Lecture 8: Fast Linear Solvers (Part 2)

Naive Parallel Backward Substitution Algorithm

After elimination, we obtain upper triangular $U \boldsymbol{x}=\boldsymbol{b}^{(n-1)}$. Assume that U is stored by rows.

$$
\begin{aligned}
x_{n} & =\frac{b_{n}^{(n-1)}}{u_{n n}} \\
\text { for } i & =n-1 \text { to } 1 \\
x_{i} & =\frac{b_{i}^{(n-1)}-u_{i, i+1} x_{i+1}-u_{i, i+2} x_{i+2}-\cdots-u_{i, n} x_{n}}{u_{i i}}
\end{aligned}
$$

for $k=n$ to 1

$$
x_{k}=b_{k}
$$

$$
\text { for } i=k+1 \text { to } n
$$

$$
x_{k}=x_{k}-u_{k i} x_{i}
$$

end;
$x_{k}=x_{k} / u_{k k}$
broadcast x_{k} to all rows
end;

Naive Parallel Forward Substitution Algorithm
Consider to solve lower triangular $\mathrm{L} \boldsymbol{x}=\boldsymbol{b}$.

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \qquad x_{i}=\frac{b_{i}-\sum_{j=1}^{i-1} l_{i j} x_{j}}{l_{i i}}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } j=1 \text { to } i-1
$$

$$
b_{i}=b_{i}-l_{i j} x_{j}
$$

end;
$x_{i}=b_{i} / l_{i i}$
broadcast x_{i} to all rows
end;

Revised Forward Substitution Algorithm

```
// immediate-update of right hand side
for }j=1\mathrm{ to }
    x}=\mp@subsup{b}{j}{}/\mp@subsup{l}{jj}{}\quad// compute solutio
    for i=j+1 to n
        b}=\mp@subsup{b}{i}{}-\mp@subsup{l}{ij}{}\mp@subsup{x}{j}{}//\mathrm{ update right hand side
    end;
end;
```


Parallel Forward Substitution Algorithm

- Assume a fine-grained decomposition in which process $p_{i j}$ stores $l_{i j}$ and compute $l_{i j} x_{j}$ for $i=2, \ldots, n, j=1, \ldots, i-1$
- Assume $p_{i i}$ stores $l_{i i}$ and b_{i}, collects $\sum_{j=1}^{i-1} l_{i j} x_{j}$ and computes $x_{i}=\frac{b_{i}-\sum_{j=1}^{i-1} l_{i j} x_{j}}{l_{i i}}$ for $i=1, \ldots, n$

Primary Tasks and Communication

1D Row Block Mapping

1D Row Cyclic Mapping

Forward Substitution Parallel Algorithm Based on 1D Row Mapping

// immediate-update of right hand side for $j=1$ to n
for process holding j th row
$x_{j}=b_{j} / l_{j j} \quad / /$ compute solution
end;
broadcast x_{j} to all processes
for process holding i th row $i>j$
$b_{i}=b_{i}-l_{i j} x_{j} / /$ update right hand side
end;
end;

References

- G. Li and T. F. Coleman. A new method for solving triangular systems on distributed-memory message-passing multiprocessors, SIAM J. Sci. Stat. Comput. 10:382-396, 1989
- E. E. Santos. On designing optimal parallel triangular solvers,
- Information and Computation 161:72-210, 2000

Gaussian Elimination and Sparse System

Consider to solve the tridiagonal system

$$
a_{i} x_{i-1}+b_{i} x_{i}+c_{i} x_{i+1}=F_{i}, \quad i=1, \ldots, n
$$

for unknowns $x_{1}, \ldots, x_{i}, \ldots, x_{n}$ (So $\left.x_{0}=x_{n+1}=0\right)$.
Here a_{i}, b_{i}, c_{i}, and F_{i} are given.

