
Lecture 8: Fast Linear Solvers 
(Part 2) 
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Naive Parallel Backward Substitution Algorithm 
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After elimination, we obtain  upper triangular 𝑈𝒙 = 𝒃(𝑛−1). 
Assume that 𝑈 is stored by rows.  

             𝑥𝑛 =
𝑏𝑛
(𝑛−1)

𝑢𝑛𝑛
 

             for 𝑖 = 𝑛 − 1 to 1 

𝑥𝑖 =
𝑏𝑖
(𝑛−1)

− 𝑢𝑖,𝑖+1𝑥𝑖+1 − 𝑢𝑖,𝑖+2𝑥𝑖+2 − ⋯− 𝑢𝑖,𝑛𝑥𝑛

𝑢𝑖𝑖
 

for 𝑘 = 𝑛  to 1 
     𝑥𝑘 = 𝑏𝑘 
    for 𝑖 = 𝑘 + 1 to 𝑛 
           𝑥𝑘 = 𝑥𝑘 − 𝑢𝑘𝑖𝑥𝑖  
    end; 
    𝑥𝑘 = 𝑥𝑘/𝑢𝑘𝑘 
    broadcast 𝑥𝑘  to all rows 
end;  



Naive Parallel Forward Substitution Algorithm 
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Consider to solve  lower triangular L𝒙 = 𝒃 . 

              
             for 𝑖 = 1 to 𝑛 

𝑥𝑖 =
𝑏𝑖 −  𝑙𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1

𝑙𝑖𝑖
 

for 𝑖 = 1  to 𝑛 
    for 𝑗 = 1 to 𝑖 − 1 
           𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗 

    end; 
    𝑥𝑖 = 𝑏𝑖/𝑙𝑖𝑖 
     broadcast 𝑥𝑖  to all rows 
end;  



Revised Forward Substitution Algorithm 
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// immediate-update of right hand side 
for 𝑗 = 1  to 𝑛 
    𝑥𝑗 = 𝑏𝑗/𝑙𝑗𝑗         // compute solution 

    for 𝑖 = 𝑗 + 1 to 𝑛 
        𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗  //update right hand side 

    end; 
end;  



Parallel Forward Substitution Algorithm  

• Assume a fine-grained decomposition in 
which process 𝑝𝑖𝑗  stores 𝑙𝑖𝑗  and compute 

𝑙𝑖𝑗𝑥𝑗  for 𝑖 = 2, … , 𝑛, 𝑗 = 1,… , 𝑖 − 1 

• Assume 𝑝𝑖𝑖  stores 𝑙𝑖𝑖  and 𝑏𝑖, collects  𝑙𝑖𝑗𝑥𝑗
𝑖−1
𝑗=1  

and computes 𝑥𝑖 =
𝑏𝑖− 𝑙𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1

𝑙𝑖𝑖
 for 𝑖 = 1,… , 𝑛 
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Primary Tasks and Communication 
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1D Row Block Mapping 
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P0 

P1 

P2 



1D Row Cyclic Mapping 
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P0 

P1 

P2 



Forward Substitution Parallel Algorithm Based on 
1D Row Mapping 

9 

// immediate-update of right hand side 
for 𝑗 = 1  to 𝑛 
    for process holding 𝑗th row 
    𝑥𝑗 = 𝑏𝑗/𝑙𝑗𝑗         // compute solution 

     end; 
     broadcast 𝑥𝑗  to all processes 

    for process holding 𝑖th row 𝑖 > 𝑗 
        𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑗𝑥𝑗  //update right hand side 

    end; 
end;  
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Gaussian Elimination and Sparse System 
Consider to solve the tridiagonal system 
      𝑎𝑖𝑥𝑖−1 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖+1 = 𝐹𝑖 ,                𝑖 = 1,… , 𝑛 
for unknowns 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛 (So 𝑥0 = 𝑥𝑛+1 = 0). 
Here 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, and 𝐹𝑖 are given. 
 
