Lecture 5: Parallel Matrix Algorithms (part 3)

A Simple Parallel Dense Matrix-Matrix Multiplication

Let $A=\left[a_{i j}\right]_{n \times n}$ and $B=\left[b_{i j}\right]_{n \times n}$ be $\mathrm{n} \times \mathrm{n}$ matrices. Compute $C=$ $A B$

- Computational complexity of sequential algorithm: $O\left(n^{3}\right)$
- Partition A and B into p square blocks $A_{i, j}$ and $B_{i, j}(0 \leq i, j<\sqrt{p})$ of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i, j}$ initially stores $A_{i, j}$ and $B_{i, j}$ and computes block $C_{i, j}$ of the result matrix.
- Remark: Computing submatrix $C_{i, j}$ requires all submatrices $A_{i, k}$ and $B_{k, j}$ for $0 \leq k<\sqrt{p}$.

- Algorithm:
- Perform all-to-all broadcast of blocks of A in each row of processes
- Perform all-to-all broadcast of blocks of B in each column of processes
- Each process $P_{i, j}$ perform $C_{i, j}=\sum_{k=0}^{\sqrt{p}-1} A_{i, k} B_{k, j}$

Performance Analysis

- \sqrt{p} rows of all-to-all broadcasts, each is among a group of \sqrt{p} processes. A message size is $\frac{n^{2}}{p}$, communication time: $t_{s} \log \sqrt{p}+$ $t_{w} \frac{n^{2}}{p}(\sqrt{p}-1)$
- \sqrt{p} columns of all-to-all broadcasts, communication time:
$t_{s} \log \sqrt{p}+t_{w} \frac{n^{2}}{p}(\sqrt{p}-1)$
- Computation time: $\sqrt{p} \times(n / \sqrt{p})^{3}=n^{3} / p$
- Parallel time: $T_{p}=\frac{n^{3}}{p}+2\left(t_{s} \log \sqrt{p}+t_{w} \frac{n^{2}}{p}(\sqrt{p}-1)\right)$

Memory Efficiency of the Simple Parallel Algorithm

- Not memory efficient
- Each process $P_{i, j}$ has $2 \sqrt{p}$ blocks of $A_{i, k}$ and $B_{k, j}$
- Each process needs $\Theta\left(n^{2} / \sqrt{p}\right)$ memory
- Total memory over all the processes is $\Theta\left(n^{2} \times \sqrt{p}\right)$, i.e., \sqrt{p} times the memory of the sequential algorithm.

Cannon's Algorithm of Matrix-Matrix Multiplication

Goal: to improve the memory efficiency.
Let $A=\left[a_{i j}\right]_{n \times n}$ and $B=\left[b_{i j}\right]_{n \times n}$ be $\mathrm{n} \times \mathrm{n}$ matrices. Compute $C=$ $A B$

- Partition A and B into p square blocks $A_{i, j}$ and $B_{i, j}(0 \leq i, j<\sqrt{p})$ of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i, j}$ initially stores $A_{i, j}$ and $B_{i, j}$ and computes block $C_{i, j}$ of the result matrix.
- Remark: Computing submatrix $C_{i, j}$ requires all submatrices $A_{i, k}$ and $B_{k, j}$ for $0 \leq k<\sqrt{p}$.
- The contention-free formula:

$$
C_{i, j}=\sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k) \% \sqrt{p}} B_{(i+j+k) \% \sqrt{p}, j}
$$

Cannon's Algorithm

// make initial alignment
for $i, j:=0$ to $\sqrt{p}-1$ do
Send block $A_{i, j}$ to process $(i,(j-i+\sqrt{p}) \bmod \sqrt{p})$ and block $B_{i, j}$ to process $((i-j+\sqrt{p}) \bmod \sqrt{p}, j)$;
endfor;
Process $P_{i, j}$ multiply received submatrices together and add the result to $C_{i, j}$;
// compute-and-shift. A sequence of one-step shifts pairs up $A_{i, k}$ and $B_{k, j}$ // on process $P_{i, j} . \quad C_{i, j}=C_{i, j}+A_{i, k} B_{k, j}$ for step : $=1$ to $\sqrt{p}-1$ do

Shift $A_{i, j}$ one step left (with wraparound) and $B_{i, j}$ one step up (with wraparound);

Process $P_{i, j}$ multiply received submatrices together and add the result to $C_{i, j}$; Endfor;

Remark: In the initial alignment, the send operation is to: shift $A_{i, j}$ to the left (with wraparound) by i steps, and shift $B_{i, j}$ to the up (with wraparound) by j steps.

