Lecture 8: Fast Linear Solvers (Part 3)

Cholesky Factorization

- Matrix A is symmetric if $A=A^{T}$.
- Matrix A is positive definite if for all $\boldsymbol{x} \neq \mathbf{0}$, $\boldsymbol{x}^{T} \boldsymbol{A x}>0$.
- A symmetric positive definite matrix A has Cholesky factorization $A=L L^{T}$, where L is a lower triangular matrix with positive diagonal entries.
- Example.
$-A=A^{T}$ with $a_{i i}>0$ and $a_{i i}>\sum_{j \neq i}\left|a_{i j}\right|$ is positive definite.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{12} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{n n}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
l_{11} & 0 & \ldots & 0 \\
l_{21} & l_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & \ldots & l_{n n}
\end{array}\right]\left[\begin{array}{cccc}
l_{11} & l_{21} & \ldots & l_{n 1} \\
0 & l_{22} & \ldots & l_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & l_{n n}
\end{array}\right]
\end{aligned}
$$

In 2×2 matrix size case

$$
\begin{gathered}
{\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
l_{11} & l_{21} \\
0 & l_{22}
\end{array}\right]} \\
l_{11}=\sqrt{a_{11}} ; l_{21}=a_{21} / l_{11} ; \quad l_{22}=\sqrt{a_{22}-l_{21}^{2}}
\end{gathered}
$$

Submatrix Cholesky Factorization Algorithm

$$
\begin{aligned}
& \text { for } k=1 \text { to } n \\
& \quad a_{k k}=\sqrt{a_{k k}} \\
& \text { for } i=k+1 \text { to } n \\
& \quad a_{i k}=a_{i k} / a_{k k} \\
& \text { end } \\
& \text { for } j=k+1 \text { to } n \\
& \quad \text { for } i=j \text { to } n \\
& \quad a_{i j}=a_{i j} \\
& \quad \text { end } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Equivalent to $a_{i k} a_{k j}$ due to symmetry

Remark:

1. This is a variation of Gaussian Elimination algorithm.
2. Storage of matrix A is used to hold matrix L.
3. Only lower triangle of A is used (See $a_{i j}=a_{i j}-a_{i k} a_{j k}$).
4. Pivoting is not needed for stability.
5. About $n^{3} / 6$ multiplications and about $n^{3} / 6$ additions are required.

Data Access Pattern

Read only

Read and write

Column Cholesky Factorization Algorithm

$$
\begin{aligned}
& \text { for } j=1 \text { to } n \\
& \quad \text { for } k=1 \text { to } j-1 \\
& \quad \text { for } i=j \text { to } n \\
& \quad a_{i j}=a_{i j}-a_{i k} a_{j k} \\
& \quad \text { end } \\
& \text { end } \\
& a_{j j}=\sqrt{a_{j j}} \\
& \text { for } i=j+1 \text { to } n \\
& \quad a_{i j}=a_{i j} / a_{j j} \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Data Access Pattern

Read and write

Parallel Algorithm

- Parallel algorithms are similar to those for LU factorization.

References

- X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software 29:110-140, 2003
- P. Hénon, P. Ramet, and J. Roman, PaStiX: A highperformance parallel direct solver for sparse symmetric positive definite systems, Parallel Computing 28:301321, 2002

QR Factorization and HouseHolder Transformation
Theorem Suppose that matrix A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$ where Q is an $m \times n$ matrix with orthonormal columns and R is an invertible $n \times n$ upper triangular matrix.

QR Factorization by Gram-Schmidt Process

Consider matrix $A=\left[\boldsymbol{a}_{1}\left|\boldsymbol{a}_{2}\right| \ldots \mid \boldsymbol{a}_{n}\right]$
Then,

