
Lecture 6: Performance Analysis 
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1. Amdahl’s law 
– Analyze whether a program merits parallelization 

2. Gustafson-Barsis’s law 
– Evaluate performance of a parallel program 

3. Karp-Flatt metri 
– Decide whether the principle barrier to speedup is 

due to inherently sequential code or parallel overhead 

4. Isoefficiency metric 
– Evaluate the scalability of a parallel program executing 

on a parallel computer  
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Typical Time Measurements 
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Dark grey: time spent on computation, decreasing with # of processors 

White: time spent on communication, increasing with # of processors 

Operations in a parallel program: 

1. Computation that must be performed sequentially 

2. Computations that can be performed in parallel 

3. Parallel overhead including communication and redundant 
computations  

 



Basic Units  

• 𝑛             problem size 

• 𝑝             number of processors 

• 𝜎(𝑛) inherently sequential portion of computation 

• 𝜑(𝑛)       portion of parallelizable computation  

• 𝜅(𝑛, 𝑝)        parallelization overhead 

• Speedup   Ψ 𝑛, 𝑝 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

• Efficiency   

𝜀 𝑛, 𝑝 =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑢𝑠𝑒𝑑 ×𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
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• Sequential execution time  𝑇(𝑛, 1) = 𝜎 𝑛 + 𝜑(𝑛) 

Assume that the parallel portion of the computation that can 
be executed in parallel divides up perfectly among 𝑝 
processors 

• Parallel execution time 𝑇(𝑛, 𝑝) ≥ 𝜎 𝑛 +
𝜑 𝑛

𝑝
+ 𝜅(𝑛, 𝑝) 

Speedup   Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑(𝑛) 

𝜎 𝑛 +
𝜑 𝑛

𝑝
+𝜅(𝑛,𝑝) 

 

Efficiency  𝜀 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑(𝑛) 

𝑝 𝜎 𝑛 +
𝜑 𝑛

𝑝
+𝜅 𝑛,𝑝  

 

 

5 



Parallel program: 
1. Exchange a layer of n pixels with each of the two adjoining processing 

elements.  
Time takes for message passing: 2(𝑡𝑠 + 𝑡𝑤𝑛) 

2. Apply template on local sub-image. 
Time takes for computing: 9𝑡𝑐𝑛2/𝑝 

Speed up:                             Ψ 𝑛, 𝑝 =
9𝑡𝑐𝑛2

9𝑡𝑐𝑛2

𝑝 +2(𝑡𝑠+𝑡𝑤𝑛) 
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Amdahl’s Law (1) 

• If the parallel overhead 𝜅 𝑛, 𝑝  is neglected, 
then  

       Speedup   Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑(𝑛) 

𝜎 𝑛 +
𝜑 𝑛

𝑝
 
 

Let 𝑓 be the percentage of inherently sequential 
portion of the computation, i.e.,  

            𝑓 =
𝜎 𝑛

𝜎 𝑛 +𝜑(𝑛)
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Amdahl’s Law (3) 

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑 𝑛  

𝜎 𝑛 +
𝜑 𝑛

𝑝  
 

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 /𝑓

𝜎 𝑛 + 𝜎 𝑛 (
1
𝑓

− 1)/𝑝
 

Ψ 𝑛, 𝑝 ≤
1/𝑓

1 +  (
1
𝑓

− 1)/𝑝
 

Ψ 𝑛, 𝑝 ≤
1

𝑓 +  (1 − 𝑓)/𝑝
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Amdahl’s Law: Let 𝑓 be the fraction of operations in a computation 
that must be performed sequentially, where 0 ≤ 𝑓 ≤ 1. The 
maximum speedup Ψ 𝑛, 𝑝  achieved by a parallel computer with 𝑝 

processors performing the computation is   Ψ 𝑛, 𝑝 ≤
1

𝑓+ (1−𝑓)/𝑝
 

Upper limit: as 𝑝 →  ∞, Ψ 𝑛, 𝑝 ≤
1

𝑓+
1−𝑓

𝑝

<
1

𝑓
   



Speedup vs. 𝑓  
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Amdahl’s law assumes that the problem size is fixed.  It provides an 
upper bound on the speedup achievable by applying a certain 
number of processors.  