Cannon's Algorithm for 3×3 Matrices

Initial A, B

$A(0,0)$	$A(0,1)$	$A(0,2)$
$A(1,1)$	$A(1,2)$	$A(1,0)$
$A(2,2)$	$A(2,0)$	$A(2,1)$

$\mathrm{B}(0,0)$	$\mathrm{B}(1,1)$	$\mathrm{B}(2,2)$
$\mathrm{B}(1,0)$	$\mathrm{B}(2,1)$	$\mathrm{B}(0,2)$
$\mathrm{B}(2,0)$	$\mathrm{B}(0,1)$	$\mathrm{B}(1,2)$

A, B initial alignment

$A(0,1)$	$A(0,2)$	$A(0,0)$
$A(1,2)$	$A(1,0)$	$A(1,1)$
$A(2,0)$	$A(2,1)$	$A(2,2)$

$A(0,2)$	$A(0,0)$	$A(0,1)$
$A(1,0)$	$A(1,1)$	$A(1,2)$
$A(2,1)$	$A(2,2)$	$A(2,0)$

$\mathrm{B}(1,0)$	$\mathrm{B}(2,1)$	$\mathrm{B}(0,2)$
$\mathrm{B}(2,0)$	$\mathrm{B}(0,1)$	$\mathrm{B}(1,2)$
$\mathrm{B}(0,0)$	$\mathrm{B}(1,1)$	$\mathrm{B}(2,2)$

A, B after shift step 1

$\mathrm{B}(2,0)$	$\mathrm{B}(0,1)$	$\mathrm{B}(1,2)$
$\mathrm{B}(0,0)$	$\mathrm{B}(1,1)$	$\mathrm{B}(2,2)$
$\mathrm{B}(1,0)$	$\mathrm{B}(2,1)$	$\mathrm{B}(0,2)$

