
Lecture 6: Performance Analysis

1

1. Amdahl’s law
– Analyze whether a program merits parallelization

2. Gustafson-Barsis’s law
– Evaluate performance of a parallel program

3. Karp-Flatt metri
– Decide whether the principle barrier to speedup is

due to inherently sequential code or parallel overhead

4. Isoefficiency metric
– Evaluate the scalability of a parallel program executing

on a parallel computer

2

Typical Time Measurements

3

Dark grey: time spent on computation, decreasing with # of processors

White: time spent on communication, increasing with # of processors

Operations in a parallel program:

1. Computation that must be performed sequentially

2. Computations that can be performed in parallel

3. Parallel overhead including communication and redundant
computations

Basic Units

• 𝑛 problem size

• 𝑝 number of processors

• 𝜎(𝑛) inherently sequential portion of computation

• 𝜑(𝑛) portion of parallelizable computation

• 𝜅(𝑛, 𝑝) parallelization overhead

• Speedup Ψ 𝑛, 𝑝 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

• Efficiency

𝜀 𝑛, 𝑝 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑢𝑠𝑒𝑑 ×𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

4

• Sequential execution time 𝑇(𝑛, 1) = 𝜎 𝑛 + 𝜑(𝑛)

Assume that the parallel portion of the computation that can
be executed in parallel divides up perfectly among 𝑝
processors

• Parallel execution time 𝑇(𝑛, 𝑝) ≥ 𝜎 𝑛 +
𝜑 𝑛

𝑝
+ 𝜅(𝑛, 𝑝)

Speedup Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑(𝑛)

𝜎 𝑛 +
𝜑 𝑛

𝑝
+𝜅(𝑛,𝑝)

Efficiency 𝜀 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑(𝑛)

𝑝 𝜎 𝑛 +
𝜑 𝑛

𝑝
+𝜅 𝑛,𝑝

5

Parallel program:
1. Exchange a layer of n pixels with each of the two adjoining processing

elements.
Time takes for message passing: 2(𝑡𝑠 + 𝑡𝑤𝑛)

2. Apply template on local sub-image.
Time takes for computing: 9𝑡𝑐𝑛2/𝑝

Speed up: Ψ 𝑛, 𝑝 =
9𝑡𝑐𝑛2

9𝑡𝑐𝑛2

𝑝 +2(𝑡𝑠+𝑡𝑤𝑛)

6

Amdahl’s Law (1)

• If the parallel overhead 𝜅 𝑛, 𝑝 is neglected,
then

 Speedup Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑(𝑛)

𝜎 𝑛 +
𝜑 𝑛

𝑝

Let 𝑓 be the percentage of inherently sequential
portion of the computation, i.e.,

 𝑓 =
𝜎 𝑛

𝜎 𝑛 +𝜑(𝑛)

 7

Amdahl’s Law (3)

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑 𝑛

𝜎 𝑛 +
𝜑 𝑛

𝑝

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 /𝑓

𝜎 𝑛 + 𝜎 𝑛 (
1
𝑓

− 1)/𝑝

Ψ 𝑛, 𝑝 ≤
1/𝑓

1 + (
1
𝑓

− 1)/𝑝

Ψ 𝑛, 𝑝 ≤
1

𝑓 + (1 − 𝑓)/𝑝

8

Amdahl’s Law: Let 𝑓 be the fraction of operations in a computation
that must be performed sequentially, where 0 ≤ 𝑓 ≤ 1. The
maximum speedup Ψ 𝑛, 𝑝 achieved by a parallel computer with 𝑝

processors performing the computation is Ψ 𝑛, 𝑝 ≤
1

𝑓+ (1−𝑓)/𝑝

Upper limit: as 𝑝 → ∞, Ψ 𝑛, 𝑝 ≤
1

𝑓+
1−𝑓

𝑝

<
1

𝑓

Speedup vs. 𝑓

9

Amdahl’s law assumes that the problem size is fixed. It provides an
upper bound on the speedup achievable by applying a certain
number of processors.

Example 1

If 90% of the computation can be parallelized,
what is the max. speedup achievable using 8
processors?

Solution:

 𝑓 = 10%,

 Ψ 𝑛, 𝑝 ≤
1

0.1+
1−0.1

8

≈ 4.7

10

Example 2

Suppose 𝜎 𝑛 = (18000 + 𝑛)𝜇𝑠𝑒𝑐

 𝜑 𝑛 =
𝑛2

100
𝜇𝑠𝑒𝑐

What is the max. speedup achievable on a problem
of size 𝑛 = 10000?

Solution: Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑 𝑛

𝜎 𝑛 +
𝜑 𝑛

𝑝

≤
28000+1000000

28000+1000000/𝑝

11

Remark
• Parallelization overhead 𝜅(𝑛, 𝑝) is ignored by Amdahl’s law

– Optimistic estimate of speedup

• The problem size 𝑛 is constant for various 𝑝 values
– Amdahl’s law shows how execution time decreases as number of processors increases.