Example 1 

If 90% of the computation can be parallelized, 
what is the max. speedup achievable using 8 
processors?  

Solution:  

 𝑓 = 10%,  

          Ψ 𝑛, 𝑝 ≤
1

0.1+
1−0.1

8

≈ 4.7 

10 



Example 2 

Suppose 𝜎 𝑛 = (18000 + 𝑛)𝜇𝑠𝑒𝑐 

                 𝜑 𝑛 =
𝑛2

100
𝜇𝑠𝑒𝑐 

What is the max. speedup achievable on a problem 
of size 𝑛 = 10000? 

 

Solution:    Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 +𝜑 𝑛  

𝜎 𝑛 +
𝜑 𝑛

𝑝
 

≤
28000+1000000

28000+1000000/𝑝
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Remark 
• Parallelization overhead 𝜅(𝑛, 𝑝) is ignored by Amdahl’s law 

– Optimistic estimate of speedup 

•  The problem size 𝑛 is constant for various 𝑝 values  
– Amdahl’s law shows how execution time decreases as number of processors increases. 

• Amdahl effect 
– Typically 𝜅(𝑛, 𝑝) has lower complexity than 𝜑 𝑛 /𝑝. For a fixed number of processors, speedup is 

usually an increasing function of the problem size.  
– As 𝑛 increases, 𝜑 𝑛 /𝑝 is much larger than 𝜅(𝑛, 𝑝)  
– As 𝑛 increases, speedup increases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The inherently sequential portion 𝑓 may decrease when 𝑛 increases 

– Amdahl’s law (Ψ 𝑛, 𝑝 <
1

𝑓
) can under estimate speedup for large problems 
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n = 100 

n = 1,000 

n = 10,000 
Speedup 

Processors 



Gustafson-Barsis’s Law 

• Amdahl’s law assumes that the problem size is fixed 
and show how increasing processors can reduce time.  

• Let the problem size increase with the number of 
processors. 

• Let 𝑠 be the fraction of time spent by a parallel 
computation using 𝑝 processors on performing 
inherently sequential operations.  

            

𝑠 =
𝜎 𝑛

𝜎 𝑛 +
𝜑 𝑛

𝑝
 
 

                           so 1 − 𝑠 =
𝜑 𝑛 /𝑝

𝜎 𝑛 +
𝜑 𝑛

𝑝
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𝜎 𝑛 = 𝜎 𝑛 +
𝜑 𝑛

𝑝
𝑠 

𝜑 𝑛 = 𝜎 𝑛 +
𝜑 𝑛

𝑝
1 − 𝑠 𝑝 

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑 𝑛  

𝜎 𝑛 +
𝜑 𝑛

𝑝
 
 

                                                         =
(𝑠+ 1−𝑠 𝑝)(𝜎 𝑛 +

𝜑 𝑛

𝑝
)

𝜎 𝑛 +
𝜑 𝑛

𝑝

 

                                                         = 𝑠 + 1 − 𝑠 𝑝 
                                                         = 𝑝 + 1 − 𝑝 𝑠 
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Gustafson-Barsis’s law: Given a parallel program of size 𝑛 using 
𝑝 processors, let 𝑠 be the fraction of total execution time spent 
in serial code. The maximum speedup Ψ 𝑛, 𝑝  achieved by the 
program is  

Ψ 𝑛, 𝑝 ≤ 𝑝 + 1 − 𝑝 𝑠 



Remark 

• Gustafson-Barsis’s law allows to solve larger 
problems using more processors. The speedup 
is called scaled speedup. 

• Since parallelization overhead 𝜅(𝑛, 𝑝) is 
ignored, Gustafson-Barsis’s law may over 
estimate the speedup. 

