
Lecture 8: Fast Linear Solvers
(Part 4)

1

Methods for solving linear equations

Methods for solving 𝐴𝑥 = 𝑏, 𝐴 ∈ 𝑅𝑛×𝑛
• Direct (A is dense)

– runtime depends only on size; independent of data, structure, or
sparsity

– work well for n up to a few thousand

• Direct (sparse)
– runtime depends on size, sparsity pattern; (almost) independent of

data
– can work well for n up to 104 or 105 (or more)
– requires good heuristic for ordering

• Iterative
– runtime depends on data, size, sparsity, required accuracy
– May need tuning, preconditioning, . . .
– good choice in many cases; only choice for n = 106 or larger

2

Iterative Methods for Solving Linear Systems

• Consider to solve 𝐴𝒙 = 𝒃 with 𝐴 ∈ 𝑅𝑛×𝑛 and
𝒃 ∈ 𝑅𝑛.

• In practice, iteration terminates when residual
||𝒃 − 𝐴𝑥|| is as small as desired.

• Let 𝐵 ∈ 𝑅𝑛×𝑛 be a non-singular matrix

• Rewrite 𝐴𝒙 = 𝒃 as 𝐵 + 𝐴 − 𝐵 𝒙 = 𝒃
– 𝒙 = 𝐵−1 𝐵 − 𝐴 𝒙 + 𝐵−1𝒃, which is a fixed-point

equation.

– One uses a iteration for the solution of the fixed-
point iteration:

 𝒙(𝑘+1) = 𝐵−1 𝐵 − 𝐴 𝒙 𝑘 + 𝐵−1𝒃, 𝑘 ∈ 𝑁0 where
𝑥(0)is an arbitrary initial guess.

3

Splitting Matrix B

Algorithmic Conditions for 𝐵

• 𝐵−1 must exist.

• The sequence (𝑥𝑖)
(𝑘) converges for 1 ≤ 𝑖 ≤ 𝑛

as 𝑘 → ∞. Ideally, this convergences should be
fast.

• Efficient solution of the system 𝐵𝒗 = 𝒈

• Efficient computation of 𝐵 − 𝐴 𝒗

4

Lipschitz Continuity

• Define 𝐹 𝒙 = 𝐵−1 𝐵 − 𝐴 𝒙 + 𝐵−1𝒃

• 𝐹 𝒙 − 𝐹 𝒚 = 𝐵−1 𝐵 − 𝐴 𝒙 − 𝒚 ≤

𝐵−1 𝐵 − 𝐴 𝒙 − 𝒚 ≡ 𝛿 𝒙 − 𝒚 ,

𝒙, 𝒚 ∈ 𝑅𝑛

With 𝛿 ≔ ||𝐵−1 𝐵 − 𝐴 ||

5

Convergence

Theorem. Let || ∙ || be a vector norm in 𝑅𝑛 and

𝐶 ≔ 𝑠𝑢𝑝𝒙∈𝑅𝑛
| 𝐶𝒙 |

| 𝒙 |
, 𝐶 ∈ 𝑅𝑛×𝑛 the induced

matrix norm. Assume 𝛿 ≔ 𝐵−1 𝐵 − 𝐴 < 1,

then the sequence (𝑥𝑖)
(𝑘) converges for all initial

values 𝒙(0) to the solution 𝒙 ∈ 𝑅𝑛 of 𝐴𝒙 = 𝒃. The
error is bounded by

| 𝒙 𝑘+1 − 𝒙 | ≤
𝛿𝑘

1 − 𝛿
| 𝒙 1 − 𝒙 0 |

6

Jacobi Method

Decompose matrix 𝐴 = [𝑎𝑖𝑗] into

𝐴 = 𝐷 + 𝐿 + 𝑈, 𝐿, 𝐷, 𝑈 ∈ 𝑅𝑛×𝑛

𝐷 = 𝑑𝑖𝑎𝑔(𝑎11, 𝑎22, … , 𝑎𝑛𝑛) is a diagonal matrix
and

𝐿 =

0 0 … 0
𝑎21 0 … 0
⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
…
⋮
0

 𝑈 =

0 𝑎12 … 𝑎1𝑛
0 0 … 𝑎2𝑛
⋮
0
⋮
0
⋱
…
⋮
0

• Choose 𝐵 = 𝐷, 𝐷𝒙 = − 𝐿 + 𝑈 𝒙 + 𝒃

• The Jacobi method can be written as

 𝒙(𝑘+1) = 𝐷−1 𝒃 − 𝐿 + 𝑈 𝒙 𝑘

7

• Jacobi method requires nonzero diagonal entries,
which can be obtained by permuting rows and
columns.

• Requires storage for both 𝒙(𝑘+1) and 𝒙(𝑘).

• components of new iterate do not depend on
each other. So they can be computed in parallel.

• Define 𝑇𝑗 = −𝐷
−1 𝐿 + 𝑈 , 𝒄𝑗 = 𝐷

−1𝒃

Jacobi method can be written as

 𝒙(𝑘+1)= 𝑇𝑗𝒙
𝑘 + 𝒄𝑗

8

Algorithm of Jacobi Method

• Choose initial vector 𝒙0 ∈ 𝑅𝑛

Set 𝑘 = 1

while (𝑘 ≤ 𝑁) do

for 𝑖 = 1 to 𝑛

𝑥𝑖 =
1

𝑎𝑖𝑖
(𝑏𝑖 − 𝑎𝑖𝑗𝑥𝑜𝑗

𝑛

𝑗=1,𝑗≠𝑖

)

end for

if 𝒙 − 𝒙𝒐 < 𝑇𝑂𝐿 stop.

