒖 = 𝒃 has a unique least-square solution,
given by 𝒖 = 𝑅−1𝑄𝑇𝒃.

Using Householder reflection to do QR factorization

gives 𝐻 𝑘 = 𝑄𝑘+1𝑅 𝑘 where 𝑄𝑘+1 ∈ 𝑅(𝑘+1)×(𝑘+1) is
orthogonal and 𝑅 𝑘 ∈ 𝑅(𝑘+1)×𝑘 has the form

𝑅 𝑘 =
𝑅𝑘

0
, where 𝑅𝑘 ∈ 𝑅𝑘×𝑘 is upper triangular.

18

• 𝒗𝑗 may become nonorthogonal as a result of

round off errors.

– ||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2 which depends on orthogonality, will

not hold and the residual could be inaccurate.

– Replace the loop in Step 2c of Algorithm gmresa with

19

20 “C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations” .

21 “C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations” .

22

Modified Gram-Schmidt Process with
Reorthogonalization

Test Reorthogonalization

If 𝐴𝑣𝑘||2 + 𝛿 𝑣𝑘+1||2 =

||𝐴𝑣𝑘||2 to working
precision.
 𝛿 = 10−3

Givens Rotations

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2 involves QR

factorization.

Do QR factorizations of 𝐻 𝑘by Givens Rotations.

• A 2 × 2 Givens rotation is a matrix of the form

𝐺 =
𝑐 −𝑠
𝑠 𝑐

 where 𝑐 = cos (𝜃), 𝑠 = sin (𝜃) for

𝜃 ∈ [−𝜋, 𝜋]. The orthogonal matrix 𝐺 rotates the
vector (𝑐, −𝑠)𝑇 , which makes an angle of −𝜃 with
the 𝑥-axis, through an angle 𝜃 so that it overlaps
the 𝑥-axis.

𝐺
𝑐
−𝑠

=
1
0

23

An 𝑁 × 𝑁 Givens rotation 𝐺𝑗(𝑐, 𝑠) replaces a 2 × 2
block on the diagonal of the 𝑁 × 𝑁 identity matrix with
a 2 × 2 Givens rotations. 𝐺𝑗(𝑐, 𝑠) is with a 2 × 2 Givens
rotations in rows and columns 𝑗 and 𝑗 + 1.

24

• Givens rotations can be used in reducing Hessenberg
matrices to triangular form. This can be done in 𝑂 𝑁
floating-point operations.

• Let 𝐻 be an 𝑁 × 𝑀(𝑁 ≥ 𝑀) upper Hessenberg
matrix with rank 𝑀. We reduce 𝐻 to triangular form
by first multiplying the matrix by a Givens rotations
that zeros ℎ21 (values of ℎ11 and subsequent columns
are changed)

25

• Step 1: Define 𝐺1(𝑐1, 𝑠1) by 𝑐1 = ℎ11/ ℎ11
2 + ℎ21

2 and
𝑠1 = −ℎ21/ ℎ11

2 + ℎ21
2 . Replace 𝐻 by 𝐺1𝐻.

• Step 2: Define 𝐺2(𝑐2, 𝑠2) by 𝑐2 = ℎ22/ ℎ22
2 + ℎ32

2 and

𝑠2 = −ℎ32/ ℎ22
2 + ℎ32

2 . Replace 𝐻 by 𝐺2𝐻.

Remark: 𝐺2 does not affect the first column of 𝐻.

• …

• Step j: Define 𝐺𝑗(𝑐𝑗 , 𝑠𝑗) by 𝑐𝑗 = ℎ𝑗𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2 and

𝑠𝑗 = −ℎ𝑗+1,𝑗/ ℎ𝑗𝑗
2 + ℎ𝑗+1,𝑗

2 . Replace 𝐻 by 𝐺𝑗𝐻.

Setting 𝑄 = 𝐺𝑁 …𝐺1. 𝑅 = 𝑄𝐻 is upper triangular.

