Lecture 8: Fast Linear Solvers (Part 5)

Conjugate Gradient (CG) Method

- Solve $A \boldsymbol{x}=\boldsymbol{b}$ with A being an $n \times n$ symmetric positive definite matrix.
- proposed by Hestenes and Stiefel in 1951
- Define the quadratic function

$$
\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b
$$

Suppose \boldsymbol{x} minimizes $\phi(\boldsymbol{x}), \boldsymbol{x}$ is the solution to $A \boldsymbol{x}=\boldsymbol{b}$.

- $\nabla \phi(\boldsymbol{x})=\left(\frac{\partial \phi}{\partial x_{1}}, \ldots, \frac{\partial \phi}{\partial x_{n}}\right)=A \boldsymbol{x}-\boldsymbol{b}$
- The iteration takes form $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k} \boldsymbol{v}^{(k)}$ where $\boldsymbol{v}^{(k)}$ is the search direction and α_{k} is the step size.
- Define $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}$ to be the residual vector.
- Let \boldsymbol{x} and $\boldsymbol{v} \neq \mathbf{0} \quad \phi(\boldsymbol{x}+\alpha \boldsymbol{v})$ be fixed vectors and α a real number variable.

Define:
$h(\alpha)=\phi(\boldsymbol{x}+\alpha \boldsymbol{v})=\phi(\boldsymbol{x})+\alpha<\boldsymbol{v}, A \boldsymbol{x}-\boldsymbol{b}>+\frac{1}{2} \alpha^{2}<\boldsymbol{v}, A \boldsymbol{v}>$
$h(\alpha)$ has a minimum when $h^{\prime}(\alpha)=0$. This occurs when

$$
\hat{\alpha}=\frac{\boldsymbol{v}^{T}(\boldsymbol{b}-A \boldsymbol{x})}{\boldsymbol{v}^{\boldsymbol{T}} A \boldsymbol{v}}
$$

So $h(\hat{\alpha})=\phi(\boldsymbol{x})-\frac{1}{2} \frac{\left(\boldsymbol{v}^{T}(\boldsymbol{b}-A \boldsymbol{x})\right)^{2}}{\boldsymbol{v}^{\boldsymbol{T}} A \boldsymbol{v}}$.
Suppose \boldsymbol{x}^{*} is a vector that minimizes $\phi(\boldsymbol{x})$. So $\phi(\boldsymbol{x}+\hat{\alpha} \boldsymbol{v}) \geq \phi\left(\boldsymbol{x}^{*}\right)$. This implies $\boldsymbol{v}^{T}\left(\boldsymbol{b}-A \boldsymbol{x}^{*}\right)=0$. Therefore $\boldsymbol{b}-A \boldsymbol{x}^{*}=0$.

- For any $\boldsymbol{v} \neq \mathbf{0}, \phi(\boldsymbol{x}+\alpha \boldsymbol{v})>\phi(\boldsymbol{x})$ unless
$\boldsymbol{v}^{T}(\boldsymbol{b}-A \boldsymbol{x})=0$ with $\alpha=\frac{\boldsymbol{v}^{T}(\boldsymbol{b}-A \boldsymbol{x})}{\boldsymbol{v}^{T} A \boldsymbol{v}}$.
- How to choose the search direction v ?
- Method of steepest descent: $\boldsymbol{v}=\boldsymbol{r}=-\nabla \phi(\boldsymbol{x})$
- Remark: Slow convergence for linear systems

Algorithm.
Let $\boldsymbol{x}^{(0)}$ be initial guess.
for $k=1,2, \ldots$
$\boldsymbol{v}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k-1)}$
$\alpha_{k}=\frac{\left\langle\boldsymbol{v}^{(k)},\left(\boldsymbol{b}-A x^{(k-1)}\right)\right\rangle}{\left\langle\boldsymbol{v}^{(k)}, A \boldsymbol{v}^{(k)}\right\rangle}$
$\boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\alpha_{k} \boldsymbol{v}^{(k)}$
end

Steepest descent method when $\frac{\lambda_{\max }}{\lambda_{\text {min }}}$ is large

