
Lecture 8: Fast Linear Solvers
(Part 1)

1

Gaussian Elimination and LU Factorization

Solve

𝐸1: 𝑎11𝑥1 + 𝑎12𝑥2 +⋯𝑎1𝑛𝑥𝑛 = 𝑏1
𝐸2: 𝑎21𝑥1 + 𝑎22𝑥2 +⋯𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝐸𝑛: 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

for 𝑥1, 𝑥2, … , 𝑥𝑛.

• Matrix form 𝐴𝒙 = 𝒃:
𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮

𝑎𝑛1

⋮
𝑎𝑛2

⋱
…

⋮
𝑎𝑛𝑛

𝑥1
𝑥2
⋮
𝑥𝑛

=

𝑏1
𝑏2
⋮
𝑏𝑛

• Direct method for solving 𝐴𝒙 = 𝒃 is by computing LU factorization
𝐴 = 𝐿𝑈

Where 𝐿 is lower triangular and 𝑈 is upper triangular.

2

1 1 2
0 2 1
2 1 1

6
4
7

𝑙21 = 0; 𝑙31 = 2 →

𝐸3 − 2 ∗ 𝐸1 → (𝐸3)

1 1 2
0 2 1
0 −1 −3

6
4
−5

𝑙32 = −0.5 →

𝐸3 + 0.5 ∗ 𝐸2 → (𝐸3)

1 1 2
0 2 1

0 0 −
5

2

6
4
−3

Theorem If Gaussian elimination can be performed on the linear system 𝐴𝒙 = 𝒃 without row
interchange, 𝐴 can be factored into the product of lower triangular matrix 𝐿 and upper
triangular matrix 𝑈 as 𝐴 = 𝐿𝑈:

𝑈 =

𝑎11
(1)

𝑎12
(1)

… 𝑎1𝑛
(1)

0 𝑎22
(2)

… 𝑎2𝑛
(2)

⋮
0

⋮
0

⋱
…

⋮

𝑎𝑛𝑛
(𝑛)

, 𝐿 =

1 0 … 0
𝑙21 1 ⋱ ⋮
⋮
𝑙𝑛1

⋮
⋯

⋱
𝑙𝑛,𝑛−1

⋮
1

3

𝑥1 + 𝑥2 + 2𝑥3 = 6
2𝑥2 + 𝑥3 = 4

2𝑥1 + 𝑥2 + 𝑥3 = 7

Solve

1. 𝐿𝑈 decomposition: A = 𝐿𝑈 so that 𝐴𝒙 = 𝒃
becomes

𝐿𝑈𝒙 = 𝒃

2. Solve 𝐿𝒚 = 𝒃 by forward substitution to
obtain vector 𝒚

3. Solve 𝑈𝒙 = 𝒚 backward for 𝒙

4

Iteration of Gaussian Elimination

5

Elements that will not be changed

Elements that will be changed

Pivot row

Elements already driven to 0

i

i

Gaussian Elimination Algorithm
• (n-1) stages of elimination are needed to obtain 𝑈. Assume all pivots at

every stage are not 0.
• At the last stage, 𝑈 overwrites 𝐴.
• We assume that pivoting (row interchange) is not needed for simplicity.

6

for 𝑘 = 1 to 𝑛 − 1 // loop over columns
 for 𝑖 = 𝑘 + 1 to 𝑛
 𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑘 // multipliers for 𝑘th column
 𝑏𝑖 = 𝑏𝑖 − 𝑙𝑖𝑘𝑏𝑘 // or multipliers for ith eqn.
 end;
 for j = 𝑘 + 1 to 𝑛
 for 𝑖 = 𝑘 + 1 to 𝑛
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗 // elimination step to remaining

 end; // submatrix
 end;
end;

Gaussian elimination requires about 𝑛3/3 paired additions and
multiplications, and about 𝑛2/2 divisions.

Backward Substitution

7

for 𝑘 = 𝑛 to 1
 𝑥𝑘 = 𝑏𝑘
 for 𝑖 = 𝑘 + 1 to 𝑛
 𝑥𝑘 = 𝑥𝑘 − 𝑢𝑘𝑖𝑥𝑖
 end;
 𝑥𝑘 = 𝑥𝑘/𝑢𝑘𝑘
end;

After elimination, we obtain upper triangular 𝑈𝒙 = 𝒃(𝑛−1).

Parallel LU Algorithm Design

• Assume a fine-grained decomposition, i.e., 𝑎𝑖𝑗 is

assigned to process 𝑃𝑖𝑗.

• At the end of Computation, 𝑃𝑖𝑗 stores

𝑢𝑖𝑗 , 𝑖𝑓 𝑖 ≤ 𝑗

𝑙𝑖𝑗 , 𝑖𝑓 𝑖 > 𝑗

• Outer loop can not be executed in parallel; while
the inner loop can be executed in parallel.

• Communications:

– Broadcast row of A vertically below

– Broadcast 𝑙𝑖𝑘 horizontally to tasks to right

8

Fine-Grained Tasks and Communication

9

Row-wise Cyclic Mapping Parallel Algorithm

• A few contiguous rows of 𝐴 (2 or 3 or more rows) are
grouped into blocks. Distribute blocks to processes in a
wraparound manner.

• Also associate corresponding elements of 𝒃 and 𝒙 of
blocks to processes, respectively.

10

P0

P1

P2

• Multipliers need not to be broadcasted
horizontally, since any row of matrix is held
entirely in one process.