$$
\begin{aligned}
& \boldsymbol{u}_{1}=\boldsymbol{a}_{1}, \quad \boldsymbol{q}_{1}=\frac{\boldsymbol{u}_{1}}{\left\|\boldsymbol{u}_{1}\right\|} \\
& \boldsymbol{u}_{2}=\boldsymbol{a}_{2}-\left(\boldsymbol{a}_{2} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}, \quad \boldsymbol{q}_{2}=\frac{\boldsymbol{u}_{2}}{\left\|\boldsymbol{u}_{2}\right\|} \\
& \boldsymbol{u}_{k}=\boldsymbol{a}_{k}-\left(\boldsymbol{a}_{k} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}-\cdots-\left(\boldsymbol{a}_{k} \cdot \boldsymbol{q}_{k-1}\right) \boldsymbol{q}_{k-1}, \boldsymbol{q}_{k}=\frac{\boldsymbol{u}_{k}}{\left\|\boldsymbol{u}_{k}\right\|} \\
& A=\left[\boldsymbol{a}_{1}\left|\boldsymbol{a}_{2}\right| \ldots \mid \boldsymbol{a}_{n}\right] \\
& =\left[\boldsymbol{q}_{1}\left|\boldsymbol{q}_{2}\right| \ldots \mid \boldsymbol{q}_{n}\right]\left[\begin{array}{cccc}
\boldsymbol{a}_{1} \cdot \boldsymbol{q}_{1} & \boldsymbol{a}_{2} \cdot \boldsymbol{q}_{1} & \ldots & \boldsymbol{a}_{n} \cdot \boldsymbol{q}_{1} \\
0 & \boldsymbol{a}_{2} \cdot \boldsymbol{q}_{2} & \ldots & \boldsymbol{a}_{n} \cdot \boldsymbol{q}_{2} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \boldsymbol{a}_{n} \cdot \boldsymbol{q}_{n}
\end{array}\right]=Q R
\end{aligned}
$$

Classical/Modified Gram-Schmidt Process

for $\mathrm{j}=1$ to n

$$
\boldsymbol{u}_{j}=\boldsymbol{a}_{j}
$$

for $\mathrm{i}=1$ to $\mathrm{j}-1$

$$
\begin{aligned}
& \left\{\begin{array}{cc}
r_{i j}=\boldsymbol{q}_{i}^{*} \boldsymbol{a}_{j} & \text { (Classical) } \\
r_{i j}=\boldsymbol{q}_{i}^{*} \boldsymbol{u}_{j} & \text { (Modified) }
\end{array}\right. \\
& \boldsymbol{u}_{j}=\boldsymbol{u}_{j}-r_{i j} \boldsymbol{q}_{i}
\end{aligned}
$$

endfor

$$
\begin{aligned}
& \qquad r_{j j}=\left\|\boldsymbol{u}_{j}\right\|_{2} \\
& \quad \boldsymbol{q}_{j}=\boldsymbol{u}_{j} / r_{j j} \\
& \text { endfor }
\end{aligned}
$$

Householder Transformation

Let $v \in R^{n}$ be a nonzero vector, the $n \times n$ matrix

$$
H=I-2 \frac{v v^{T}}{v^{T} v}
$$

is called a Householder transformation (or reflector).

- Alternatively, let $\boldsymbol{u}=\boldsymbol{v} /\|\boldsymbol{v}\|, H$ can be rewritten as

$$
H=I-2 \boldsymbol{u} \boldsymbol{u}^{T}
$$

Theorem. A Householder transformation H is symmetric and orthogonal, so $H=H^{T}=H^{-1}$.

1. Let vector \boldsymbol{z} be perpendicular to \boldsymbol{v}.

$$
\left(I-2 \frac{\boldsymbol{v} \boldsymbol{v}^{T}}{\boldsymbol{v}^{T} \boldsymbol{v}}\right) \mathbf{z}=\mathbf{z}-2 \frac{\boldsymbol{v}\left(\boldsymbol{v}^{T} z\right)}{\boldsymbol{v}^{T} \boldsymbol{v}}=\mathbf{z}
$$

2. Let $\boldsymbol{u}=\frac{\boldsymbol{v}}{\|v\|}$. Any vector \boldsymbol{x} can be written as

$$
\begin{aligned}
& \boldsymbol{x}=\boldsymbol{z}+\left(\boldsymbol{u}^{T} \boldsymbol{x}\right) \boldsymbol{u} . \\
& \left(I-2 \boldsymbol{u} \boldsymbol{u}^{T}\right) \boldsymbol{x}=\left(I-2 \boldsymbol{u} \boldsymbol{u}^{T}\right)\left(\boldsymbol{z}+\left(\boldsymbol{u}^{T} \boldsymbol{x}\right) \boldsymbol{u}\right)=\boldsymbol{z}-\left(\boldsymbol{u}^{T} \boldsymbol{x}\right) \boldsymbol{u}
\end{aligned}
$$

- Householder transformation is used to selectively zero out blocks of entries in vectors or columns of matrices.
- Householder is stable with respect to roundoff error.

