Lecture 5: Parallel Matrix Algorithms (part 3)

A Simple Parallel Dense Matrix-Matrix Multiplication

Let $A=[a_{ij}]_{n\times n}$ and $B=[b_{ij}]_{n\times n}$ be n \times n matrices. Compute C=AB

- Computational complexity of sequential algorithm: $O(n^3)$
- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ ($0 \le i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.

Algorithm:

- Perform all-to-all broadcast of blocks of A in each row of processes
- Perform all-to-all broadcast of blocks of B in each column of processes
- Each process $P_{i,j}$ perform $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j}$

Performance Analysis

- \sqrt{p} rows of all-to-all broadcasts, each is among a group of \sqrt{p} processes. A message size is $\frac{n^2}{p}$, communication time: $t_S log \sqrt{p} + t_W \frac{n^2}{p} \left(\sqrt{p} 1 \right)$
- \sqrt{p} columns of all-to-all broadcasts, communication time: $t_S log \sqrt{p} + t_W \frac{n^2}{p} \left(\sqrt{p} 1 \right)$
- Computation time: $\sqrt{p} \times (n/\sqrt{p})^3 = n^3/p$
- Parallel time: $T_p = \frac{n^3}{p} + 2\left(t_s log\sqrt{p} + t_w \frac{n^2}{p}(\sqrt{p} 1)\right)$

Memory Efficiency of the Simple Parallel Algorithm

Not memory efficient

- Each process $P_{i,j}$ has $2\sqrt{p}$ blocks of $A_{i,k}$ and $B_{k,j}$
- Each process needs $\Theta(n^2/\sqrt{p})$ memory
- Total memory over all the processes is $\Theta(n^2 \times \sqrt{p})$, i.e., \sqrt{p} times the memory of the sequential algorithm.

Cannon's Algorithm of Matrix-Matrix Multiplication

Goal: to improve the memory efficiency.

Let $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ be n × n matrices. Compute C = AB

- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ ($0 \le i,j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.
- The contention-free formula:

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k)\%\sqrt{p}} B_{(i+j+k)\%\sqrt{p},j}$$

Cannon's Algorithm

```
// make initial alignment
for i, j := 0 to \sqrt{p} - 1 do
   Send block A_{i,j} to process (i,(j-i+\sqrt{p})mod\sqrt{p}) and block B_{i,j} to process
((i-j+\sqrt{p})mod\sqrt{p},j);
endfor;
Process P_{i,j} multiply received submatrices together and add the result to C_{i,j};
// compute-and-shift. A sequence of one-step shifts pairs up A_{i,k} and B_{k,j}
// on process P_{i,j}. C_{i,j} = C_{i,j} + A_{i,k}B_{k,j}
for step :=1 to \sqrt{p} - 1 do
   Shift A_{i,j} one step left (with wraparound) and B_{i,j} one step up (with
wraparound);
   Process P_{i,j} multiply received submatrices together and add the result to C_{i,j};
Endfor;
```

Remark: In the initial alignment, the send operation is to: shift $A_{i,j}$ to the left (with wraparound) by i steps, and shift $B_{i,j}$ to the up (with wraparound) by j steps.

Cannon's Algorithm for 3×3 Matrices

A(0,0)	A(0,1)	A(0,2)
A(1,1)	A(1,2)	A(1,0)
A(2,2)	A(2,0)	A(2,1)

A(0,1)	A(0,2)	A(0,0)
A(1,2)	A(1,0)	A(1,1)
A(2,0)	A(2,1)	A(2,2)

A(0,2)	A(0,0)	A(0,1)
A(1,0)	A(1,1)	A(1,2)
A(2,1)	A(2,2)	A(2,0)

B(0,0)	B(0,1)	B(0,2)
B(1,0)	B(1,1)	B(1,2)
B(2,0)	B(2,1)	B(2,2)

B(0,0)	B(1,1)	B(2,2)
B(1,0)	B(2,1)	B(0,2)
B(2,0)	B(0,1)	B(1,2)

B(1,0)	B(2,1)	B(0,2)
B(2,0)	B(0,1)	B(1,2)
B(0,0)	B(1,1)	B(2,2)

Initial A, B

A, B initial alignment

A, B after shift step 1

A, B after shift step 2

Performance Analysis

- In the initial alignment step, the maximum distance over which block shifts is $\sqrt{p}-1$
 - The circular shift operations in row and column directions take time: $t_{comm} = 2(t_s + \frac{t_w n^2}{p})$
- Each of the \sqrt{p} single-step shifts in the computeand-shift phase takes time: $t_S + \frac{t_w n^2}{p}$.
- Multiplying \sqrt{p} submatrices of size $(\frac{n}{\sqrt{p}}) \times (\frac{n}{\sqrt{p}})$ takes time: n^3/p .
- Parallel time: $T_p = \frac{n^3}{p} + 2\sqrt{p} \left(t_S + \frac{t_W n^2}{p} \right) + 2(t_S + \frac{t_W n^2}{p})$

int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status);