A, B after shift step 2

Performance Analysis

- In the initial alignment step, the maximum distance over which block shifts is $\sqrt{p}-1$
- The circular shift operations in row and column directions take time: $t_{\text {comm }}=2\left(t_{s}+\frac{t_{w} n^{2}}{p}\right)$
- Each of the \sqrt{p} single-step shifts in the compute-and-shift phase takes time: $t_{s}+\frac{t_{w} n^{2}}{p}$.
- Multiplying \sqrt{p} submatrices of size $\left(\frac{\mathrm{n}}{\sqrt{p}}\right) \times\left(\frac{\mathrm{n}}{\sqrt{p}}\right)$ takes time: n^{3} / p.
- Parallel time: $T_{p}=\frac{n^{3}}{p}+2 \sqrt{p}\left(t_{s}+\frac{t_{w} n^{2}}{p}\right)+2\left(t_{s}+\frac{t_{w} n^{2}}{p}\right)$
int MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status);
- Execute a blocking send and receive. The same buffer is used both for the send and for the receive, so that the message sent is replaced by the message received.
- buf[in/out]: initial address of send and receive buffer

```
#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{
    int myid, numprocs, left, right;
    int buffer[10];
    MPI_Request request;
    MPI_Status status;
    MPI Init(&argc,&argv);
    MPI Comm size(MPI_COMM_WORLD, &numprocs);
    MPI Comm rank(MPI_COMM_WORLD, &myid);
    right = (myid + 1) % numprocs;
    left = myid - 1;
    if (left < 0)
        left = numprocs - 1;
    MPI Sendrecv replace(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD,
&status);
    MPI Finalize();
    return 0;
}

\section*{DNS Algorithm}
- The algorithm is named after Dekel, Nassimi and Aahni
- It is based on partitioning intermediate data
- It performs matrix multiplication in time \(O(\log n)\) by using \(O\left(n^{3} / \log n\right)\) processes
The sequential algorithm for \(C=A \times B\)
\[
\begin{gathered}
C_{i j}=0 \\
\text { for }(i=0 ; i<n ; i++) \\
\text { for }(j=0 ; j<n ; j++) \\
\operatorname{for}(k=0 ; k<n ; k++) \\
C_{i j}=C_{i j}+A_{i k} \times B_{k j}
\end{gathered}
\]

Remark: The algorithm performs \(n^{3}\) scalar multiplications
- Assume that \(n^{3}\) processes are available for multiplying two \(n \times n\) matrices.
- Then each of the \(n^{3}\) processes is assigned a single scalar multiplication.
- The additions for all \(C_{i j}\) can be carried out simultaneously in logn steps each.
- Arrange \(n^{3}\) processes in a three-dimensional \(n \times n \times n\) logical array.
- The processes are labeled according to their location in the array, and the multiplication \(A_{i k} B_{k j}\) is assigned to process \(\mathrm{P}[\mathrm{i}, \mathrm{j}, \mathrm{k}](0 \leq i, j, k<n)\).
- After each process performs a single multiplication, the contents of \(\mathrm{P}[\mathrm{i}, \mathrm{j}, \mathrm{O}], \mathrm{P}[\mathrm{i}, \mathrm{j}, 1], \ldots, \mathrm{P}[\mathrm{i}, \mathrm{j}, \mathrm{n}-1]\) are added to obtain \(C_{i j}\).

\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{A}[0,3]\) & \(\mathrm{A}[1,3]\) & \(\mathrm{A}[2,3]\) & \(\mathrm{A}[3,3]\) \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline \(\mathrm{A}[0,2]\) & \(\mathrm{A}[1,2]\) & \(\mathrm{A}[2,2]\) & \(\mathrm{A}[3,2]\) \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline \(\mathrm{A}[0,1]\) & \(\mathrm{A}[1,1]\) & \(\mathrm{A}[2,1]\) & \(\mathrm{A}[3,1]\) \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline\(A[0,0]\) & \(A[1,0]\) & \(A[2,0]\) & \(A[3,0]\) \\
\hline
\end{tabular}
(b) After moving \(A[i, j]\) from \(P[i, j 0]\) to \(P[i, j, j]\)
\(\mathrm{K}=3\)
\(\mathrm{K}=3 \quad\)\begin{tabular}{|l|l|l|l|}
\hline & & & \(\mathrm{B}[3,3]\) \\