For a given a vector \boldsymbol{x}, find a Householder
transformation, H, such that $H \boldsymbol{x}=a\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]=a \boldsymbol{e}_{1}$

- Previous vector reflection (case 2) implies that vector \boldsymbol{u} is in parallel with $x-H x$.
- Let $\boldsymbol{v}=\boldsymbol{x}-H \boldsymbol{x}=\boldsymbol{x}-a \boldsymbol{e}_{1}$, where $a= \pm\|\boldsymbol{x}\|$ (when the arithmetic is exact, sign does not matter).
$-\boldsymbol{u}=\boldsymbol{v} /\|\boldsymbol{v}\|$
- In the presence of round-off error, use
$\boldsymbol{v}=\boldsymbol{x}+\operatorname{sign}\left(x_{1}\right)\|\boldsymbol{x}\| \boldsymbol{e}_{1}$
to avoid catastrophic cancellation. Here x_{1} is the first entry in the vector \boldsymbol{x}.
Thus in practice, $a=-\operatorname{sign}\left(x_{1}\right)\|x\|$

Algorithm for Computing the Householder Transformation

$$
\begin{aligned}
& x_{m}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\} \\
& \text { for } k=1 \text { to } n \\
& \quad v_{k}=x_{k} / x_{m} \\
& \text { end } \\
& \alpha=\operatorname{sign}\left(v_{1}\right)\left[v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}\right]^{1 / 2} \\
& v_{1}=v_{1}+\alpha \\
& \alpha=-\alpha x_{m} \\
& \boldsymbol{u}=v / \| v \mid
\end{aligned}
$$

Remark:

1. The computational complexity is $O(n)$.
2. $H \boldsymbol{x}$ is an $O(n)$ operation compared to $O\left(n^{2}\right)$ for a general matrixvector product. $H \boldsymbol{x}=\boldsymbol{x}-\mathbf{2 u}\left(\boldsymbol{u}^{\boldsymbol{T}} \boldsymbol{x}\right)$.

QR Factorization by HouseHolder Transformation

Key idea:
Apply Householder transformation successively to columns of matrix to zero out sub-diagonal entries of each column.

- Stage 1

- Consider the first column of matrix A and determine a

HouseHolder matrix H_{1} so that $H_{1}\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{n 1}\end{array}\right]=\left[\begin{array}{c}\alpha_{1} \\ 0 \\ \vdots \\ 0\end{array}\right]$

- Overwrite A by A_{1}, where

$$
A_{1}=\left[\begin{array}{cccc}
\alpha_{1} & a_{12}^{*} & \cdots & a_{1 n}^{*} \\
0 & a_{22}^{*} & \vdots & a_{2 n}^{*} \\
\vdots & \vdots & \vdots & \vdots \\
0 & a_{n 2}^{*} & \cdots & a_{n n}^{*}
\end{array}\right]=H_{1} A
$$

Denote vector which defines H_{1} vector $\boldsymbol{v}_{1} . \boldsymbol{u}_{1}=\boldsymbol{v}_{1} /\left\|\boldsymbol{v}_{1}\right\|$
Remark: Column vectors $\left[\begin{array}{c}a_{12}^{*} \\ a_{22}^{*} \\ \vdots \\ a_{n 2}^{*}\end{array}\right] \ldots\left[\begin{array}{c}a_{1 n}^{*} \\ a_{2 n}^{*} \\ \vdots \\ a_{n n}^{*}\end{array}\right]$ should be computed by
$H \boldsymbol{x}=\boldsymbol{x}-\mathbf{2 u}\left(\boldsymbol{u}^{\boldsymbol{T}} \boldsymbol{x}\right)$.

- Stage 2

- Consider the second column of the updated matrix $A \equiv A_{1}=H_{1} A$ and take the part below the diagonal to determine a Householder matrix H_{2}^{*} so that

$$
H_{2}^{*}\left[\begin{array}{c}
a_{22}^{*} \\
a_{32}^{*} \\
\vdots \\
a_{n 2}^{*}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Remark: size of H_{2}^{*} is $(n-1) \times(n-1)$.
Denote vector which defines H_{2}^{*} vector $\boldsymbol{v}_{2} . \boldsymbol{u}_{2}=\boldsymbol{v}_{2} /\left\|\boldsymbol{v}_{2}\right\|$

- Inflate H_{2}^{*} to H_{2} where

$$
H_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & H_{2}^{*}
\end{array}\right]
$$