• Amdahl effect
– Typically 𝜅(𝑛, 𝑝) has lower complexity than 𝜑 𝑛 /𝑝. For a fixed number of processors, speedup is

usually an increasing function of the problem size.
– As 𝑛 increases, 𝜑 𝑛 /𝑝 is much larger than 𝜅(𝑛, 𝑝)
– As 𝑛 increases, speedup increases

• The inherently sequential portion 𝑓 may decrease when 𝑛 increases

– Amdahl’s law (Ψ 𝑛, 𝑝 <
1

𝑓
) can under estimate speedup for large problems

12

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Gustafson-Barsis’s Law

• Amdahl’s law assumes that the problem size is fixed
and show how increasing processors can reduce time.

• Let the problem size increase with the number of
processors.

• Let 𝑠 be the fraction of time spent by a parallel
computation using 𝑝 processors on performing
inherently sequential operations.

𝑠 =
𝜎 𝑛

𝜎 𝑛 +
𝜑 𝑛

𝑝

 so 1 − 𝑠 =
𝜑 𝑛 /𝑝

𝜎 𝑛 +
𝜑 𝑛

𝑝

13

𝜎 𝑛 = 𝜎 𝑛 +
𝜑 𝑛

𝑝
𝑠

𝜑 𝑛 = 𝜎 𝑛 +
𝜑 𝑛

𝑝
1 − 𝑠 𝑝

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑 𝑛

𝜎 𝑛 +
𝜑 𝑛

𝑝

 =
(𝑠+ 1−𝑠 𝑝)(𝜎 𝑛 +

𝜑 𝑛

𝑝
)

𝜎 𝑛 +
𝜑 𝑛

𝑝

 = 𝑠 + 1 − 𝑠 𝑝
 = 𝑝 + 1 − 𝑝 𝑠

14

Gustafson-Barsis’s law: Given a parallel program of size 𝑛 using
𝑝 processors, let 𝑠 be the fraction of total execution time spent
in serial code. The maximum speedup Ψ 𝑛, 𝑝 achieved by the
program is

Ψ 𝑛, 𝑝 ≤ 𝑝 + 1 − 𝑝 𝑠

Remark

• Gustafson-Barsis’s law allows to solve larger
problems using more processors. The speedup
is called scaled speedup.

• Since parallelization overhead 𝜅(𝑛, 𝑝) is
ignored, Gustafson-Barsis’s law may over
estimate the speedup.

• Since Ψ 𝑛, 𝑝 ≤ 𝑝 + 1 − 𝑝 𝑠 = 𝑝 − 𝑝 − 1 𝑠,
the best achievable speedup is Ψ 𝑛, 𝑝 ≤ 𝑝.

• If 𝑠 = 1, then there is no speedup.

15

Example

An application executing on 64 processors using
5% of the total time on non-parallelizable
computations. What is the scaled speedup?

Solution: 𝑠 = 0.05,

 Ψ 𝑛, 𝑝 ≤ 𝑝 + 1 − 𝑝 𝑠 = 64 +
1 − 64 0.05 = 60.85

16

Karp-Flatt Metric

• Both Amdahl’s law and Gustafson-Barsis’s law ignore the
parallelization overhead 𝜅(𝑛, 𝑝), they overestimate the achievable
speedup.

Recall:

– Parallel execution time 𝑇 𝑛, 𝑝 = 𝜎 𝑛 +
𝜑 𝑛

𝑝
+ 𝜅(𝑛, 𝑝)

– Sequential execution time 𝑇 𝑛, 1 = 𝜎 𝑛 + 𝜑 𝑛

• Define experimentally determined serial fraction 𝑒 of parallel
computation:

 𝑒 𝑛, 𝑝 =
𝜎 𝑛 +𝜅(𝑛,𝑝)

𝜎 𝑛 +𝜑 𝑛

17

• experimentally determined serial fraction 𝑒
– Takes into account parallel overhead
– Detects other sources of overhead or inefficiency ignored in

speedup model
• Process startup time
• Process synchronization time
• Imbalanced workload
• Architectural overhead

• experimentally determined serial fraction 𝑒 may either stay
constant with respect to 𝑝 (meaning that the parallelization
overhead is negligible) or increase with respect to 𝑝 (meaning
that parallelization overhead dominates the speedup)

• Given Ψ 𝑛, 𝑝 using 𝑝 processors, how to determine e 𝑛, 𝑝 ?

18

Since 𝑇 𝑛, 𝑝 = 𝑇 𝑛, 1 𝑒 +
𝑇 𝑛,1 (1−𝑒)

𝑝
 and Ψ 𝑛, 𝑝 =

𝑇(𝑛,1)

𝑇(𝑛,𝑝)

Ψ 𝑛, 𝑝 =
𝑇(𝑛, 1)

𝑇 𝑛, 1 𝑒 +
𝑇 𝑛, 1 (1 − 𝑒)

𝑝

=
1

𝑒 +
1 − 𝑒

𝑝

Therefore,
1

Ψ
= 𝑒 +

1−𝑒

𝑝

→ 𝑒 =

1
Ψ

−
1
𝑝

1 −
1
𝑝

19

Example 1

Benchmarking a parallel program on 1, 2, …, 8 processors produces
the following speedup results:

What is the primary reason for the parallel program achieving a
speedup of only 4.71 on 8 processors?