- Let m be the band width.

$$
\begin{aligned}
& \text { for } k=1 \text { to } n-1 \quad / / \text { loop over columns } \\
& \text { for } i=k+1 \text { to } \min (k+m, n) \\
& \quad l_{i k}=a_{i k} / a_{i i} \quad / / \text { multipliers for } k \text { th column } \\
& \quad b_{i}=b_{i}-l_{i k} b_{k} \\
& \text { end; } \\
& \text { for } \mathrm{j}=k+1 \text { to } \min (k+m, n) \\
& \text { for } i=k+1 \text { to } \min (k+m, n) \\
& \quad a_{i j}=a_{i j}-l_{i k} a_{k j} \quad / / \text { elimination step } \\
& \quad \text { end; } \\
& \text { end; } \\
& \text { end; }
\end{aligned}
$$

Parallel Cyclic Reduction for Tridiagonal System

- When $m<p$, neither row-cyclic nor columncyclic decomposition is efficient. Because only m processors are actively used.
- Assume that $n=2^{p}-1$, where p is the number of processors. If $n \neq 2^{p}-1$, then add a trivial equation $x_{i}=0, i=n+1, \ldots, 2^{p}-1$.
- Consider the case when $n=7=2^{3}-1$.
- Key idea:
- Combine linearly equations to eliminate the oddnumbered unknowns $x_{1}, x_{3}, x_{5}, \ldots$ in the first stage.
- Adding a multiple of $(i-1)$ th equation and a multiple of $(i+1)$ th equation to i th equation to eliminate x_{i-1} and x_{i+1} from the ith equation for $i=2,4, \ldots$.
- Then renumber unknowns and repeat this process till there is a single equation with one unknown.
- Solve backward to obtain the rest of the unknowns.

Remark: Cyclic Reduction is a divide-and-conquer method

- Multiply parameters $\alpha_{2}, \beta_{2}, \gamma_{2}$ to the first three equations respectively to get:

$$
\begin{gathered}
\alpha_{2} b_{1} x_{1}+\alpha_{2} c_{1} x_{2}=\alpha_{2} F_{1} \\
\beta_{2} a_{2} x_{1}+\beta_{2} b_{2} x_{2}+\beta_{2} c_{2} x_{3}=\beta_{2} F_{2} \\
\gamma_{2} a_{3} x_{2}+\gamma_{2} b_{3} x_{3}+\gamma_{2} c_{3} x_{4}=\gamma_{2} F_{3}
\end{gathered}
$$

To eliminate x_{1} and x_{3}, add above three equations and let

$$
\begin{gathered}
\beta_{2}=1 \\
\alpha_{2} b_{1}+\beta_{2} a_{2}=0 \\
\beta_{2} c_{2}+\gamma_{2} b_{3}=0 \\
\Rightarrow \hat{b}_{2} x_{2}+\hat{c}_{2} x_{4}=\hat{F}_{2}
\end{gathered}
$$

Where

$$
\begin{gathered}
\hat{b}_{2}=\alpha_{2} c_{1}+\beta_{2} b_{2}+\gamma_{2} a_{3} \\
\hat{c}_{2}=\gamma_{2} c_{3} \\
\hat{F}_{2}=\alpha_{2} F_{1}+\beta_{2} F_{2}+\gamma_{2} F_{3}
\end{gathered}
$$

- Multiply parameters $\alpha_{4}, \beta_{4}, \gamma_{4}$ to the third, fourth and fifth equations respectively and add to eliminate x_{3} and x_{5} :

$$
\Rightarrow \hat{a}_{4} x_{2}+\hat{b}_{4} x_{4}+\hat{c}_{4} x_{6}=\hat{F}_{4}
$$

Where

$$
\begin{gathered}
\hat{a}_{4}=\alpha_{4} a_{3} \\
\hat{b}_{4}=\alpha_{4} c_{3}+\beta_{4} b_{4}+\gamma_{4} a_{5} \\
\hat{c}_{4}=\gamma_{4} c_{5} \\
\hat{F}_{4}=\alpha_{4} F_{3}+\beta_{4} F_{4}+\gamma_{4} F_{5}
\end{gathered}
$$

$\alpha_{4}, \beta_{4}, \gamma_{4}$ are determined by :

$$
\begin{gathered}
\beta_{4}=1 \\
\alpha_{4} b_{3}+\beta_{4} a_{4}=0 \\
\beta_{4} c_{4}+\gamma_{4} b_{5}=0
\end{gathered}
$$