26

Let 𝐻 𝑘 = 𝑄𝑅 by Givens rotations matrices.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝑄(𝛽𝒆1 − 𝐻 𝑘𝒚
𝑘)||2

= 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑦∈𝑅𝑘||𝛽𝑄𝒆1 − 𝑅𝒚𝑘||2

27

28

Preconditioning

Basic idea: using GMRES on a modified system such as
𝑀−1𝐴𝒙 = 𝑀−1𝒃.

The matrix 𝑀−1𝐴 need not to be formed explicitly.
However, 𝑀𝒘 = 𝒗 need to be solved whenever
needed.

Left preconditioning
𝑀−1𝐴𝒙 = 𝑀−1𝒃

Right preconditioning
𝐴𝑀−1𝒖 = 𝒃 𝑤𝑖𝑡ℎ 𝒙 = 𝑀−1𝒖

Split preconditioning: 𝑀 is factored as 𝑀 = 𝑀𝐿𝑀𝑅
𝑀𝐿

−1𝐴𝑀𝑅
−1𝒖 = 𝑀𝐿

−1𝒃 𝑤𝑖𝑡ℎ 𝒙 = 𝑀𝑅
−1𝒖

29

GMRES with Left Preconditioning

The Arnoldi process constructs an orthogonal basis for
Span{𝒓0, 𝑀

−1𝐴𝒓0, (𝑀
−1𝐴)2𝒓0, … (𝑀−1𝐴)𝑘−1𝒓0}.

Sadd. Iterative Methods for Sparse Linear Systems

30

GMRES with Right Preconditioning

Right preconditioned GMRES is based on solving
𝐴𝑀−1𝒖 = 𝒃 𝑤𝑖𝑡ℎ 𝒙 = 𝑀−1𝒖.

• The initial residual is: 𝒃 − 𝐴𝑀−1𝒖0 = 𝒃 − 𝐴𝒙0.

– This means all subsequent vectors of the Krylov subspace
can be obtained without any references to the 𝒖.

• At the end of right preconditioned GMRES:

𝒖𝑚 = 𝒖0 + 𝒗𝑖𝜂𝑖

𝑚

𝑖=1

 𝑤𝑖𝑡ℎ 𝒖0 = 𝑀𝒙0

𝒙𝑚 = 𝒙0 + 𝑀−1 𝒗𝑖𝜂𝑖

𝑚

𝑖=1

31

GMRES with Right Preconditioning

The Arnoldi process constructs an orthogonal basis for
Span{𝒓0, 𝐴𝑀−1𝒓0, (𝐴𝑀−1)2𝒓0, … (𝐴𝑀−1)𝑘−1𝒓0}.

Sadd. Iterative Methods for Sparse Linear Systems. 32

Split Preconditioning

• 𝑀 can be a factorization of the form 𝑀 = 𝐿𝑈.

• Then 𝐿−1𝐴𝑈−1𝒖 = 𝐿−1𝒃, 𝑤𝑖𝑡ℎ 𝒙 = 𝑈−1𝒖.

– Need to operate on the initial residual by 𝐿−1(𝒃 −
𝐴𝒙𝟎)

– Need to operate on the linear combination
𝑈−1(𝑉𝑚𝒚𝑚) in forming the approximate solution

33

Comparison of Left and Right Preconditioning

• Spectra of 𝑀−1𝐴, 𝐴𝑀−1 and 𝐿−1𝐴𝑈−1 are
identical.

• In principle, one should expect convergence to
be similar.

• When 𝑀 is ill-conditioned, the difference could
be substantial.

34

Jacobi Preconditioner

Iterative method for solving 𝐴𝑥 = 𝑏 takes the form:
𝒙𝑘+1 = 𝑀−1𝑁𝒙𝑘 + 𝑀−1𝒃 where 𝑀 𝑎𝑛𝑑 𝑁 split 𝐴
into 𝐴 = 𝑀 − 𝑁.

