Lecture 8: Fast Linear Solvers (Part 3)

Cholesky Factorization

- Matrix A is symmetric if $A = A^T$.
- Matrix A is **positive definite** if for all $x \neq 0$, $x^T A x > 0$.
- A symmetric positive definite matrix A has Cholesky factorization $A = LL^T$, where L is a lower triangular matrix with positive diagonal entries.
- Example.

 $-A = A^T$ with $a_{ii} > 0$ and $a_{ii} > \sum_{j \neq i} |a_{ij}|$ is positive definite.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix}$$
$$= \begin{bmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ 0 & l_{22} & \dots & l_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & l_{nn} \end{bmatrix}$$

$\begin{array}{l} \ln 2 \times 2 \text{ matrix size case} \\ \begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix} \\ l_{11} = \sqrt{a_{11}}; \ l_{21} = a_{21}/l_{11}; \ l_{22} = \sqrt{a_{22} - l_{21}^2} \end{array}$

Submatrix Cholesky Factorization Algorithm

for
$$k = 1$$
 to n
 $a_{kk} = \sqrt{a_{kk}}$
for $i = k + 1$ to n
 $a_{ik} = a_{ik}/a_{kk}$
end
for $j = k + 1$ to n // reduce submatrix
for $i = j$ to n
 $a_{ij} = a_{ij} - a_{ik}a_{jk}$
end
end
end

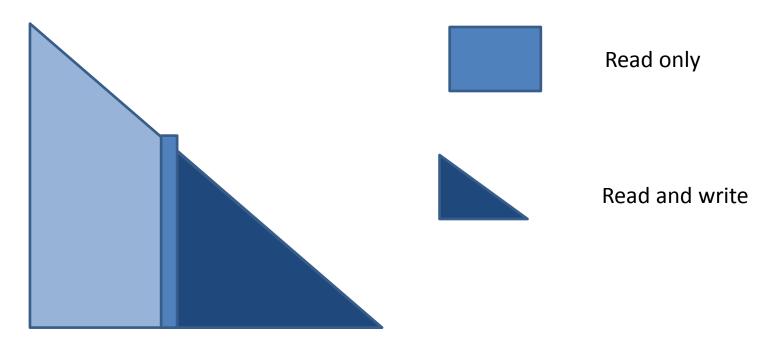
Equivalent to $a_{ik}a_{kj}$ due to symmetry

Remark:

1. This is a variation of Gaussian Elimination algorithm.

- 2. Storage of matrix A is used to hold matrix L.
- 3. Only lower triangle of A is used (See $a_{ij} = a_{ij} a_{ik}a_{jk}$).
- 4. Pivoting is not needed for stability.
- 5. About $n^3/6$ multiplications and about $n^3/6$ additions are required.

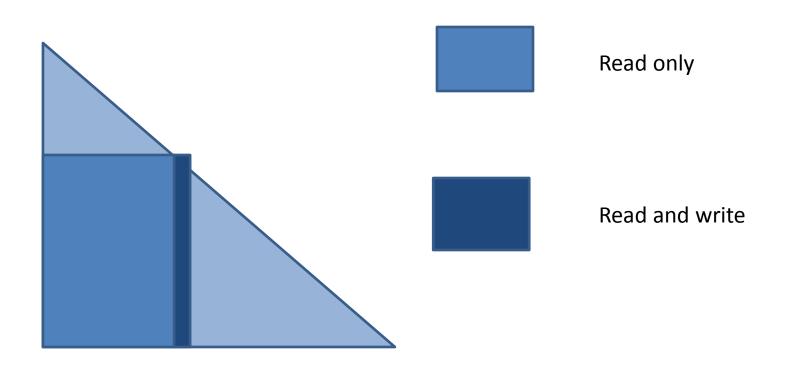
Data Access Pattern



Column Cholesky Factorization Algorithm

```
for j = 1 to n
   for k = 1 to j - 1
       for i = j to n
           a_{ij} = a_{ij} - a_{ik}a_{jk}
       end
   end
   a_{jj} = \sqrt{a_{jj}}
   for i = j + 1 to n
       a_{ij} = a_{ij}/a_{jj}
   end
end
```

Data Access Pattern



Parallel Algorithm

- Parallel algorithms are similar to those for LU factorization.
- References
- X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software 29:110-140, 2003
- P. Hénon, P. Ramet, and J. Roman, PaStiX: A highperformance parallel direct solver for sparse symmetric positive definite systems, *Parallel Computing* 28:301-321, 2002

QR Factorization and HouseHolder Transformation

Theorem Suppose that matrix A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR

where Q is an $m \times n$ matrix with orthonormal columns and R is an invertible $n \times n$ upper triangular matrix.

