
Lecture 8: Fast Linear Solvers 
(Part 4) 

1 



Methods for solving linear equations 

Methods for solving 𝐴𝑥 = 𝑏, 𝐴 ∈ 𝑅𝑛×𝑛 
• Direct (A is dense) 

– runtime depends only on size; independent of data, structure, or 
sparsity 

–  work well for n up to a few thousand 

• Direct (sparse) 
– runtime depends on size, sparsity pattern; (almost) independent of 

data 
–  can work well for n up to 104 or 105 (or more) 
– requires good heuristic for ordering 

• Iterative  
– runtime depends on data, size, sparsity, required accuracy 
– May need tuning, preconditioning, . . . 
– good choice in many cases; only choice for n = 106 or larger 
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Iterative Methods for Solving Linear Systems 

• Consider to solve 𝐴𝒙 = 𝒃 with 𝐴 ∈ 𝑅𝑛×𝑛 and 
𝒃 ∈ 𝑅𝑛.  

• In practice, iteration terminates when residual 
||𝒃 − 𝐴𝑥|| is as small as desired.  

• Let 𝐵 ∈ 𝑅𝑛×𝑛 be a non-singular matrix 

• Rewrite 𝐴𝒙 = 𝒃 as 𝐵 + 𝐴 − 𝐵 𝒙 = 𝒃 
– 𝒙 = 𝐵−1 𝐵 − 𝐴 𝒙 + 𝐵−1𝒃, which is a fixed-point 

equation.   

– One uses a iteration for the solution of the fixed-
point iteration: 

   𝒙(𝑘+1) = 𝐵−1 𝐵 − 𝐴 𝒙 𝑘 + 𝐵−1𝒃,      𝑘 ∈ 𝑁0 where 
𝑥(0)is an arbitrary initial guess.  
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Splitting Matrix B 

Algorithmic Conditions for 𝐵 

• 𝐵−1 must exist.  

• The sequence (𝑥𝑖)
(𝑘) converges for 1 ≤ 𝑖 ≤ 𝑛 

as 𝑘 → ∞. Ideally, this convergences should be 
fast.  

•  Efficient solution of the system 𝐵𝒗 = 𝒈 

• Efficient computation of 𝐵 − 𝐴 𝒗 
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Lipschitz Continuity 

• Define 𝐹 𝒙 = 𝐵−1 𝐵 − 𝐴 𝒙 + 𝐵−1𝒃 

• 𝐹 𝒙 − 𝐹 𝒚 = 𝐵−1 𝐵 − 𝐴 𝒙 − 𝒚 ≤

𝐵−1 𝐵 − 𝐴 𝒙 − 𝒚 ≡ 𝛿 𝒙 − 𝒚 ,  

𝒙, 𝒚 ∈ 𝑅𝑛  

With 𝛿 ≔ ||𝐵−1 𝐵 − 𝐴 || 
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Convergence 

Theorem. Let || ∙ || be a vector norm in 𝑅𝑛 and 

𝐶 ≔ 𝑠𝑢𝑝𝒙∈𝑅𝑛
| 𝐶𝒙 |

| 𝒙 |
,   𝐶 ∈ 𝑅𝑛×𝑛 the induced 

matrix norm. Assume 𝛿 ≔ 𝐵−1 𝐵 − 𝐴 < 1, 

then the sequence (𝑥𝑖)
(𝑘) converges for all initial 

values 𝒙(0) to the solution 𝒙 ∈ 𝑅𝑛 of 𝐴𝒙 = 𝒃. The 
error is bounded by  

| 𝒙 𝑘+1 − 𝒙 | ≤
𝛿𝑘

1 − 𝛿
| 𝒙 1 − 𝒙 0 | 
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Jacobi Method  

Decompose matrix 𝐴 = [𝑎𝑖𝑗] into 

𝐴 = 𝐷 + 𝐿 + 𝑈,  𝐿, 𝐷, 𝑈 ∈ 𝑅𝑛×𝑛 

𝐷 = 𝑑𝑖𝑎𝑔(𝑎11, 𝑎22, … , 𝑎𝑛𝑛) is a diagonal matrix 
and  

𝐿 =

0 0 … 0
𝑎21 0 … 0
⋮
𝑎𝑛1

⋮
𝑎𝑛2

⋱
…
⋮
0

  𝑈 =

0 𝑎12 … 𝑎1𝑛
0 0 … 𝑎2𝑛
⋮
0
⋮
0
⋱
…
⋮
0

 

• Choose 𝐵 = 𝐷, 𝐷𝒙 = − 𝐿 + 𝑈 𝒙 + 𝒃 

• The Jacobi method can be written as  

  𝒙(𝑘+1) = 𝐷−1 𝒃 − 𝐿 + 𝑈 𝒙 𝑘  
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• Jacobi method requires nonzero diagonal entries, 
which can be obtained by permuting rows and 
columns. 

• Requires storage for both 𝒙(𝑘+1)  and 𝒙(𝑘).  

• components of new iterate do not depend on 
each other. So they can be computed in parallel.  

•  Define 𝑇𝑗 = −𝐷
−1 𝐿 + 𝑈 , 𝒄𝑗 = 𝐷

−1𝒃 

Jacobi method can be written as 

    𝒙(𝑘+1)= 𝑇𝑗𝒙
𝑘 + 𝒄𝑗 
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Algorithm of Jacobi Method 

• Choose initial vector 𝒙0 ∈ 𝑅𝑛 

Set 𝑘 = 1 

while (𝑘 ≤ 𝑁) do 

for 𝑖 = 1 to 𝑛 

𝑥𝑖 =
1

𝑎𝑖𝑖
(𝑏𝑖 −  𝑎𝑖𝑗𝑥𝑜𝑗

𝑛

𝑗=1,𝑗≠𝑖

) 

end for 

if 𝒙 − 𝒙𝒐 < 𝑇𝑂𝐿 stop. 