- Consider to solve $A \boldsymbol{x}=\boldsymbol{b}$ with $A=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$, $\boldsymbol{b}=\left[\begin{array}{l}\lambda_{1} \\ \lambda_{2}\end{array}\right]$ and the start vector $\boldsymbol{v}=\left[\begin{array}{c}-9 \\ -1\end{array}\right]$. Reduction of $\left\|A \boldsymbol{x}^{(k)}-\boldsymbol{b}\right\|_{2}<10^{-4}$.
- With $\lambda_{1}=1, \lambda_{2}=2$, it takes about 10 iterations
- With $\lambda_{1}=1, \lambda_{2}=10$, it takes about 40 iterations
- Second approach to choose the search direction \boldsymbol{v} ?
- A-orthogonal approach: use a set of nonzero direction vectors $\left\{\boldsymbol{v}^{(1)}, \ldots, \boldsymbol{v}^{(n)}\right\}$ that satisfy $\left\langle\boldsymbol{v}^{(i)}, A \boldsymbol{v}^{(j)}>=0\right.$, if $i \neq j$. The set $\left\{\boldsymbol{v}^{(1)}, \ldots, \boldsymbol{v}^{(n)}\right\}$ is called A-orthogonal.
- Theorem. Let $\left\{\boldsymbol{v}^{(1)}, \ldots, \boldsymbol{v}^{(n)}\right\}$ be an A-orthogonal set of nonzero vectors associated with the symmetric, positive definite matrix A, and let $\boldsymbol{x}^{(0)}$
be arbitrary. Define $\alpha_{k}=\frac{\left\langle\boldsymbol{v}^{(k)},\left(\boldsymbol{b}-A \boldsymbol{x}^{(k-1)}\right)\right\rangle}{\left\langle\boldsymbol{v}^{(k)}, A \boldsymbol{v}^{(k)}\right\rangle}$ and $\boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\alpha_{k} \boldsymbol{v}^{(k)}$ for $k=1,2 \ldots n$. Then $A \boldsymbol{x}^{(n)}=\boldsymbol{b}$ when arithmetic is exact.

Conjugate Gradient Method

- The conjugate gradient method of Hestenes and Stiefel.
- Main idea: Construct $\left\{\boldsymbol{v}^{(1)}, \boldsymbol{v}^{(2)} \ldots\right\}$ during iteration so that $\left\{\boldsymbol{v}^{(1)}, \boldsymbol{v}^{(2)} \ldots\right\}$ are A-orthogonal.
- Define:
$\mathrm{K}_{k}\left(A, \boldsymbol{r}^{(0)}\right)=\operatorname{span}\left\{\boldsymbol{r}^{(0)}, A \boldsymbol{r}^{(0)}, A^{2} \boldsymbol{r}^{(0)}, \ldots, A^{k-1} \boldsymbol{r}^{(0)}\right\}$.
- Lemma (Kelly). Let A be spd and let $\left\{\boldsymbol{x}^{(k)}\right\}$ be CG iterates, then $\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{l}=0$ for all $0 \leq l<k$.
- Remark: let $\left\{\boldsymbol{x}^{(k)}\right\}$ be CG iterates. $r_{l} \in K_{k}$ for all $l<k$.
- Lemma (Kelly). Let A be spd and let $\left\{\boldsymbol{x}^{(k)}\right\}$ be CG iterates. If $\boldsymbol{x}^{(k)} \neq \boldsymbol{x}^{*}$, then $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k+1} \boldsymbol{v}^{(k+1)}$ and $\boldsymbol{v}^{(k+1)}$ is determined up to a scalar multiple by the conditions $\boldsymbol{v}^{(k+1)} \in K_{k+1},\left(\boldsymbol{v}^{(k+1)}\right)^{T} A \xi=0$ for all $\xi \in K_{k}$.
- Remark: This implies $\boldsymbol{v}^{(k+1)}=\boldsymbol{r}^{(k)}+\boldsymbol{w}^{(k)}$ with $\boldsymbol{w}^{(k)} \in K_{k}$
- Theorem (Kelly). Let A be spd and assume that $\boldsymbol{r}^{(k)} \neq 0$. Define $\boldsymbol{v}^{(0)}=\mathbf{0}$. Then $\boldsymbol{v}^{(k+1)}=\boldsymbol{r}^{(k)}+$ $\beta_{k+1} \boldsymbol{v}^{(k)}$ for some β_{k+1} and $k \geq 0$.
$-\operatorname{Remark}(1): \boldsymbol{v}^{(k+1)} \cdot A \boldsymbol{r}^{(k-1)}=0=\boldsymbol{r}^{(k)} \cdot A \boldsymbol{r}^{(k-1)}+$ $\beta_{k+1} \boldsymbol{v}^{(k)} \cdot \boldsymbol{A} \boldsymbol{r}^{(k-1)}$
- Remark (2): $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k+1} \boldsymbol{v}^{(k+1)}$ implies $\boldsymbol{r}^{(k+1)}=\boldsymbol{r}^{(k)}-\alpha_{k+1} A \boldsymbol{v}^{(k+1)}$, which leads to $\boldsymbol{r}^{(k)} \cdot A \boldsymbol{v}^{(k+1)}=\boldsymbol{r}^{(k)} \cdot \boldsymbol{r}^{(k)} / \alpha_{k+1} \neq 0$
- Lemma (Kelly). Let A be spd and assume that $\boldsymbol{r}^{(k)} \neq 0$. Then