QR Factorization by Gram-Schmidt Process

Consider matrix $A = [a_1 | a_2 | ... | a_n]$ Then,

...

$$u_1 = a_1, \quad q_1 = \frac{u_1}{||u_1||}$$

 $u_2 = a_2 - (a_2 \cdot q_1)q_1, \quad q_2 = \frac{u_2}{||u_2||}$

$$u_k = a_k - (a_k \cdot q_1)q_1 - \dots - (a_k \cdot q_{k-1})q_{k-1}, q_k = \frac{u_k}{||u_k||}$$

$$A = [a_{1}|a_{2}|...|a_{n}]$$

= $[q_{1}|q_{2}|...|q_{n}]$
$$\begin{bmatrix} a_{1} \cdot q_{1} & a_{2} \cdot q_{1} & ... & a_{n} \cdot q_{1} \\ 0 & a_{2} \cdot q_{2} & ... & a_{n} \cdot q_{2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & ... & a_{n} \cdot q_{n} \end{bmatrix} = QR$$

Classical/Modified Gram-Schmidt Process

for j=1 **to** n $u_i = a_i$ **for** i = 1 **to** j-1 $\begin{cases} r_{ij} = \boldsymbol{q}_i^* \boldsymbol{a}_j & (Classical) \\ r_{ij} = \boldsymbol{q}_i^* \boldsymbol{u}_j & (Modified) \end{cases}$ $\boldsymbol{u}_i = \boldsymbol{u}_i - r_{ii} \boldsymbol{q}_i$ endfor

 $r_{jj} = ||\boldsymbol{u}_j||_2$ $\boldsymbol{q}_j = \boldsymbol{u}_j/r_{jj}$ endfor

Householder Transformation

Let $v \in \mathbb{R}^n$ be a nonzero vector, the $n \times n$ matrix

$$H = I - 2\frac{vv^T}{v^Tv}$$

is called a Householder transformation (or reflector).

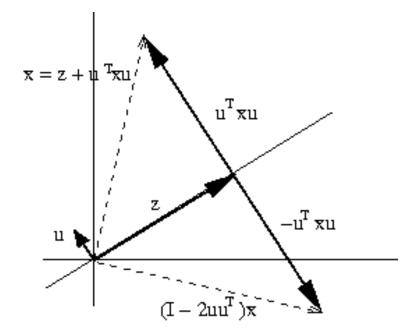
• Alternatively, let $\boldsymbol{u} = \boldsymbol{v}/||\boldsymbol{v}||$, H can be rewritten as $H = I - 2\boldsymbol{u}\boldsymbol{u}^T$.

Theorem. A Householder transformation H is symmetric and orthogonal, so $H = H^T = H^{-1}$.

1. Let vector \boldsymbol{z} be perpendicular to \boldsymbol{v} .

$$\left(I-2\frac{\boldsymbol{v}\boldsymbol{v}^{T}}{\boldsymbol{v}^{T}\boldsymbol{v}}\right)\boldsymbol{z}=\boldsymbol{z}-2\frac{\boldsymbol{v}(\boldsymbol{v}^{T}\boldsymbol{z})}{\boldsymbol{v}^{T}\boldsymbol{v}}=\boldsymbol{z}$$

2. Let $\boldsymbol{u} = \frac{\boldsymbol{v}}{||\boldsymbol{v}||}$. Any vector \boldsymbol{x} can be written as $\boldsymbol{x} = \boldsymbol{z} + (\boldsymbol{u}^T \boldsymbol{x}) \boldsymbol{u}$. $(l - 2\boldsymbol{u}\boldsymbol{u}^T)\boldsymbol{x} = (l - 2\boldsymbol{u}\boldsymbol{u}^T)(\boldsymbol{z} + (\boldsymbol{u}^T \boldsymbol{x})\boldsymbol{u}) = \boldsymbol{z} - (\boldsymbol{u}^T \boldsymbol{x})\boldsymbol{u}$



- Householder transformation is used to selectively zero out blocks of entries in vectors or columns of matrices.
- Householder is stable with respect to roundoff error.