• Since Ψ 𝑛, 𝑝 ≤ 𝑝 + 1 − 𝑝 𝑠 = 𝑝 − 𝑝 − 1 𝑠, 
the best achievable speedup is Ψ 𝑛, 𝑝 ≤ 𝑝.  

• If 𝑠 = 1, then there is no speedup.  
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Example 

An application executing on 64 processors using 
5% of the total time on non-parallelizable 
computations. What is the scaled speedup?  

 

Solution:  𝑠 = 0.05, 

                  Ψ 𝑛, 𝑝 ≤ 𝑝 + 1 − 𝑝 𝑠 = 64 +
1 − 64 0.05 = 60.85 
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Karp-Flatt Metric 

• Both Amdahl’s  law and Gustafson-Barsis’s law ignore the 
parallelization overhead 𝜅(𝑛, 𝑝), they overestimate the achievable 
speedup.  

 

Recall:   

– Parallel execution time 𝑇 𝑛, 𝑝 = 𝜎 𝑛 +
𝜑 𝑛

𝑝
+ 𝜅(𝑛, 𝑝) 

– Sequential execution time 𝑇 𝑛, 1 = 𝜎 𝑛 + 𝜑 𝑛  

 

• Define experimentally determined serial fraction 𝑒 of parallel 
computation: 

    𝑒 𝑛, 𝑝 =
𝜎 𝑛 +𝜅(𝑛,𝑝) 

𝜎 𝑛 +𝜑 𝑛
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• experimentally determined serial fraction 𝑒 
– Takes into account parallel overhead 
– Detects other sources of overhead or inefficiency ignored in 

speedup model 
• Process startup time 
• Process synchronization time 
• Imbalanced workload 
• Architectural overhead 

 

• experimentally determined serial fraction 𝑒 may either stay 
constant with respect to 𝑝 (meaning that the parallelization 
overhead is negligible) or increase with respect to 𝑝 (meaning 
that parallelization overhead dominates the speedup ) 

 
• Given Ψ 𝑛, 𝑝  using 𝑝 processors, how to determine e 𝑛, 𝑝 ? 
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Since 𝑇 𝑛, 𝑝 = 𝑇 𝑛, 1 𝑒 +
𝑇 𝑛,1 (1−𝑒)

𝑝
 and Ψ 𝑛, 𝑝 =

𝑇(𝑛,1)

𝑇(𝑛,𝑝)
 

Ψ 𝑛, 𝑝 =
𝑇(𝑛, 1)

𝑇 𝑛, 1 𝑒 +
𝑇 𝑛, 1 (1 − 𝑒)

𝑝

=
1

𝑒 +
1 − 𝑒

𝑝

 

Therefore, 
1

Ψ
= 𝑒 +

1−𝑒

𝑝
 

 

→        𝑒 =

1
Ψ

−
1
𝑝

1 −
1
𝑝
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Example 1 

Benchmarking a parallel program on 1, 2, …, 8 processors produces 
the following speedup results:  

 

 

What is the primary reason for the parallel program achieving a 
speedup of only 4.71 on 8 processors? 
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𝒑 2 3 4 5 6 7 8 

Ψ 𝑛, 𝑝  1.82 2.50 3.08 3.57 4.00 4.38 4.71 



Solution:  Compute e 𝑛, 𝑝  corresponding to each data point:   

 

 

 
Since the experimentally determined serial fraction e 𝑛, 𝑝  is not 
increasing with 𝑝, the primary reason for the poor speedup is 
the 10% of the computation that is inherently sequential. Parallel 
overhead is not the reason for the poor speedup.  
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𝒑 2 3 4 5 6 7 8 

Ψ 𝑛, 𝑝  1.82 2.50 3.08 3.57 4.00 4.38 4.71 

e 𝑛, 𝑝  0.1 0.1 0.1 0.1 0.1 0.1 0.1 



Example 2 

Benchmarking a parallel program on 1, 2, …, 8 processors 
produces the following speedup results:  

 

 

What is the primary reason for the parallel program achieving a 
speedup of 4.71 on 8 processors?  