- Execute a blocking send and receive. The same buffer is used both for the send and for the receive, so that the message sent is replaced by the message received.
- buf[in/out]: initial address of send and receive buffer

```
#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
  int myid, numprocs, left, right;
  int buffer[10];
  MPI Request request;
  MPI Status status;
  MPI Init(&argc,&argv);
  MPI Comm size (MPI COMM WORLD, & numprocs);
  MPI Comm rank(MPI COMM WORLD, &myid);
  right = (myid + 1) % numprocs;
  left = myid - 1;
  if (left < 0)
    left = numprocs - 1;
  MPI Sendrecv replace(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD,
&status);
  MPI Finalize();
  return 0;
                                                                                    11
```

DNS Algorithm

- The algorithm is named after Dekel, Nassimi and Aahni
- It is based on partitioning intermediate data
- It performs matrix multiplication in time $O(\log n)$ by using $O(n^3/\log n)$ processes

```
The sequential algorithm for C = A \times B C_{ij} = 0 for(i = 0; i < n; i + +) for(j = 0; j < n; j + +) for(k = 0; k < n; k + +) C_{ij} = C_{ij} + A_{ik} \times B_{kj}
```

Remark: The algorithm performs n^3 scalar multiplications

- Assume that n^3 processes are available for multiplying two $n \times n$ matrices.
- Then each of the n^3 processes is assigned a single scalar multiplication.
- The additions for all C_{ij} can be carried out simultaneously in $\log n$ steps each.
- Arrange n^3 processes in a three-dimensional $n \times n \times n$ logical array.
 - The processes are labeled according to their location in the array, and the multiplication $A_{ik}B_{kj}$ is assigned to process P[i,j,k] $(0 \le i,j,k < n)$.
 - After each process performs a single multiplication, the contents of P[i,j,0],P[i,j,1],...,P[i,j,n-1] are added to obtain C_{ij} .

A[0,3]	A[1,3]	A[2,3]	A[3,3]	K=3				B[3,3] B[3,2] B[3,1] B[3,0]
A[0,2]	A[1,2]	A[2,2]	A[3,2]	K=2			B[2,3] B[2,2] B[2,1] B[2,0]	
A[0,1]	A[1,1]	A[2,1]	A[3,1]	K=1		B[1,3] B[1,2] B[1,1] B[1,0]		
A[0,0]	A[1,0]	A[2,0]	A[3,0]	K=0	B[0,3] B[0,2] B[0,1] B[0,0]			
(b) After moving A	i,j] from l	P[i,j0] to	P[i,j,j]	(b) Afte		B[i,j] fro	om P[i,j,0)] to P[i,j,i]

	A[0,3] A[1,3] A[2,3] A[3,3]	C[0,0]	B[3,3] B[3,3] B[3,3] B[3,3]
K=3	A[0,3] A[1,3] A[2,3] A[3,3]	=	B[3,2] B[3,2] B[3,2] B[3,2]
	A[0,3] A[1,3] A[2,3] A[3,3]	$A[0,3] \times B[3,0]$	B[3,1] B[3,1] B[3,1] B[3,1]
	A[0,3] A[1,3] A[2,3] A[3,3]		B[3,0] B[3,0] B[3,0] B[3,0]
	A[0,2] A[1,2] A[2,2] A[3,2]		B[2,3] B[2,3] B[2,3] B[2,3]
K=2	A[0,2] A[1,2] A[2,2] A[3,2]	+	B[2,2] B[2,2] B[2,2] B[2,2]
	A[0,2] A[1,2] A[2,2] A[3,2]	$A[0,2] \times B[2,0]$	B[2,1] B[2,1] B[2,1] B[2,1]
	A[0,2] A[1,2] A[2,2] A[3,2]		B[2,0] B[2,0] B[2,0] B[2,0]
	A[0,1] A[1,1] A[2,1] A[3,1]		B[1,3] B[1,3] B[1,3] B[1,3]
K=1	A[0,1] A[1,1] A[2,1] A[3,1]	+	B[1,2] B[1,2] B[1,2] B[1,2]
	A[0,1] A[1,1] A[2,1] A[3,1]	$A[0,1] \times B[1,0]$	B[1,1] B[1,1] B[1,1] B[1,1]
	A[0,1] A[1,1] A[2,1] A[3,1]		B[1,0] B[1,0] B[1,0] B[1,0]
	A[0,0] A[1,0] A[2,0] A[3,0]		B[0,3] B[0,3] B[0,3] B[0,3]
K=0	A[0,0] A[1,0] A[2,0] A[3,0]	+	B[0,2] B[0,2] B[0,2] B[0,2]
	A[0,0] A[1,0] A[2,0] A[3,0]	$A[0,0] \times B[0,0]$	B[0,1] B[0,1] B[0,1] B[0,1]
	A[0,0] A[1,0] A[2,0] A[3,0]		B[0,0] B[0,0] B[0,0] B[0,0]
(c) Afte	r broadcasting A[i,j] along j axis	(d) (Corresponding distribution of B

• The vertical column of processes P[i,j,*] computes the dot product of row A_{i*} and column B_{*j}

- The DNS algorithm has three main communication steps:
 - 1. moving the rows of A and the columns of B to their respective places,
 - 2. performing one-to-all broadcast along the j axis for A and along the i axis for B
 - 3. all-to-one reduction along the k axis