$$
\alpha_{k}=\frac{\left\langle\boldsymbol{r}^{(k-1)}, \boldsymbol{r}^{(k-1)}\right\rangle}{\left\langle\boldsymbol{v}^{(k)}, A \boldsymbol{v}^{(k)}\right\rangle}
$$

And

$$
\beta_{k}=\frac{\left\langle\boldsymbol{r}^{(k)}, \boldsymbol{r}^{(k)}\right\rangle}{\left\langle\boldsymbol{r}^{(k-1)}, \boldsymbol{r}^{(k-1)}\right\rangle}
$$

- Fact: Since $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\alpha_{k+1} \boldsymbol{v}^{(k+1)}$,

$$
\boldsymbol{r}^{(k+1)}=\boldsymbol{r}^{(k)}-\alpha_{k+1} A \boldsymbol{v}^{(k+1)} .
$$

Algorithm of CG Method

Let $\boldsymbol{x}^{(0)}$ be initial guess.
Set $\boldsymbol{r}^{(0)}=\boldsymbol{b}-A \boldsymbol{x}^{(0)} ; \boldsymbol{v}^{(1)}=\boldsymbol{r}^{(0)}$.
for $k=1,2, \ldots$

$$
\begin{aligned}
& \alpha_{k}=\frac{\left\langle\boldsymbol{r}^{(k-1)}, \boldsymbol{r}^{(k-1)}\right\rangle}{\left\langle\boldsymbol{v}^{(k), A \boldsymbol{v}^{(k)}>}\right.} \\
& \boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\alpha_{k} \boldsymbol{v}^{(k)} \\
& \boldsymbol{r}^{(k)}=\boldsymbol{r}^{(k-1)}-\alpha_{k} A \boldsymbol{v}^{(k)} \quad / / \text { construct residual } \\
& \rho_{k}=<\boldsymbol{r}^{(k)}, \boldsymbol{r}^{(k)}>
\end{aligned}
$$

$$
\text { if } \sqrt{\rho_{k}}<\varepsilon \text { exit. } \quad / / \text { convergence test }
$$

$$
s_{k}=\frac{\left\langle\boldsymbol{r}^{(k)}, \boldsymbol{r}^{(k)}\right\rangle}{\left\langle\boldsymbol{r}^{(k-1)} \boldsymbol{r}^{(k-1)}\right\rangle}
$$

$$
\boldsymbol{v}^{(k+1)}=\boldsymbol{r}^{(k)}+s_{k} \boldsymbol{v}^{(k)} / / \text { construct new search direction }
$$

end

Remarks

- Constructed $\left\{\boldsymbol{v}^{(1)}, \boldsymbol{v}^{(2)} \ldots\right\}$ are pair-wise Aorthogonal.
- Each iteration, there are one matrix-vector multiplication, two dot products and three scalar multiplications.
- Due to round-off errors, in practice, we need more than n iterations to get the solution.
- If the matrix A is ill-conditioned, the CG method is sensitive to round-off errors (CG is not good as Gaussian elimination with pivoting).
- Main usage of CG is as iterative method applied to bettered conditioned system.

CG as Krylov Subspace Method

Theorem. $\boldsymbol{x}^{(k)}$ of the CG method minimizes the function $\phi(\boldsymbol{x})$ with respect to the subspace $\mathrm{K}_{k}\left(A, \boldsymbol{r}^{(0)}\right)=$ $\operatorname{span}\left\{\boldsymbol{r}^{(0)}, A \boldsymbol{r}^{(0)}, A^{2} \boldsymbol{r}^{(0)}, \ldots, A^{k-1} \boldsymbol{r}^{(0)}\right\}$. I.e.

$$
\phi\left(\boldsymbol{x}^{(k)}\right)=\min _{c_{i}} \phi\left(\boldsymbol{x}^{(0)}+\sum_{i=0}^{k-1} c_{i} A^{i} \boldsymbol{r}^{(0)}\right)
$$

The subspace $\mathrm{K}_{k}\left(A, \boldsymbol{r}^{(0)}\right)$ is called Krylov subspace.