Set 𝑘 = 𝑘 + 1 

for 𝑖 = 1 to 𝑛 
      𝑥𝑜𝑖 = 𝑥𝑖  

end for 

end while 
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Gauss-Seidel Method 

• Choose 𝐵 = 𝐷 + 𝐿, (𝐷 + 𝐿)𝒙 = − 𝑈 𝒙 + 𝒃 

• The Gauss-Seidel method can be written as  

  𝒙(𝑘+1) = (𝐷)−1 𝒃 − 𝑈𝒙 𝑘 − 𝐿𝒙(𝑘+1)  or  

𝑥𝑖
(𝑘+1)
=
1

𝑎𝑖𝑖
(𝑏𝑖 − 𝑎𝑖𝑗𝑥𝑗

(𝑘+1)
− 𝑎𝑖𝑗𝑥𝑗

(𝑘)

𝑗>𝑖𝑗<𝑖

) 
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• Gauss-Seidel requires nonzero diagonal entries 

• Gauss-Seidel does not need to duplicate storage for 
𝒙, since component values of 𝒙 can be overwritten 
as they are computed.  

• Computing 𝑥𝑗
(𝑘+1)

 depends on previous 𝑥𝑗−1
(𝑘+1)

, 

𝑥𝑗−2
(𝑘+1)

, … so they must be computed successively. 

• Gauss-Seidel converges about twice as fast as Jacobi 
method.    

• Define 𝑇𝑔 = −(𝐷 + 𝐿)
−1𝑈,  𝒄𝑔 = (𝐷 + 𝐿)

−1𝒃 

Gauss-Seidel method can be written as  

𝒙(𝑘+1) = 𝑇𝑔𝒙
𝑘 + 𝒄𝑔 
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Algorithm of Gauss-Seidel 
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• Choose initial vector 𝒙0 ∈ 𝑅𝑛 

Set 𝑘 = 1 

while (𝑘 ≤ 𝑁) do 

for 𝑖 = 1 to 𝑛 

𝑥𝑖 =
1

𝑎𝑖𝑖
(𝑏𝑖 −  𝑎𝑖𝑗𝑥𝑜𝑗

𝑛

𝑗=𝑖+1

− 𝑎𝑖𝑗𝑥𝑗

𝑖−1

𝑗=1

) 

end for 

if 𝒙 − 𝒙𝒐 < 𝑇𝑂𝐿 stop. 

Set 𝑘 = 𝑘 + 1 

for 𝑖 = 1 to 𝑛 
      𝑥𝑜𝑖 = 𝑥𝑖  

end for 

end while 



• 𝑀 matrices 
– A matrix 𝐴 = [𝑎𝑖𝑗] ∈ 𝑅

𝑛×𝑛 is a 𝑀-matrix if the following 
conditions are satisfied 
• 𝑎𝑖𝑗 ≤ 0,  𝑖, 𝑗 = 1,… , 𝑛,   𝑖 ≠ 𝑗. 
• 𝐴−1 ≥ 0 exists.  

• If a matrix 𝐴 is strongly diagonally dominant, then 
Gauss-Seidel and Jacobi method converges. 

• Let 𝐴 be 𝑀-matrix. Then Gauss-Seidel and Jacobi 
method converges. 

• The spectral radius of Gauss-Seidel method is 
smaller than that of Jacobi method if both methods 
converges.  
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SOR Method 

• Successive over-relaxation (SOR) method 
computes next iterate as  

 𝒙(𝑘+1) = (1 − 𝜔)𝒙(𝑘) + 𝜔(𝒙𝑔
(𝑘+1)
) where 𝒙𝑔

(𝑘+1)
 is 

next iterate computed by Gauss-Seidel method 

• 𝜔 is fixed relaxation parameter. 

– SOR can converge only if 0 < 𝜔 < 2.  

– 𝜔 > 1 gives over-relaxation; while 𝜔 < 1 gives 
under-relaxation.  

• Using matrix notation, SOR can be written as 
𝐷 + 𝜔𝐿 𝒙 𝑘+1 = 1 − 𝜔 𝐷 − 𝜔𝑈 𝒙 𝑘 + 𝜔𝒃 
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Parallelization of Jacobi and Gauss-Seidel Method 

• Parallelization of Jacobi method is straight 
forward in contrast to Gauss-Seidel method 

• Jacobi and Gauss-Seidel method are rarely used 
in practical applications due to slow convergence 

• Krylov space methods are more often used 

• Jacobi and Gauss-Seidel method are often used 
as preconditioners for Krylov space methods for 
smoothers for multi-grid methods.  
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Parallel Jacobi Method 

• Decompose the matrix 𝐴 = [𝑎𝑖𝑗] into sub-

matrices and use 2D block mapping. 
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while error > TOL 

On each process , compute all own components  (𝑎𝑖𝑗𝑥𝑗
(𝑘)

) of the 

current iteration . 
Tasks in each row of the task grid perform a sum-reduction  to 

compute  𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑗≠𝑖   

After the sum-reduction, compute  𝑏𝑖 −  𝑎𝑖𝑗𝑥𝑗
(𝑘)

𝑗≠𝑖  among the 

tasks in the first column of the task grid and these tasks compute 

𝑥𝑗
(𝑘+1)

 

Distribute 𝑥𝑗
(𝑘+1)

 on task grid  

 