• Define 𝐺 = 𝑀−1𝑁 = 𝑀−1 𝑀 − 𝐴 = 𝐼 − 𝑀−1𝐴
and 𝒇 = 𝑀−1𝒃.

• Iterative method is to solve 𝐼 − 𝐺 𝒙 = 𝒇, which
can be written as 𝑀−1𝐴𝒙 = 𝑀−1𝒃.

Jacobi iterative method: 𝒙𝑘+1 = 𝐺𝐽𝐴𝒙𝑘 + 𝒇 where
𝐺𝐽𝐴 = (𝐼 − 𝐷−1𝐴) and 𝒇 = 𝐷−1𝒃

• 𝑀 = 𝐷 for Jacobi method.
35

SOR/SSOR Preconditioner

• Define: 𝐴 = 𝐷 − 𝐸 − 𝐹
• Gauss-Seidel: 𝐺𝐺𝑆 = 𝐼 − (𝐷 − 𝐸)−1𝐴

• 𝑀𝑆𝑂𝑅 =
1

𝑤
 (𝐷 − 𝑤𝐸)

36

A symmetric SOR (SSOR) consists of:
𝐷 − 𝑤𝐸 𝒙

𝑘+
1
2
= 𝑤𝐹 + 1 − 𝑤 𝐷 𝒙𝑘 + 𝑤𝒃

𝐷 − 𝑤𝐹 𝒙𝑘+1 = 𝑤𝐸 + 1 − 𝑤 𝐷 𝒙
𝑘+

1
2
+ 𝑤𝒃

This gives
𝒙𝑘+1 = 𝐺𝑆𝑆𝑂𝑅𝒙𝑘 + 𝒇

Where
𝐺𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐹 −1(𝑤𝐸 + 1 − 𝑤 𝐷) 𝐷 − 𝑤𝐸 −1(𝑤𝐹 +
1 − 𝑤 𝐷)

• 𝑀𝑆𝑆𝑂𝑅 = 𝐷 − 𝑤𝐸 𝐷−1(𝐷 − 𝑤𝐹); 𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷−1(𝐷 − 𝐹);
• Note: SSOR usually is used when 𝐴 is symmetric

Take symmetric GS for example:
𝑀𝑆𝐺𝑆 = 𝐷 − 𝐸 𝐷−1 𝐷 − 𝐹

• Define: 𝐿 = 𝐷 − 𝐸 𝐷−1 = 𝐼 − 𝐸𝐷−1 and
𝑈 = 𝐷 − 𝐹.

• 𝐿 is a lower triangular matrix and 𝑈 is a upper
triangular matrix.

• To solve 𝑀𝑆𝐺𝑆𝒘 = 𝒙 for 𝒘, a forward solve and a
backward solve are used:

– Solve 𝐼 − 𝐸𝐷−1 𝒛 = 𝒙 for 𝒛

– Solve 𝐷 − 𝐹 𝒘 = 𝒛 for 𝒘

37

Incomplete LU(0) Factorization

Define: 𝑁𝑍 𝑋 = {(𝑖, 𝑗)|𝑋𝑖,𝑗 ≠ 0}

Incomplete LU (ILU(0)):

• 𝐴 = 𝐿𝑈 + 𝑅 with 𝑁𝑍 𝐿 ∪ 𝑁𝑍 𝑈 = 𝑁𝑍(𝐴)
𝑟𝑖𝑗 = 0 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝑁𝑍(𝐴)

I.e. 𝐿 and 𝑈 have no fill-ins at the entries 𝑎𝑖𝑗 = 0.

38

for 𝑖 = 1 to 𝑛
 for 𝑘 = 1 to 𝑖 − 1 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴)
 𝑎𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑗

 for j = 𝑘 + 1 to 𝑛 and if (𝑖, 𝑘) ∈ 𝑁𝑍(𝐴)
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑘𝑎𝑘𝑗

 end;
 end;
end;

ILU(0)

39 Sadd. Iterative Methods for Sparse Linear Systems.

Parallel GMRES

• J. Erhel. A parallel GMRES version for general sparse matrices.
Electronic Transactions on Numerical Analyis. 3:160-176, 1995.