For a given a vector *x*, find a Householder

transformation, *H*, such that $H\mathbf{x} = a \begin{bmatrix} \mathbf{i} \\ \mathbf{0} \\ \mathbf{i} \end{bmatrix} = a\mathbf{e}_1$

- Previous vector reflection (case 2) implies that vector \boldsymbol{u} is in parallel with $\boldsymbol{x} H\boldsymbol{x}$.
- Let $v = x Hx = x ae_1$, where $a = \pm ||x||$ (when the arithmetic is exact, sign does not matter).

$$- u = v/||v||$$

In the presence of round-off error, use

$$\boldsymbol{v} = \boldsymbol{x} + sign(x_1)||\boldsymbol{x}||\boldsymbol{e}_1$$

to avoid catastrophic cancellation. Here x_1 is the first entry in the vector \boldsymbol{x} .

Thus in practice, $a = -sign(x_1)||\mathbf{x}||$

Algorithm for Computing the Householder Transformation

$$x_{m} = \max\{|x_{1}|, |x_{2}|, ..., |x_{n}|\}$$

for $k = 1$ to n
 $v_{k} = x_{k}/x_{m}$
end
 $\alpha = sign(v_{1})[v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}]^{1/2}$
 $v_{1} = v_{1} + \alpha$
 $\alpha = -\alpha x_{m}$
 $u = v/||v||$

Remark:

1. The computational complexity is O(n).

2. *Hx* is an O(n) operation compared to $O(n^2)$ for a general matrix-vector product. $Hx = x - 2u(u^Tx)$.

QR Factorization by HouseHolder Transformation

Key idea:

Apply Householder transformation successively to columns of matrix to zero out sub-diagonal entries of each column.

- Stage 1
 - Consider the first column of matrix A and determine a

HouseHolder matrix
$$H_1$$
 so that $H_1\begin{bmatrix}a_{11}\\a_{21}\\\vdots\\a_{n1}\end{bmatrix} = \begin{bmatrix}\alpha_1\\0\\\vdots\\0\end{bmatrix}$

- Overwrite A by A_1 , where

$$A_{1} = \begin{bmatrix} \alpha_{1} & a_{12}^{*} & \cdots & a_{1n}^{*} \\ 0 & a_{22}^{*} & \vdots & a_{2n}^{*} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n2}^{*} & \cdots & a_{nn}^{*} \end{bmatrix} = H_{1}A$$

Denote vector which defines H_1 vector v_1 . $u_1 = v_1/||v_1||$

Remark: Column vectors $\begin{vmatrix} a_{12} \\ a_{22}^* \\ \vdots \\ a^* \end{vmatrix}$... $\begin{vmatrix} a_{1n} \\ a_{2n}^* \\ \vdots \\ a^* \end{vmatrix}$ should be computed by

$$H\mathbf{x} = \mathbf{x} - 2\mathbf{u}(\mathbf{u}^T\mathbf{x}).$$

• Stage 2

- Consider the second column of the updated matrix $A \equiv A_1 = H_1 A$ and take the part below the diagonal to determine a Householder matrix H_2^* so that

$$H_{2}^{*}\begin{bmatrix}a_{22}^{*}\\a_{32}^{*}\\\vdots\\a_{n2}^{*}\end{bmatrix} = \begin{bmatrix}\alpha_{2}\\0\\\vdots\\0\end{bmatrix}$$

Remark: size of H_2^* is $(n-1) \times (n-1)$.