Error Estimate

- Define an energy norm $\|\cdot\|_{A}$ of vector \boldsymbol{u} with respect to matrix $A:\|\boldsymbol{u}\|_{A}=\left(\boldsymbol{u}^{T} A \boldsymbol{u}\right)^{1 / 2}$
- Define the (algebraic) error $\boldsymbol{e}^{(k)}=\boldsymbol{x}^{(k)}-\boldsymbol{x}^{*}$ where \boldsymbol{x}^{*} is the exact solution.
- Theorem.

$$
\begin{aligned}
& \left\|x^{(k)}-x^{*}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right)^{k}\left\|x^{(0)}-x^{*}\right\|_{A} \text { with } \\
& \kappa(A)=\operatorname{cond}(A)=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)} \geq 1
\end{aligned}
$$

Remark: Convergence is fast if matrix A is wellconditioned.

Preconditioning

Let the symmetric positive definite matrix M be a preconditioner for A and $L L^{T}=M$ be its Cholesky factorization. $M^{-1} A$ is better conditioned than A (and not necessarily symmetric).
The preconditioned system of equations is

$$
M^{-1} A \boldsymbol{x}=M^{-1} \boldsymbol{b}
$$

or

$$
L^{-T} L^{-1} A \boldsymbol{x}=L^{-T} L^{-1} \boldsymbol{b}
$$

where $L^{-T}=\left(L^{T}\right)^{-1}$.
Multiply with L^{T} to obtain

$$
L^{-1} A L^{-T} L^{T} \boldsymbol{x}=L^{-1} \boldsymbol{b}
$$

Define: $\tilde{A}=L^{-1} A L^{-T} ; \widetilde{\boldsymbol{x}}=L^{T} \boldsymbol{x} ; \widetilde{\boldsymbol{b}}=L^{-1} \boldsymbol{b}$
Now apply CG to $\tilde{A} \widetilde{\boldsymbol{x}}=\widetilde{\boldsymbol{b}}$.

Preconditioned CG for $M^{-1} A \boldsymbol{x}=M^{-1} \boldsymbol{b}$

- Definition: Let A, M be spd. The M -inner product $<\cdot,>_{M}$ is said to be $<\boldsymbol{x}, \boldsymbol{y}>_{M}=<M \boldsymbol{x}, \boldsymbol{y}>=\boldsymbol{x}^{T} M \boldsymbol{y}$.
Fact:

1. $M^{-1} A$ is symmetric with respect to $<\cdot, \cdot>_{M}$, i.e.,

$$
<M^{-1} A \boldsymbol{x}, \boldsymbol{y}>_{M}=<\boldsymbol{x}, M^{-1} A \boldsymbol{y}>_{M}
$$

2. $M^{-1} A$ is positive definite with respect to $\langle\cdot, \cdot\rangle_{M}$, i.e., $<M^{-1} A \boldsymbol{x}, \boldsymbol{x}>_{M}>0$ for all $\boldsymbol{x} \neq \mathbf{0}$.

- We can apply the CG algorithm to $M^{-1} A \boldsymbol{x}=M^{-1} \boldsymbol{b}$, replacing the standard inner product by the M-inner product.
- Let $\boldsymbol{r}=\boldsymbol{b}-A \boldsymbol{x} . \mathbf{z}=M^{-1} \boldsymbol{r}$. Then $<\boldsymbol{z}, \mathbf{z}>_{M}=<\boldsymbol{r}, \mathbf{z}>$ and $<M^{-1} A v, v>_{M}=<A v, v>$
- Reference. Y. Saad. Iterative Methods for Sparse Linear Systems