• Vertical communications are still needed to
broadcast a row of matrix to processes holding
rows below it for updating.

11

Row-wise Parallel Algorithm

12

for 𝑘 = 1 to 𝑛 − 1
 broadcast 𝑘𝑡ℎ row to processes holding 𝑘 + 1,… , 𝑛 rows
 for processes holding 𝑖𝑡ℎ row, 𝑖 > 𝑘,
 𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖 // multipliers for 𝑘th column
 end;
 for processes holding 𝑖𝑡ℎ row, 𝑖 > 𝑘
 for j = 𝑘 + 1 to 𝑛
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗 // elimination/update step

 end;
 end;
end;

Performance Analysis

Assume each row of matrix is assigned to a process.

• The inner loop at step 𝑘 involves 𝑛 − 𝑘

multiplications and subtractions for processes
holding 𝑖𝑡ℎ rows, 𝑘 < 𝑖 < 𝑛.

• At step 𝑘, there are 𝑛 − 𝑘 divisions to compute
multiplier (

𝑎𝑖𝑘

𝑎𝑖𝑖
)

• At step 𝑘, the one-to-all broadcast times time:
𝑡𝑠 + 𝑡𝑤 𝑛 − 𝑘 𝑙𝑜𝑔𝑛

• Overall complexity:
𝑡𝑐/𝑝 𝑛 − 𝑘 2𝑛

𝑘=1 + (𝑡𝑠 + 𝑡𝑤 𝑛 − 𝑘 𝑙𝑜𝑔𝑛𝑛
𝑘=1) ≈

𝑡𝑐𝑛
3/ 3𝑝 + 𝑡𝑠𝑛𝑙𝑜𝑔𝑛 +

1

2
𝑛(𝑛 − 1)𝑡𝑤𝑙𝑜𝑔𝑛

13

Column-wise Cyclic Mapping Parallel Algorithm

• A few contiguous columns of 𝐴 (2 or 3 or more columns) are
grouped into blocks. Distribute blocks to processes in a
wraparound manner.

14 P0 P1 P2

• Horizontal communications are needed to
broadcast multipliers for updating.

• Vertical communications are not needed to
broadcast a row of matrix, since any column is
assigned to one process.

15

Column-wise Parallel Algorithm

16

for 𝑘 = 1 to 𝑛 − 1
 if process holds 𝑘th column, then
 for 𝑖 = 𝑘 + 1 to 𝑛
 𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖 // multipliers for 𝑘th column
 endfor;
 endif;
 broadcast {𝑙𝑖𝑘 ∶ 𝑘 < 𝑖 ≤ 𝑛} to processes holding 𝑘,… , 𝑛 columns
 for processes holds 𝑗th column, 𝑗 > 𝑘
 for 𝑖 = 𝑘 + 1 to 𝑛
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗 // elimination/update step

 end;
 end;
end;

2D Block Cyclic Mapping Parallel Algorithm

17

• With cyclic block mapping, each process holds
several submatrices assembled globally. This
improves both concurrency and load balance.

• Horizontal communications are needed to
broadcast multipliers for updating.

• Vertical communications are also needed to
broadcast a row of matrix, since any column is
assigned to one process.

18

2D Block Cyclic Mapping Parallel Algorithm

19

for 𝑘 = 1 to 𝑛 − 1
 broadcast {𝑎𝑘𝑗 ∶ 𝑘 ≤ 𝑗 ≤ 𝑛} among columns of processes

 if process holds 𝑘th column, then
 for processes hold 𝑖𝑡ℎ row, 𝑖 > 𝑘
 𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑖𝑖 // multipliers for 𝑘th column
 endfor;
 endif;
 broadcast {𝑙𝑖𝑘 ∶ 𝑘 ≤ 𝑖 ≤ 𝑛} to rows of processes
 for processes hold 𝑗th column, 𝑗 > 𝑘
 for processes hold 𝑖𝑡ℎ row, 𝑖 > 𝑘
 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗 // elimination step

 end;
 end;
end;

Gaussian Elimination with Partial Pivoting

• If pivot element ≈ 0, significant round-off errors
can occur.

• Partial pivoting finds the smallest 𝑝 ≥ 𝑘 such

that 𝑎𝑝𝑘
𝑘

= max
𝑘≤𝑖≤𝑛

|𝑎𝑖𝑘
(𝑘)

| and interchanges the

rows 𝐸𝑘 ↔ 𝐸𝑝 .

• Partial pivoting is required for numerical stability
of LU factorization and Gaussian elimination.

20

Gaussian Elimination with Partial Pivoting Parallel
Algorithm

• With 1D row algorithm or 2D block algorithm,
searching pivot requires communication.

• With 1D column algorithm, searching pivot is local
operation.

• Once pivot is found, index of pivot row must be
communicated to all processes. Row interchange
communication must be called.

21

Pivot Searching

• Use MPI_Allreduce(), operator MPI_MAXLOC and derived data
type MPI_DOUBLE_INT (struct {double, int}).

22

struct {

 double value;

 int index;

} local, global;

...

local.value = fabs(a[j][i]);

local.index = j;

...

MPI_Allreduce (&local, &global, 1,

 MPI_DOUBLE_INT, MPI_MAXLOC,

 MPI_COMM_WORLD);

Problems with These Algorithms

• All break parallel execution into computation and
communication phases.

• Processes do not perform computations during
the broadcast steps.

• As a result, communication time can be large
enough to ensure poor scalability.

• Solution: Pipelined communication and
computation.

23

