
Lecture 8: Fast Linear Solvers 
(Part 1) 
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Gaussian Elimination and LU Factorization 

Solve 

 

𝐸1:    𝑎11𝑥1 + 𝑎12𝑥2 +⋯𝑎1𝑛𝑥𝑛 = 𝑏1
𝐸2:    𝑎21𝑥1 + 𝑎22𝑥2 +⋯𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝐸𝑛:    𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

for 𝑥1, 𝑥2, … , 𝑥𝑛.  

• Matrix form 𝐴𝒙 = 𝒃:  
𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮

𝑎𝑛1

⋮
𝑎𝑛2

⋱
…

⋮
𝑎𝑛𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

=

𝑏1
𝑏2
⋮
𝑏𝑛

 

• Direct method for solving 𝐴𝒙 = 𝒃 is by computing LU factorization 
𝐴 = 𝐿𝑈 

Where 𝐿 is lower triangular and 𝑈 is upper triangular.  
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𝑙21 = 0; 𝑙31 = 2 →

𝐸3 − 2 ∗ 𝐸1 → (𝐸3)

1 1 2
0 2 1
0 −1 −3
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𝑙32 = −0.5 →

𝐸3 + 0.5 ∗ 𝐸2 → (𝐸3)

1 1 2
0 2 1

0 0 −
5
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Theorem If Gaussian elimination can be performed on the linear system 𝐴𝒙 = 𝒃 without row 
interchange, 𝐴 can be factored into the product of lower triangular matrix 𝐿 and upper 
triangular matrix 𝑈 as 𝐴 = 𝐿𝑈: 

 

𝑈 =

𝑎11
(1)

𝑎12
(1)

… 𝑎1𝑛
(1)

0 𝑎22
(2)

… 𝑎2𝑛
(2)

⋮
0

⋮
0

⋱
…

⋮

𝑎𝑛𝑛
(𝑛)

,      𝐿 =

1 0 …        0
𝑙21 1   ⋱         ⋮
⋮
𝑙𝑛1

⋮
⋯

⋱
𝑙𝑛,𝑛−1

⋮
1
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𝑥1 + 𝑥2 + 2𝑥3 = 6
2𝑥2 + 𝑥3 = 4

2𝑥1 + 𝑥2 + 𝑥3 = 7
 

Solve 



1. 𝐿𝑈 decomposition: A = 𝐿𝑈  so that  𝐴𝒙 = 𝒃 
becomes  

𝐿𝑈𝒙 = 𝒃 

2. Solve 𝐿𝒚 = 𝒃 by forward substitution to 
obtain vector 𝒚 

3. Solve 𝑈𝒙 = 𝒚 backward for 𝒙 
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Iteration of Gaussian Elimination 
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Elements that will not be changed

Elements that will be changed

Pivot row

Elements already driven to 0

i

i



Gaussian Elimination Algorithm 
• (n-1) stages of elimination are needed to obtain 𝑈. Assume all pivots at 

every stage are not 0. 
• At the last stage, 𝑈 overwrites 𝐴. 
• We assume that pivoting (row interchange) is not needed for simplicity.  
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for 𝑘 = 1 to 𝑛 − 1                         // loop over columns 
    for 𝑖 = 𝑘 + 1 to 𝑛 
        𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑘                          // multipliers for 𝑘th column 
        𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑘𝑏𝑘                         // or multipliers for ith eqn.  
    end; 
    for j = 𝑘 + 1 to 𝑛 
        for 𝑖 = 𝑘 + 1 to 𝑛 
            𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗             // elimination step to remaining  

        end;                                          //  submatrix 
     end; 
end;  

Gaussian elimination requires about 𝑛3/3 paired additions and 
multiplications, and about 𝑛2/2 divisions.   



Backward Substitution 
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for 𝑘 = 𝑛  to 1 
     𝑥𝑘 = 𝑏𝑘 
    for 𝑖 = 𝑘 + 1 to 𝑛 
           𝑥𝑘 = 𝑥𝑘 − 𝑢𝑘𝑖𝑥𝑖  
    end; 
    𝑥𝑘 = 𝑥𝑘/𝑢𝑘𝑘 
end;  

After elimination, we obtain  upper triangular 𝑈𝒙 = 𝒃(𝑛−1). 



Parallel LU Algorithm Design 

• Assume a fine-grained decomposition, i.e., 𝑎𝑖𝑗  is 

assigned to process 𝑃𝑖𝑗. 

• At the end of Computation, 𝑃𝑖𝑗  stores 

 
𝑢𝑖𝑗 ,  𝑖𝑓 𝑖 ≤ 𝑗

𝑙𝑖𝑗 ,   𝑖𝑓 𝑖 > 𝑗
 

• Outer loop can not be executed in parallel; while 
the inner loop can be executed in parallel.  

• Communications: 

– Broadcast row of A vertically below 

– Broadcast 𝑙𝑖𝑘 horizontally to tasks to right 
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Fine-Grained Tasks and Communication 
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Row-wise Cyclic Mapping Parallel Algorithm 

• A few contiguous rows of 𝐴 (2 or 3 or more rows) are 
grouped into blocks.  Distribute blocks to processes in a 
wraparound manner. 

• Also associate corresponding elements of 𝒃  and 𝒙 of 
blocks to processes, respectively.  
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P0 

P1 

P2 



• Multipliers need not to be broadcasted 
horizontally, since any row of matrix is held 
entirely in one process. 