Preconditioned CG Method

- Define $\boldsymbol{z}^{(k)}=M^{-1} \boldsymbol{r}^{(k)}$ to be the preconditioned residual. Let $\boldsymbol{x}^{(0)}$ be initial guess.
Set $\boldsymbol{r}^{(0)}=\boldsymbol{b}-A \boldsymbol{x}^{(0)}$; Solve $M \boldsymbol{z}^{(0)}=\boldsymbol{r}^{(0)}$ for $\mathbf{z}^{(0)}$
Set $\boldsymbol{v}^{(1)}=\boldsymbol{z}^{(0)}$
for $k=1,2, \ldots$

$$
\begin{aligned}
& \alpha_{k}=\frac{\left\langle\mathbf{x}^{(k-1)}, \boldsymbol{r}^{(k-1)}\right\rangle}{\left\langle\boldsymbol{v}^{\left.(k), A v^{(k)}\right\rangle}\right.} \\
& \boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\alpha_{k} \boldsymbol{v}^{(k)} \\
& \boldsymbol{r}^{(k)}=\boldsymbol{r}^{(k-1)}-\alpha_{k} A \boldsymbol{v}^{(k)}
\end{aligned}
$$

$$
\text { solve } M \mathbf{z}^{(k)}=\boldsymbol{r}^{(k)} \text { for } \mathbf{z}^{(k)}
$$

$$
\rho_{k}=<\boldsymbol{r}^{(k)}, \boldsymbol{r}^{(k)}>
$$

$$
\text { if } \sqrt{\rho_{k}}<\varepsilon \text { exit. } / / \text { convergence test }
$$

$$
s_{k}=\frac{\left\langle\boldsymbol{z}^{(k)}, \boldsymbol{r}^{(k)}\right\rangle}{\left\langle\boldsymbol{z}^{(k-1)}, \boldsymbol{r}^{(k-1)}\right\rangle}
$$

$$
\boldsymbol{v}^{(k+1)}=\mathbf{z}^{(k)}+s_{k} \boldsymbol{v}^{(k)}
$$

end

Split Preconditioner CG for $\tilde{A} \widetilde{\boldsymbol{x}}=\widetilde{\boldsymbol{b}}$

- M is a Cholesky product.
- Define $\widehat{\boldsymbol{v}}^{(k)}=L^{T} \boldsymbol{v}^{(k)}, \widetilde{\boldsymbol{x}}=L^{T} \boldsymbol{x}, \hat{\boldsymbol{r}}^{(k)}=L^{T} \mathbf{z}^{(k)}=$ $L^{-1} \boldsymbol{r}^{(k)}, \tilde{A}=L^{-1} A L^{-T}$.
- Fact:
$-<\boldsymbol{r}^{(k)}, \mathbf{z}^{(k)}>=<\boldsymbol{r}^{(k)}, L^{-T} L^{-1} \boldsymbol{r}^{(k)}>=<\hat{\boldsymbol{r}}^{(k)}, \hat{\boldsymbol{r}}^{(k)}>$.
$-<A \boldsymbol{v}^{(k)}, \boldsymbol{v}^{(k)}>=<A L^{-T} \widehat{\boldsymbol{v}}^{(k)}, L^{-T} \widehat{\boldsymbol{v}}^{(k)}>=<\tilde{A} \widehat{\boldsymbol{v}}^{(k)}, \widehat{\boldsymbol{v}}^{(k)}>$.
- With new variables, the preconditioned CG method solves $\tilde{A} \widetilde{\boldsymbol{x}}=\widetilde{\boldsymbol{b}}$.

Split Preconditioner CG

Let $x^{(0)}$ be initial guess.
Set $\boldsymbol{r}^{(0)}=\boldsymbol{b}-A \boldsymbol{x}^{(0)} ; \hat{\boldsymbol{r}}^{(0)}=L^{-1} \boldsymbol{r}^{(0)}$ and $\boldsymbol{v}^{(1)}=L^{-T} \hat{\boldsymbol{r}}^{(0)}$ for $k=1,2, \ldots$

$$
\begin{aligned}
& \alpha_{k}=\frac{\left\langle\hat{\boldsymbol{r}}^{(k-1)}, \hat{\boldsymbol{r}}^{(k-1)}\right\rangle}{<\boldsymbol{v}^{(k), A \boldsymbol{v}^{(k)}>}} \\
& \boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\alpha_{k} \boldsymbol{v}^{(k)} \\
& \hat{\boldsymbol{r}}^{(k)}=\hat{\boldsymbol{r}}^{(k-1)}-\alpha_{k} L^{-1} A \boldsymbol{v}^{(k)} \\
& \rho_{k}=<\boldsymbol{r}^{(k)}, \boldsymbol{r}^{(k)}>
\end{aligned}
$$

if $\sqrt{\rho_{k}}<\varepsilon$ exit. //convergence test
$s_{k}=\frac{\left\langle\hat{\boldsymbol{r}}^{(k)}, \hat{\boldsymbol{r}}^{(k)}\right\rangle}{\left\langle\hat{\boldsymbol{r}}^{(k-1)}, \hat{\boldsymbol{r}}^{(k-1)}\right\rangle}$

$$
\boldsymbol{v}^{(k+1)}=L^{-T} \hat{\boldsymbol{r}}^{(k)}+s_{k} \boldsymbol{v}^{(k)}
$$

end

Incomplete Cholesky Factorization

- Assume A is symmetric and positive definite. A is sparse.
- Factor $A=L L^{T}+R, \quad R \neq \mathbf{0} . L$ has similar sparse structure as A.