•  Let 𝑚 be the band width. 
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for 𝑘 = 1 to 𝑛 − 1                             // loop over columns 
    for 𝑖 = 𝑘 + 1 to min(𝑘 + 𝑚, 𝑛) 
        𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖                              // multipliers for 𝑘th column 
        𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑘𝑏𝑘 
    end; 
    for j = 𝑘 + 1 to min(𝑘 + 𝑚, 𝑛) 
        for 𝑖 = 𝑘 + 1 to min(𝑘 + 𝑚, 𝑛) 
            𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗               // elimination step 

        end; 
     end; 
end;  



Parallel Cyclic Reduction for Tridiagonal System 

• When 𝑚 < 𝑝, neither row-cyclic nor  column-
cyclic decomposition is efficient. Because only 𝑚 
processors are actively used.  

• Assume that 𝑛 = 2𝑝 − 1, where 𝑝 is the number 
of processors. If 𝑛 ≠ 2𝑝 − 1, then add a trivial 
equation 𝑥𝑖 = 0, 𝑖 = 𝑛 + 1,… , 2𝑝 − 1. 
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• Consider the case when 𝑛 = 7 = 23 − 1.  

• Key idea:  

– Combine linearly equations to eliminate the odd-
numbered unknowns 𝑥1, 𝑥3, 𝑥5, … in the first stage. 

• Adding a multiple of 𝑖 − 1 𝑡ℎ equation and a multiple of 
𝑖 + 1 𝑡ℎ equation to 𝑖𝑡ℎ equation to eliminate 𝑥𝑖−1 and 

𝑥𝑖+1 from the 𝑖𝑡ℎ equation for 𝑖 = 2,4,….   

– Then renumber unknowns and repeat this process till 
there is a single equation with one unknown.  

– Solve backward to obtain the rest of the unknowns.  
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Remark: Cyclic Reduction is a divide-and-conquer method 



• Multiply parameters 𝛼2, 𝛽2, 𝛾2 to the first three equations 
respectively to get:  

𝛼2𝑏1𝑥1 + 𝛼2𝑐1𝑥2 = 𝛼2𝐹1 
𝛽2𝑎2𝑥1 + 𝛽2𝑏2𝑥2 + 𝛽2𝑐2𝑥3 = 𝛽2𝐹2 
𝛾2𝑎3𝑥2 + 𝛾2𝑏3𝑥3 + 𝛾2𝑐3𝑥4 = 𝛾2𝐹3 

To eliminate 𝑥1 and 𝑥3, add above three equations and let  
  𝛽2 = 1 

𝛼2𝑏1 + 𝛽2𝑎2 = 0 
𝛽2𝑐2 + 𝛾2𝑏3 = 0 

⇒ 𝑏 2𝑥2 + 𝑐 2𝑥4 = 𝐹 2 
Where 

 𝑏 2 = 𝛼2𝑐1 + 𝛽2𝑏2 + 𝛾2𝑎3 
𝑐 2 = 𝛾2𝑐3 

𝐹 2 = 𝛼2𝐹1 + 𝛽2𝐹2 + 𝛾2𝐹3 
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• Multiply parameters 𝛼4, 𝛽4, 𝛾4 to the third, fourth and  
fifth equations respectively  and add to eliminate 𝑥3 and 
𝑥5:  

⇒ 𝑎 4𝑥2 + 𝑏 4𝑥4 + 𝑐 4𝑥6 = 𝐹 4 

Where 

 𝑎 4 = 𝛼4𝑎3 

𝑏 4 = 𝛼4𝑐3 + 𝛽4𝑏4 + 𝛾4𝑎5 

 𝑐 4 = 𝛾4𝑐5 
𝐹 4 = 𝛼4𝐹3 + 𝛽4𝐹4 + 𝛾4𝐹5 

𝛼4, 𝛽4, 𝛾4 are determined by : 
𝛽4 = 1 

𝛼4𝑏3 + 𝛽4𝑎4 = 0 
𝛽4𝑐4 + 𝛾4𝑏5 = 0 
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• Finally, multiply parameters 𝛼6, 𝛽6, 𝛾6 to the 
fifth, sixth and seventh equations respectively  
and add to eliminate 𝑥5 and 𝑥7:  