Overwrite A by $A_{2} \equiv H_{2} A_{1}$

- Stage k

- Consider the $k t h$ column of the updated matrix A and take the part below the diagonal to determine a Householder matrix H_{k}^{*} so that

$$
H_{k}^{*}\left[\begin{array}{c}
a_{k k}^{*} \\
a_{k+1, k}^{*} \\
\vdots \\
a_{n, n}^{*}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Remark: size of H_{k}^{*} is $(n-k+1) \times(n-k+1)$.
Denote vector which defines H_{k}^{*} vector $\boldsymbol{v}_{k} . \boldsymbol{u}_{k}=\boldsymbol{v}_{k} /\left\|\boldsymbol{v}_{k}\right\|$

- Inflate H_{k}^{*} to H_{k} where
$H_{k}=\left[\begin{array}{cc}I_{k-1} & 0 \\ 0 & H_{k}^{*}\end{array}\right], I_{k-1}$ is $(k-1) \times(k-1)$ identity matrix.
Overwrite A by $A_{k} \equiv H_{k} A_{k-1}$
- After $(n-1)$ stages, matrix A is transformed into an upper triangular matrix R.
- $R=A_{n-1}=H_{n-1} A_{n-2}=\cdots=$ $H_{n-1} H_{n-2} \ldots H_{1} A$
- $\operatorname{Set} Q^{T}=H_{n-1} H_{n-2} \ldots H_{1}$. Then $Q^{-1}=Q^{T}$. Thus $Q=H_{1}^{T} H_{2}^{T} \ldots H_{n-1}^{T}$
- $A=Q R$

Example. $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$.
Find H_{1} such that $H_{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}\alpha_{1} \\ 0 \\ 0\end{array}\right]$. By $a=-\operatorname{sign}\left(x_{1}\right)| | x| |$, $\alpha_{1}=-\sqrt{3}=-1.721$.
$u_{1}=0.8881, u_{2}=u_{3}=0.3250$.
By $H \boldsymbol{x}=\boldsymbol{x}-\mathbf{2 u}\left(\boldsymbol{u}^{\boldsymbol{T}} \boldsymbol{x}\right), H_{1}\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{c}-3.4641 \\ 0.361 \\ 1.3661 \\ 1.3641 \\ H_{1} A=\left[\begin{array}{cc}-1.721 & -3.3661 \\ 0 & 1.3661\end{array}\right]\end{array}\right.$.

Find H_{2}^{*} and H_{2}, where

$$
H_{2}^{*}\left[\begin{array}{l}
0.3661 \\
1.3661
\end{array}\right]=\left[\begin{array}{c}
\alpha_{2} \\
0
\end{array}\right]
$$

So $\alpha_{2}=-1.4143, \boldsymbol{u}_{2}=\left[\begin{array}{l}0.7922 \\ 0.6096\end{array}\right]$
So $R=H_{2} H_{1} A=\left[\begin{array}{cc}-1.7321 & -3.4641 \\ 0 & -1.4143 \\ 0 & 0\end{array}\right]$

$$
\begin{aligned}
Q= & \left(H_{2} H_{1}\right)^{T}=H_{1}^{T} H_{2}^{T} \\
& =\left[\begin{array}{ccc}
-0.5774 & 0.7071 & -0.4082 \\
-0.5774 & 0 & 0.8165 \\
-0.5774 & -0.7071 & -0.4082
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
A \boldsymbol{x}=\boldsymbol{b} \\
\Rightarrow Q R \boldsymbol{x}=\boldsymbol{b} \\
\Rightarrow Q^{T} Q R \boldsymbol{x}=Q^{T} \boldsymbol{b} \\
\Rightarrow R \boldsymbol{x}=Q^{T} \boldsymbol{b}
\end{gathered}
$$

Remark: Q rarely needs explicit construction

Parallel Householder QR

- Householder QR factorization is similar to Gaussian elimination for LU factorization.
- Additions + multiplications: $O\left(\frac{4}{3} n^{3}\right)$ for QR versus $O\left(\frac{2}{3} n^{3}\right)$ for LU
- Forming Householder vector \boldsymbol{v}_{k} is similar to computing multipliers in Gaussian elimination.
- Subsequent updating of remaining unreduced portion of matrix is similar to Gaussian elimination.
- Parallel Householder QR is similar to parallel LU. Householder vectors need to broadcast among columns of matrix.

References

- M. Cosnard, J. M. Muller, and Y. Robert. Parallel QR decomposition of a rectangular matrix, Numer. Math. 48:239-249, 1986
- A. Pothen and P. Raghavan. Distributed orthogonal factorization: Givens and Householder algorithms, SIAM J. Sci. Stat. Comput. 10:1113-1134, 1989