\hline & & & \(\mathrm{B}[3,2]\) \\
\hline & & & \(\mathrm{B}[3,1]\) \\
\hline & & & \(\mathrm{B}[3,0]\) \\
\hline
\end{tabular}
\(\mathrm{K}=2\)
\(\mathrm{K}=2 \quad\)\begin{tabular}{ll|l|l|l|}
\hline & & \(\mathrm{B}[2,3]\) & \\
\hline & & \(\mathrm{B}[2,2]\) & \\
\hline & & \(\mathrm{B}[2,1]\) & \\
\hline & & \(\mathrm{B}[2,0]\) & \\
\hline
\end{tabular}
\(\mathrm{K}=1\)
\(\mathrm{K}=1 \quad\)\begin{tabular}{|l|l|l|l|}
\hline & \(\mathrm{B}[1,3]\) & & \\
\hline & \(\mathrm{B}[1,2]\) & & \\
\hline & \(\mathrm{B}[1,1]\) & & \\
\hline & \(\mathrm{B}[1,0]\) & & \\
\hline
\end{tabular}
\(\mathrm{K}=0\)\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{B}[0,3]\) & & & \\
\hline \(\mathrm{B}[0,2]\) & & & \\
\hline \(\mathrm{B}[0,1]\) & & & \\
\hline \(\mathrm{B}[0,0]\) & & & \\
\hline \multicolumn{4}{|c|}{} \\
\hline
\end{tabular}
(b) After moving \(\mathrm{B}[\mathrm{i}, \mathrm{j}]\) from \(\mathrm{P}[\mathrm{i}, \mathrm{j}, 0]\) to \(\mathrm{P}[\mathrm{i}, \mathrm{j}, \mathrm{i}]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\mathrm{K}=3\)} & A [0,3] & \(\mathrm{A}[1,3]\) & \(\mathrm{A}[2,3]\) & A \([3\) & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathrm{C}[0,0] \\
= \\
\mathrm{A}[0,3] \times \mathrm{B}[3,0]
\end{gathered}
\]} & B[3,3] & \(\mathrm{B}[3,3]\) & B[3,3] & \(\mathrm{B}[3,3]\) \\
\hline & A \([0,3]\) & \(\mathrm{A}[1,3]\) & \(\mathrm{A}[2,3]\) & \(\mathrm{A}[3,3]\) & & B[3,2] & B[3,2] & B [3,2] & \(\mathrm{B}[3,2]\) \\
\hline & A [0,3] & A [1,3] & \(\mathrm{A}[2,3]\) & \(\mathrm{A}[3,3]\) & & B[3,1] & \(\mathrm{B}[3,1]\) & B[3,1] & \(\mathrm{B}[3,1]\) \\
\hline & A \([0,3]\) & \(\mathrm{A}[1,3]\) & \(\mathrm{A}[2,3]\) & \(\mathrm{A}[3,3]\) & & B \([3,0\) & B[3,0] & \(\mathrm{B}[3,0]\) & B[3, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\mathrm{K}=2\)} & A [0,2] & \(\mathrm{A}[1,2]\) & \(\mathrm{A}[2,2]\) & A [3, & \multirow{4}{*}{\[
\mathrm{A}[0,2] \times \mathrm{B}[2,0]
\]} & B [2,3] & \(\mathrm{B}[2,3]\) & \(\mathrm{B}[2,3]\) & B [2,3] \\
\hline & A \([0,2]\) & A [1,2] & \(\mathrm{A}[2,2]\) & \(\mathrm{A}[3,2]\) & & B [2,2] & B 2,2\(]\) & B 2,2\(]\) & \(\mathrm{B}[2,2]\) \\
\hline & \(\mathrm{A}[0,2]\) & A 1,2\(]\) & \(\mathrm{A}[2,2]\) & \(\mathrm{A}[3,2]\) & & B 2,1 ] & B 2,1\(]\) & B 2,1\(]\) & \(\mathrm{B}[2,1]\) \\
\hline & A[0,2] & \(\mathrm{A}[1,2]\) & \(\mathrm{A}[2,2]\) & \(\mathrm{A}[3,2]\) & & B[2,0] & B [2, \(]\) & \(\mathrm{B}[2,0]\) & \(\mathrm{B}[2,0]\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{K=1} & A [0, 1\(]\) & \(\mathrm{A}[1,1]\) & \(\mathrm{A}[2,1]\) & A [3, & \multirow{4}{*}{\[
\mathrm{A}[0,1] \times \mathrm{B}[1,0]
\]} & B [1,3] & B 1,3\(]\) & B 1 & B 1,3\(]\) \\
\hline & A [0,1] & \(\mathrm{A}[1,1]\) & \(\mathrm{A}[2,1]\) & \(\mathrm{A}[3,1]\) & & B [1,2] & B[1,2] & B 1,2\(]\) & \(\mathrm{B}[1,2]\) \\
\hline & A[0,1] & \(\mathrm{A}[1,1]\) & \(\mathrm{A}[2,1]\) & \(\mathrm{A}[3,1]\) & & B[1,1] & \(\mathrm{B}[1,1]\) & \(\mathrm{B}[1,1]\) & \(\mathrm{B}[1,1]\) \\
\hline & A[0,1] & A[1,1] & \(\mathrm{A}[2,1]\) & \(\mathrm{A}[3,1]\) & & B[1,0] & \(\mathrm{B}[1,0]\) & \(\mathrm{B}[1,0]\) & \(\mathrm{B}[1,0]\) \\
\hline
\end{tabular}

- The vertical column of processes \(\mathrm{P}\left[\mathrm{i}, \mathrm{j},{ }^{*}\right]\) computes the dot product of row \(A_{i *}\) and column \(B_{* j}\)
- The DNS algorithm has three main communication steps:
1. moving the rows of \(A\) and the columns of \(B\) to their respective places,
2. performing one-to-all broadcast along the j axis for A and along the i axis for B
3. all-to-one reduction along the \(k\) axis```