• Implementation in PETSc (Portable, Extensible Toolkit for
Scientific Computation)
– http://www.mcs.anl.gov/petsc/

40

http://www.mcs.anl.gov/petsc/

Parallel Libraries

ScaLAPACK

• http://www.netlib.org/scalapack/

• Based on LAPACK (Linear Algebra PACKage) and BLAS
(Basic Linear Algebra Subroutines)

• Parallelized by “divide and conquer” or block
distribution

• Written in Fortran 90

• Successor of LINPACK, which was originally written
for vector supercomputers in the 1970s

• Implemented on top of MPI using MIMD, SPMD, and
used explicit message passing

41

http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/

PETSc (Portable, Extensible Toolkit for Scientific Computation)

• http://www.mcs.anl.gov/petsc/

• Suite of data structures (core: distributed vectors and
matrices) and routines for linea and non-linear solvers

• User (almost) never has to call MPI himself when using
PETSc

• Uses two MPI communicators: PETSC_COMM_SELF for the
library-internal communication and
PETSC_COMM_WORLD for user processes

• Written in C, callable from Fortran

• Has been used to solve systems with over 500 millions
unknowns

• Has been shown to scale up to over 6000 processors

42

http://www.mcs.anl.gov/petsc/

PETSc Structure

43

PETSc Numerical Solvers

44

Parallel Random Number Generator

SPRNG (The Scalable parallel random number
generators library)

• http://sprng.cs.fsu.edu/

• Random number sequence does not depend on the
number of processors used, but only on the seed
a reproducible Monte Carlo simulations in parallel

• SPRNG implements parallel-safe, high-quality
random number generators

• C++/Fortran (used to be C/Fortran in previous
versions)

45

http://sprng.cs.fsu.edu/
http://sprng.cs.fsu.edu/

Parallel PDE Solver

POOMA (Parallel Object-Oriented Methods and
Applications)
• http://acts.nersc.gov/formertools/pooma/index.html

• Collection of templated C++ classes for writing
parallel PDE solvers

• Provides high-level data types (abstractions) for
fields and particles using data-parallel arrays

• Supports finite-difference simulations on structured,
unstructured, and adaptive grids. Also supports
particle simulations, hybrid particle-mesh
simulations, and Monte Carlo

• Uses mixed message-passing/thread parallelism
46

http://acts.nersc.gov/formertools/pooma/index.html
http://acts.nersc.gov/formertools/pooma/index.html

Many more…
• Aztec (iterative solvers for sparse linear systems)
• SuperLU (LU decomposition)
• Umfpack (unsymmetric multifrontal LU)
• EISPACK (eigen-solvers)
• Fishpack (cyclic reduction for 2nd & 4th order FD)
• PARTI (Parallel run-time system)
• Bisect (recursive orthogonal bisection)
• ROMIO (parallel distributed file I/O)
• KINSol (solves the nonlinear algebraic systems)

https://computation.llnl.gov/casc/sundials/main.html
• SciPy (Scientific Tools for Phython) http://www.scipy.org/
• …

47

https://computation.llnl.gov/casc/sundials/main.html
http://www.scipy.org/

References:
– C.T. Kelley. Iterative Methods for Linear and Nonlinear

Equations.

– Yousef Sadd. Iterative methods for Sparse Linear
Systems

– G. Karypis and V. Kumar. Parallel Threshold-based ILU
Factorization. Technical Report #96-061. U. of
Minnesota, Dept. of Computer Science, 1998.

– P.-O. Persson and J. Peraire. Newton-GMRES
Preconditioning for Discontinuous Galerkin
Discretizations of the Navier-Stokes Equations. SIAM J.
on Sci. Comput. 30(6), 2008.

 48