Solution: 

 

 

 

Since the experimentally determined serial fraction 𝑒 is steadily 
increasing with 𝑝, parallel overhead also contributes to the poor 
speedup.  
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𝒑 2 3 4 5 6 7 8 

Ψ 𝑛, 𝑝  1.87 2.61 3.23 3.73 4.14 4.46 4.71 

𝒑 2 3 4 5 6 7 8 

Ψ 𝑛, 𝑝  1.87 2.61 3.23 3.73 4.14 4.46 4.71 

𝑒 0.07 0.075 0.08 0.085 0.09 0.095 0.1 



The Isoefficiency Metric 
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• Parallel system: A parallel program executing on a parallel 
computer 

• Scalability: the scalability of a parallel system is a measure of its 
ability to increase performance as the number of processors 
increases.  

• A scalable system should maintain efficiency as # of processors is 
increased. 

• Isoefficiency: way to measure scalability. 
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• Let 𝑇0(𝑛, 𝑝) be the total amount of time spent by all processes 
doing work not done by the sequential algorithm:  

𝑇0 𝑛, 𝑝 = 𝑝 − 1 𝜎 𝑛 + 𝑝𝜅(𝑛, 𝑝) 

– 𝑇0 𝑛, 𝑝  can also be interpreted as: 
𝑝 × Parallel execution time − (Sequential execution time) 
• This is the total amount of overhead 

Ψ 𝑛, 𝑝 ≤
𝜎 𝑛 + 𝜑 𝑛  

𝜎 𝑛 +
𝜑 𝑛

𝑝  + 𝜅(𝑛, 𝑝)
 

⟹ Ψ 𝑛, 𝑝 ≤
𝑝(𝜎 𝑛 + 𝜑 𝑛 ) 

𝜎 𝑛 + 𝜑 𝑛 + (𝑝 − 1)𝜎 𝑛 + 𝑝𝜅(𝑛, 𝑝)
 

⟹ Ψ 𝑛, 𝑝 ≤
𝑝(𝜎 𝑛 + 𝜑 𝑛 ) 

𝜎 𝑛 + 𝜑 𝑛 + 𝑇0 𝑛, 𝑝
 

• Let 𝑇 𝑛, 1  be the time of the sequential algorithm for solving the 

problem.       𝜀 𝑛, 𝑝 ≤
1

1+
𝑇0 𝑛,𝑝

𝜎 𝑛 +𝜑(𝑛)

≤
1

1+
𝑇0 𝑛,𝑝

𝑇 𝑛,1

 

𝑇 𝑛, 1 ≥
𝜀 𝑛, 𝑝

1 − 𝜀 𝑛, 𝑝
𝑇0 𝑛, 𝑝  

 



Isoefficiency Relation: 

Suppose a parallel system has efficiency 𝜀 𝑛, 𝑝 . Define 

C =
𝜀 𝑛,𝑝

1−𝜀 𝑛,𝑝
.  

In order to maintain the same level of efficiency as the 
number of processors increases, 𝑛 must be increases so 
that the following inequality is satisfied: 𝑇 𝑛, 1 ≥
𝐶𝑇0 𝑛, 𝑝  
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Example: Explicit Finite Difference 
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• The problem is solved on a 
𝑛 × 𝑛 grid.  

• 𝑝 processors are used.  
• Each processor is 

responsible for a subgrid of 
size 

𝑛

𝑝
×

𝑛

𝑝
. 

• During each time step, 
every processor sends 
boundary values to its four 
neighbors; the time needed 
for communication is 
𝑂

𝑛

𝑝
.  

 



Find the isoefficiency. 

Solution: The time complexity of the serial 
algorithm for solving this problem is  

𝑇 𝑛, 1 = 𝑂 𝑛2 .   

𝑇0 𝑛, 𝑝 = 𝑂
𝑛

𝑝
𝑝. 

The isoefficiency relation is  

𝑛2 ≥ 𝐶𝑝(
𝑛

𝑝
) ⟹ 𝑛 ≥ 𝐶 𝑝 
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