Denote vector which defines H_2^* vector \boldsymbol{v}_2 . $\boldsymbol{u}_2 = \boldsymbol{v}_2/||\boldsymbol{v}_2||$

- Inflate
$$H_2^*$$
 to H_2 where
 $H_2 = \begin{bmatrix} 1 & 0 \\ 0 & H_2^* \end{bmatrix}$
Overwrite A by $A_2 \equiv H_2 A_1$

- Stage k
 - Consider the kth column of the updated matrix A and take the part below the diagonal to determine a Householder matrix H_k^* so that

$$H_k^* \begin{bmatrix} a_{kk}^* \\ a_{k+1,k}^* \\ \vdots \\ a_{n,n}^* \end{bmatrix} = \begin{bmatrix} \alpha_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Remark: size of H_k^* is $(n - k + 1) \times (n - k + 1)$. Denote vector which defines H_k^* vector \boldsymbol{v}_k . $\boldsymbol{u}_k = \boldsymbol{v}_k / ||\boldsymbol{v}_k||$

- Inflate H_k^* to H_k where

 $H_{k} = \begin{bmatrix} I_{k-1} & 0 \\ 0 & H_{k}^{*} \end{bmatrix}, I_{k-1} \text{ is } (k-1) \times (k-1) \text{ identity matrix.}$ Overwrite *A* by $A_{k} \equiv H_{k}A_{k-1}$ After (n − 1) stages, matrix A is transformed into an upper triangular matrix R.

•
$$R = A_{n-1} = H_{n-1}A_{n-2} = \dots = H_{n-1}H_{n-2} \dots H_1A$$

- Set $Q^T = H_{n-1}H_{n-2} \dots H_1$. Then $Q^{-1} = Q^T$. Thus $Q = H_1^T H_2^T \dots H_{n-1}^T$
- A = QR

Example.
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
.
Find H_1 such that $H_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ 0 \\ 0 \end{bmatrix}$.
By $a = -sign(x_1)||\mathbf{x}||$,
 $\alpha_1 = -\sqrt{3} = -1.721$.
 $u_1 = 0.8881$, $u_2 = u_3 = 0.3250$.
By $H\mathbf{x} = \mathbf{x} - 2\mathbf{u}(\mathbf{u}^T\mathbf{x})$, $H_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3.4641 \\ 0.3661 \\ 1.3661 \end{bmatrix}$.
 $H_1A = \begin{bmatrix} -1.721 & -3.4641 \\ 0 & 0.3661 \\ 0 & 1.3661 \end{bmatrix}$

Find H_2^* and H_2 , where $H_2^* \begin{bmatrix} 0.3661 \\ 1.3661 \end{bmatrix} = \begin{bmatrix} \alpha_2 \\ 0 \end{bmatrix}$ So $\alpha_2 = -1.4143$, $\boldsymbol{u}_2 = \begin{bmatrix} 0.7922\\ 0.6096 \end{bmatrix}$ So $R = H_2 H_1 A = \begin{bmatrix} -1.7321 & -3.4641 \\ 0 & -1.4143 \\ 0 & 0 \end{bmatrix}$ $Q = (H_2 H_1)^T = H_1^T H_2^T$ $\begin{bmatrix} -0.5774 & 0.7071 & -0.4082 \\ -0.5774 & 0 & 0.8165 \\ -0.5774 & -0.7071 & -0.4082 \end{bmatrix}$

$$A\mathbf{x} = \mathbf{b}$$

$$\Rightarrow QR\mathbf{x} = \mathbf{b}$$

$$\Rightarrow Q^T QR\mathbf{x} = Q^T \mathbf{b}$$

$$\Rightarrow R\mathbf{x} = Q^T \mathbf{b}$$

Remark: Q rarely needs explicit construction

Parallel Householder QR

• Householder QR factorization is similar to Gaussian elimination for LU factorization.

- Additions + multiplications: $O\left(\frac{4}{3}n^3\right)$ for QR versus $O\left(\frac{2}{3}n^3\right)$ for LU

- Forming Householder vector \boldsymbol{v}_k is similar to computing multipliers in Gaussian elimination.
- Subsequent updating of remaining unreduced portion of matrix is similar to Gaussian elimination.
- Parallel Householder QR is similar to parallel LU. Householder vectors need to broadcast among columns of matrix.

References

- M. Cosnard, J. M. Muller, and Y. Robert. Parallel QR decomposition of a rectangular matrix, *Numer. Math.* 48:239-249, 1986
- A. Pothen and P. Raghavan. Distributed orthogonal factorization: Givens and Householder algorithms, SIAM J. Sci. Stat. Comput. 10:1113-1134, 1989