- Finally, multiply parameters $\alpha_{6}, \beta_{6}, \gamma_{6}$ to the fifth, sixth and seventh equations respectively and add to eliminate x_{5} and x_{7} :

$$
\Rightarrow \hat{a}_{6} x_{4}+\hat{b}_{6} x_{6}=\hat{F}_{6}
$$

Where
$\alpha_{6}, \beta_{6}, \gamma_{6}$ are determined by :

$$
\begin{gathered}
\beta_{6}=1 \\
\alpha_{6} b_{5}+\beta_{6} a_{6}=0 \\
\beta_{6} c_{6}+\gamma_{6} b_{7}=0
\end{gathered}
$$

- In stage two:

$$
\begin{gathered}
\hat{b}_{2} x_{2}+\hat{c}_{2} x_{4}=\hat{F}_{2} \\
\hat{a}_{4} x_{2}+\hat{b}_{4} x_{4}+\hat{c}_{4} x_{6}=\hat{F}_{4} \\
\hat{a}_{6} x_{4}+\hat{b}_{6} x_{6}=\hat{F}_{6}
\end{gathered}
$$

- Repeat the same elimination process, which leads to only one equation

$$
\alpha_{4}^{*} x_{4}=F_{4}^{*}
$$

- Use backward substitution, x_{2} and x_{6} are solved by $\hat{b}_{2} x_{2}+\hat{c}_{2} x_{4}=\hat{F}_{2}$ and $\hat{a}_{6} x_{4}+\hat{b}_{6} x_{6}=\hat{F}_{6}$
- Use the original equations to solve for $x_{1}, x_{3}, x_{5}, x_{7}$.

Cyclic Reduction Algorithm

```
for(i=0; i < 知2(size+1)-1;i++) // levels of reduction
{
    for(j=2 i+1 - 1; j <size; j=j+ 2 i+1}) // rows that are reduced
    {
        offset = 2 ;
        index1 = j - offset; // index of row before the jth row
        index2 = j + offset; // index of row after the jth row
        \alpha=A[j][index1]/A[index1][index1];
        \gamma=A[j][index2]/A[index2][index2];
        for(k=0; k < size; k++)
            A[j][k] -= \alphaA[index1][k] + \gammaA[index2][k]; // do the reduction to have only
                        // jth row being active
        F[j] -= \alphaF[index1] + }\gamma\textrm{F}[\mathrm{ index2];
    }
}
```


Backward Substitution

```
int index = (size-1)/2;
x[index] = F[index]/A[index][index];
for(i=\mp@subsup{log}{2}{(size+1)+2;i>=0; i--)}
{
    for(j=2 i+1 - 1; j <size; j=j+ 2 i+1}
    {
        offset = 2 ;
        index1 = j - offset;
        index2 = j + offset;
        x[index1] = F[index1];
        x[index2] = F[index2];
        for(k=0; k < size; k++)
        {
        if(k! = index1)
            x[index1] -= A[index1]*x[k];
        if(k != index2)
            x[index2] -= A[index2][k]*x[k];
        }
        x[index1] = x[index1]/A[index1][index1];
        x[index2] = x[index2]/A[index2][index2];
    }
}
```


Source of Parallelism

- Simultaneous reduction of equations in the system
- Simultaneous backward substitution to solve for the solution

Row Decomposition

For $i=1, \ldots, n$ of equations
Process i stores i th equation.

Computation

when $\operatorname{modulus}(i, 2)=0$, do row reduction to yield updated $i t h$ equation

Communication

ith equation receive $(i-1)$ th and $(i+1)$ th equations for modulus $(i, 2)=0$

Reference

- B. Buzbbe, G. Golub, and C. Nielsen.

On direct methods for solving Poisson's equation. SIAM J. Numer. Anal., 7:627-656, 1970

- J. Dongarra and S. Johnsson. Solving banded systems on a parallel processor, Parallel Computing 5:219-246, 1987
- M. Hegland. On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU factorization, Numer. Math. 59:453-472, 1991
- V. Mehrmann. Divide and conquer methods for block tridiagonal systems, Parallel Computing 19:257-280, 1993