⇒ 𝑎 6𝑥4 + 𝑏 6𝑥6 = 𝐹 6 

Where 

𝛼6, 𝛽6, 𝛾6 are determined by : 
𝛽6 = 1 

𝛼6𝑏5 + 𝛽6𝑎6 = 0 
𝛽6𝑐6 + 𝛾6𝑏7 = 0 
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• In stage two: 

𝑏 2𝑥2 + 𝑐 2𝑥4 = 𝐹 2 

𝑎 4𝑥2 + 𝑏 4𝑥4 + 𝑐 4𝑥6 = 𝐹 4 

𝑎 6𝑥4 + 𝑏 6𝑥6 = 𝐹 6 

– Repeat the same elimination process, which leads to 
only one equation 

𝛼4
∗𝑥4 = 𝐹4

∗ 

– Use backward substitution, 𝑥2 and 𝑥6 are solved by 

𝑏 2𝑥2 + 𝑐 2𝑥4 = 𝐹 2 and 𝑎 6𝑥4 + 𝑏 6𝑥6 = 𝐹 6 

– Use the original equations to solve for 𝑥1, 𝑥3, 𝑥5, 𝑥7. 
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Cyclic Reduction Algorithm 
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for(i=0; i < log2(size+1)-1;i++)          // levels of reduction 
{ 

     for(j=2𝑖+1 − 1; j <size; j=j+ 2𝑖+1)   // rows that are reduced 
     { 
           offset = 2𝑖; 
           index1 = j – offset;   // index of row before the jth row 
           index2 = j + offset;   // index of row after the jth row 
           𝛼 = A[j][index1]/A[index1][index1]; 
           γ = A[j][index2]/A[index2][index2];  
            
           for(k=0; k < size; k++) 
                A[j][k] -= 𝛼A[index1][k] + 𝛾A[index2][k];     // do the reduction to  have only  
                                                                                           // jth row being active 
           F[j] -= 𝛼F[index1] + 𝛾F[index2];  
     } 
} 



Backward Substitution 
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int  index = (size-1)/2; 
x[index]  = F[index]/A[index][index]; 
 
for(i=log2(size+1)+2;i>=0; i--)           
{ 
     for(j=2𝑖+1 − 1; j <size; j=j+ 2𝑖+1)    
     { 
           offset = 2𝑖; 
           index1 = j – offset;    
           index2 = j + offset;    
          
            x[index1] = F[index1]; 
            x[index2] = F[index2]; 
           for(k=0; k < size; k++) 
           { 
                if(k! = index1) 
                     x[index1] -= A[index1]*x[k]; 
                if(k != index2) 
                     x[index2] -= A[index2][k]*x[k];      
           } 
           x[index1] = x[index1]/A[index1][index1]; 
           x[index2] = x[index2]/A[index2][index2];   
     } 
} 



Source of Parallelism 
• Simultaneous reduction of equations in the system 

• Simultaneous backward substitution to solve for the solution 

Row Decomposition 

For 𝑖 = 1, … , 𝑛 of equations 
Process 𝑖 stores 𝑖𝑡ℎ equation. 

Computation 
 when 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑖, 2 = 0, do row reduction to yield updated 𝑖𝑡ℎ 
equation 

Communication 
𝑖𝑡ℎ equation receive 𝑖 − 1 𝑡ℎ and 𝑖 + 1 𝑡ℎ equations for 
𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑖, 2 = 0 

 
20 



Reference 
• B. Buzbbe, G. Golub, and C. Nielsen.  

On direct methods for solving Poisson’s equation. SIAM J. Numer. 
Anal., 7:627-656, 1970 

• J. Dongarra and S. Johnsson. Solving banded systems on a parallel 
processor, Parallel Computing 5:219-246, 1987 

• M. Hegland. On the parallel solution of tridiagonal systems by 
wrap-around partitioning and incomplete LU factorization, 
Numer. Math. 59:453-472, 1991 

• V. Mehrmann. Divide and conquer methods for block tridiagonal 
systems, Parallel Computing 19:257-280, 1993 

21 