• Vertical communications are still needed to 
broadcast a row of matrix to processes holding 
rows below it for updating.   
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Row-wise Parallel Algorithm 
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for 𝑘 = 1 to 𝑛 − 1 
    broadcast 𝑘𝑡ℎ row to processes holding 𝑘 + 1,… , 𝑛 rows  
    for processes holding 𝑖𝑡ℎ row,  𝑖 > 𝑘, 
        𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖                                                   // multipliers for 𝑘th column 
    end; 
    for processes holding 𝑖𝑡ℎ row,  𝑖 > 𝑘 
        for j = 𝑘 + 1 to 𝑛 
            𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗                                       // elimination/update step 

        end; 
     end; 
end;  



Performance Analysis 

Assume each row of matrix is assigned to a process. 
 
• The inner loop at step 𝑘 involves 𝑛 − 𝑘 

multiplications and subtractions for processes 
holding 𝑖𝑡ℎ rows, 𝑘 < 𝑖 < 𝑛.   

• At step 𝑘, there are 𝑛 − 𝑘 divisions to compute 
multiplier (

𝑎𝑖𝑘

𝑎𝑖𝑖
) 

• At step 𝑘, the one-to-all broadcast times time: 
𝑡𝑠 + 𝑡𝑤 𝑛 − 𝑘 𝑙𝑜𝑔𝑛 

• Overall complexity: 
𝑡𝑐/𝑝 𝑛 − 𝑘 2𝑛

𝑘=1 +  (𝑡𝑠 + 𝑡𝑤 𝑛 − 𝑘 𝑙𝑜𝑔𝑛𝑛
𝑘=1 ) ≈

𝑡𝑐𝑛
3/ 3𝑝 + 𝑡𝑠𝑛𝑙𝑜𝑔𝑛 +

1

2
𝑛(𝑛 − 1)𝑡𝑤𝑙𝑜𝑔𝑛 
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Column-wise Cyclic Mapping Parallel Algorithm 

• A few contiguous columns of 𝐴 (2 or 3 or more columns) are 
grouped into blocks.  Distribute blocks to processes in a 
wraparound manner. 

14 P0 P1 P2 



• Horizontal communications are needed to 
broadcast multipliers for updating. 

• Vertical communications are not needed to 
broadcast a row of matrix, since any column is 
assigned to one process.   
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Column-wise Parallel Algorithm 
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for 𝑘 = 1 to 𝑛 − 1 
    if process holds 𝑘th column, then 
        for 𝑖 = 𝑘 + 1  to 𝑛 
            𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖                                         // multipliers for 𝑘th column 
        endfor; 
     endif; 
    broadcast {𝑙𝑖𝑘 ∶ 𝑘 < 𝑖 ≤ 𝑛} to processes holding 𝑘,… , 𝑛 columns   
    for processes holds 𝑗th column,   𝑗 > 𝑘 
        for 𝑖 = 𝑘 + 1 to 𝑛 
            𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗                                       // elimination/update step 

        end; 
     end; 
end;  



2D Block Cyclic Mapping Parallel Algorithm 
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• With cyclic block mapping, each process holds 
several submatrices assembled globally. This 
improves both concurrency and load balance. 

•  Horizontal communications are needed to 
broadcast multipliers for updating. 

• Vertical communications are also needed to 
broadcast a row of matrix, since any column is 
assigned to one process.   
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2D Block Cyclic Mapping Parallel Algorithm 
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for 𝑘 = 1 to 𝑛 − 1 
    broadcast {𝑎𝑘𝑗 ∶ 𝑘 ≤ 𝑗 ≤ 𝑛} among columns of processes  

    if process holds 𝑘th column, then 
        for processes hold 𝑖𝑡ℎ row, 𝑖 > 𝑘 
            𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖                                         // multipliers for 𝑘th column 
        endfor; 
     endif; 
    broadcast {𝑙𝑖𝑘 ∶ 𝑘 ≤ 𝑖 ≤ 𝑛} to rows of processes 
    for processes hold 𝑗th column,   𝑗 > 𝑘 
        for processes hold 𝑖𝑡ℎ row, 𝑖 > 𝑘 
            𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗                                       // elimination step 

        end; 
     end; 
end;  



Gaussian Elimination with Partial Pivoting 

• If pivot element ≈ 0, significant round-off errors 
can occur. 

• Partial pivoting finds the smallest 𝑝 ≥ 𝑘 such 

that  𝑎𝑝𝑘
𝑘

= max
𝑘≤𝑖≤𝑛

|𝑎𝑖𝑘
(𝑘)

| and interchanges the 

rows 𝐸𝑘 ↔ 𝐸𝑝 .  

• Partial pivoting is required for numerical stability 
of LU factorization and Gaussian elimination. 
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Gaussian Elimination with Partial Pivoting Parallel 
Algorithm 

• With 1D row algorithm or 2D block algorithm, 
searching pivot requires communication.  

• With 1D column algorithm, searching pivot is local 
operation.  

• Once pivot is found, index of pivot row must be 
communicated to all processes. Row interchange 
communication must be called.   
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Pivot Searching 

• Use MPI_Allreduce(), operator MPI_MAXLOC and derived data 
type MPI_DOUBLE_INT (struct {double, int}). 
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struct { 

   double value; 

   int    index; 

} local, global; 

... 

local.value = fabs(a[j][i]); 

local.index = j; 

... 

MPI_Allreduce (&local, &global, 1, 

   MPI_DOUBLE_INT, MPI_MAXLOC, 

   MPI_COMM_WORLD); 



Problems with These Algorithms 

• All break parallel execution into computation and 
communication phases. 

• Processes do not perform computations during 
the broadcast steps. 

• As a result, communication time can be large 
enough to ensure poor scalability.  

• Solution:  Pipelined communication and 
computation.  
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