20

𝒑 2 3 4 5 6 7 8

Ψ 𝑛, 𝑝 1.82 2.50 3.08 3.57 4.00 4.38 4.71

Solution: Compute e 𝑛, 𝑝 corresponding to each data point:

Since the experimentally determined serial fraction e 𝑛, 𝑝 is not
increasing with 𝑝, the primary reason for the poor speedup is
the 10% of the computation that is inherently sequential. Parallel
overhead is not the reason for the poor speedup.

21

𝒑 2 3 4 5 6 7 8

Ψ 𝑛, 𝑝 1.82 2.50 3.08 3.57 4.00 4.38 4.71

e 𝑛, 𝑝 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Example 2

Benchmarking a parallel program on 1, 2, …, 8 processors
produces the following speedup results:

What is the primary reason for the parallel program achieving a
speedup of 4.71 on 8 processors?

Solution:

Since the experimentally determined serial fraction 𝑒 is steadily
increasing with 𝑝, parallel overhead also contributes to the poor
speedup.

22

𝒑 2 3 4 5 6 7 8

Ψ 𝑛, 𝑝 1.87 2.61 3.23 3.73 4.14 4.46 4.71

𝒑 2 3 4 5 6 7 8

Ψ 𝑛, 𝑝 1.87 2.61 3.23 3.73 4.14 4.46 4.71

𝑒 0.07 0.075 0.08 0.085 0.09 0.095 0.1

The Isoefficiency Metric

23

• Parallel system: A parallel program executing on a parallel
computer

• Scalability: the scalability of a parallel system is a measure of its
ability to increase performance as the number of processors
increases.

• A scalable system should maintain efficiency as # of processors is
increased.

• Isoefficiency: way to measure scalability.

24

• Let 𝑇0(𝑛, 𝑝) be the total amount of time spent by all processes
doing work not done by the sequential algorithm:

𝑇0 𝑛, 𝑝 = 𝑝 − 1 𝜎 𝑛 + 𝑝𝜅(𝑛, 𝑝)

– 𝑇0 𝑛, 𝑝 can also be interpreted as:
𝑝 × Parallel execution time − (Sequential execution time)
• This is the total amount of overhead

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑 𝑛

𝜎 𝑛 +
𝜑 𝑛

𝑝 + 𝜅(𝑛, 𝑝)

⟹ Ψ 𝑛, 𝑝 ≤
𝑝(𝜎 𝑛 + 𝜑 𝑛)

𝜎 𝑛 + 𝜑 𝑛 + (𝑝 − 1)𝜎 𝑛 + 𝑝𝜅(𝑛, 𝑝)

⟹ Ψ 𝑛, 𝑝 ≤
𝑝(𝜎 𝑛 + 𝜑 𝑛)

𝜎 𝑛 + 𝜑 𝑛 + 𝑇0 𝑛, 𝑝

• Let 𝑇 𝑛, 1 be the time of the sequential algorithm for solving the

problem. 𝜀 𝑛, 𝑝 ≤
1

1+
𝑇0 𝑛,𝑝

𝜎 𝑛 +𝜑(𝑛)

≤
1

1+
𝑇0 𝑛,𝑝

𝑇 𝑛,1

𝑇 𝑛, 1 ≥
𝜀 𝑛, 𝑝

1 − 𝜀 𝑛, 𝑝
𝑇0 𝑛, 𝑝

Isoefficiency Relation:

Suppose a parallel system has efficiency 𝜀 𝑛, 𝑝 . Define

C =
𝜀 𝑛,𝑝

1−𝜀 𝑛,𝑝
.

In order to maintain the same level of efficiency as the
number of processors increases, 𝑛 must be increases so
that the following inequality is satisfied: 𝑇 𝑛, 1 ≥
𝐶𝑇0 𝑛, 𝑝

25

Example: Explicit Finite Difference

26

• The problem is solved on a
𝑛 × 𝑛 grid.

• 𝑝 processors are used.
• Each processor is

responsible for a subgrid of
size

𝑛

𝑝
×

𝑛

𝑝
.

• During each time step,
every processor sends
boundary values to its four
neighbors; the time needed
for communication is
𝑂

𝑛

𝑝
.

Find the isoefficiency.

Solution: The time complexity of the serial
algorithm for solving this problem is

𝑇 𝑛, 1 = 𝑂 𝑛2 .

𝑇0 𝑛, 𝑝 = 𝑂
𝑛

𝑝
𝑝.

The isoefficiency relation is

𝑛2 ≥ 𝐶𝑝(
𝑛

𝑝
) ⟹ 𝑛 ≥ 𝐶 𝑝

27

Reference

• M.J. Quinn. Parallel Programming in C with
MPI and OpenMP

28