Set 𝑘 = 𝑘 + 1

for 𝑖 = 1 to 𝑛
 𝑥𝑜𝑖 = 𝑥𝑖

end for

end while
9

Gauss-Seidel Method

• Choose 𝐵 = 𝐷 + 𝐿, (𝐷 + 𝐿)𝒙 = − 𝑈 𝒙 + 𝒃

• The Gauss-Seidel method can be written as

 𝒙(𝑘+1) = (𝐷)−1 𝒃 − 𝑈𝒙 𝑘 − 𝐿𝒙(𝑘+1) or

𝑥𝑖
(𝑘+1)
=
1

𝑎𝑖𝑖
(𝑏𝑖 − 𝑎𝑖𝑗𝑥𝑗

(𝑘+1)
− 𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑗>𝑖𝑗<𝑖

)

10

• Gauss-Seidel requires nonzero diagonal entries

• Gauss-Seidel does not need to duplicate storage for
𝒙, since component values of 𝒙 can be overwritten
as they are computed.

• Computing 𝑥𝑗
(𝑘+1)

 depends on previous 𝑥𝑗−1
(𝑘+1)

,

𝑥𝑗−2
(𝑘+1)

, … so they must be computed successively.

• Gauss-Seidel converges about twice as fast as Jacobi
method.

• Define 𝑇𝑔 = −(𝐷 + 𝐿)
−1𝑈, 𝒄𝑔 = (𝐷 + 𝐿)

−1𝒃

Gauss-Seidel method can be written as

𝒙(𝑘+1) = 𝑇𝑔𝒙
𝑘 + 𝒄𝑔

11

Algorithm of Gauss-Seidel

12

• Choose initial vector 𝒙0 ∈ 𝑅𝑛

Set 𝑘 = 1

while (𝑘 ≤ 𝑁) do

for 𝑖 = 1 to 𝑛

𝑥𝑖 =
1

𝑎𝑖𝑖
(𝑏𝑖 − 𝑎𝑖𝑗𝑥𝑜𝑗

𝑛

𝑗=𝑖+1

− 𝑎𝑖𝑗𝑥𝑗

𝑖−1

𝑗=1

)

end for

if 𝒙 − 𝒙𝒐 < 𝑇𝑂𝐿 stop.

Set 𝑘 = 𝑘 + 1

for 𝑖 = 1 to 𝑛
 𝑥𝑜𝑖 = 𝑥𝑖

end for

end while

• 𝑀 matrices
– A matrix 𝐴 = [𝑎𝑖𝑗] ∈ 𝑅

𝑛×𝑛 is a 𝑀-matrix if the following
conditions are satisfied
• 𝑎𝑖𝑗 ≤ 0, 𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗.
• 𝐴−1 ≥ 0 exists.

• If a matrix 𝐴 is strongly diagonally dominant, then
Gauss-Seidel and Jacobi method converges.

• Let 𝐴 be 𝑀-matrix. Then Gauss-Seidel and Jacobi
method converges.

• The spectral radius of Gauss-Seidel method is
smaller than that of Jacobi method if both methods
converges.

13

SOR Method

• Successive over-relaxation (SOR) method
computes next iterate as

 𝒙(𝑘+1) = (1 − 𝜔)𝒙(𝑘) + 𝜔(𝒙𝑔
(𝑘+1)
) where 𝒙𝑔

(𝑘+1)
 is

next iterate computed by Gauss-Seidel method

• 𝜔 is fixed relaxation parameter.

– SOR can converge only if 0 < 𝜔 < 2.

– 𝜔 > 1 gives over-relaxation; while 𝜔 < 1 gives
under-relaxation.

• Using matrix notation, SOR can be written as
𝐷 + 𝜔𝐿 𝒙 𝑘+1 = 1 − 𝜔 𝐷 − 𝜔𝑈 𝒙 𝑘 + 𝜔𝒃

14

Parallelization of Jacobi and Gauss-Seidel Method

• Parallelization of Jacobi method is straight
forward in contrast to Gauss-Seidel method

• Jacobi and Gauss-Seidel method are rarely used
in practical applications due to slow convergence

• Krylov space methods are more often used

• Jacobi and Gauss-Seidel method are often used
as preconditioners for Krylov space methods for
smoothers for multi-grid methods.

15

Parallel Jacobi Method

• Decompose the matrix 𝐴 = [𝑎𝑖𝑗] into sub-

matrices and use 2D block mapping.

16

while error > TOL

On each process , compute all own components (𝑎𝑖𝑗𝑥𝑗
(𝑘)

) of the

current iteration .
Tasks in each row of the task grid perform a sum-reduction to

compute 𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑗≠𝑖

After the sum-reduction, compute 𝑏𝑖 − 𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑗≠𝑖 among the

tasks in the first column of the task grid and these tasks compute

𝑥𝑗
(𝑘+1)

Distribute 𝑥𝑗
(𝑘+1)

 on task grid