$$
\begin{aligned}
& \text { for } k=1, \ldots, n \\
& l_{k k}=\sqrt{a_{k k}} \\
& \text { for } i=k+1, \ldots, n \\
& l_{i k}=\frac{a_{i k}}{l_{k k}} \\
& \text { for } j=k+1, \ldots, n \\
& \text { if } a_{i j}=0 \text { then } \\
& l_{i j}=0 \\
& \text { else } \\
& a_{i j}=a_{i j}-l_{i k} l_{k j} \\
& \text { endif } \\
& \text { endfor } \\
& \text { endfor } \\
& \text { endfor }
\end{aligned}
$$

Jacobi Preconditioning

In diagonal or Jacobi preconditioning

 $M=\operatorname{diag}(A)$- Jacobi preconditioning is cheap if it works, i.e. solving $M \mathbf{z}^{(k)}=\boldsymbol{r}^{(k)}$ for $\mathbf{z}^{(k)}$ almost cost nothing.

References

- CT. Kelley. Iterative Methods for Linear and Nonlinear Equations
- T. F. Chan and H. A. van der Vorst, Approximate and incomplete factorizations, D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Parallel Numerical Algorithms, pp. 167-202, Kluwer, 1997
- M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput. 18:838-853, 1997
- Y. Saad, Highly parallel preconditioners for general sparse matrices, G. Golub, A. Greenbaum, and M. Luskin, eds., Recent Advances in Iterative Methods, pp. 165199, Springer-Verlag, 1994
- H. A. van der Vorst, High performance preconditioning, SIAM J. Sci. Stat. Comput. 10:1174-1185, 1989

Parallel CG Algorithm

- Assume a row-wise block-striped decomposition of matrix A and partition all vectors uniformly among tasks.

Let $\boldsymbol{x}^{(0)}$ be initial guess.
Set $\boldsymbol{r}^{(0)}=\boldsymbol{b}-A \boldsymbol{x}^{(0)}$; Solve $M \boldsymbol{z}^{(0)}=\boldsymbol{r}^{(0)}$ for $\boldsymbol{z}^{(0)}$
Set $\boldsymbol{v}^{(1)}=\boldsymbol{z}^{(0)}$
for $k=1,2, \ldots$

$$
\begin{array}{ll}
\boldsymbol{g}=A \boldsymbol{v}^{(k)} & \text { // parallel matrix-vector multiplication } \\
z r=<\boldsymbol{z}^{(k-1)}, \boldsymbol{r}^{(k-1)}> & \text { // parallel dot product by MPI_Allreduce } \\
\alpha_{k}=\frac{z r}{\left\langle\boldsymbol{v}^{(k)}, \boldsymbol{g}>\right.} & \text { // parallel dot product by MPI_Allreduce }
\end{array}
$$

$$
\boldsymbol{x}^{(k)}=\boldsymbol{x}^{(k-1)}+\alpha_{k} \boldsymbol{v}^{(k)}
$$

$$
\boldsymbol{r}^{(k)}=\boldsymbol{r}^{(k-1)}-\alpha_{k} \boldsymbol{g}
$$

solve $M \mathbf{z}^{(k)}=\boldsymbol{r}^{(k)}$ for $\mathbf{z}^{(k)}$ // Solve matrix system, can involve additional complexity
$\rho_{k}=<\boldsymbol{r}^{(k)}, \boldsymbol{r}^{(k)}>\quad / / \mathrm{MPI}$ Allreduce
if $\sqrt{\rho_{k}}<\varepsilon$ exit. //convergence test
$z r_{n}=<\mathbf{z}^{(k)}, \boldsymbol{r}^{(k)}>\quad / /$ parallel dot product
$s_{k}=\frac{z r_{n} n}{z r}$
$\boldsymbol{v}^{(k+1)}=\boldsymbol{r}^{(k)}+s_{k} \boldsymbol{v}^{(k)}$
end

