Lecture 5: Parallel Matrix Algorithms (part 2)

Column-wise Block-Striped Decomposition

Summary of algorithm for computing $\mathbf{c}=A \boldsymbol{b}$

- Column-wise 1D block partition is used to distribute matrix.
- Let $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right], \boldsymbol{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]^{T}$, and $\mathbf{c}=$ $\left[c_{1}, c_{2}, \ldots, c_{n}\right]^{T}$
- Assume each task i has column $\boldsymbol{a}_{i}, b_{i}$ and c_{i} (Assume a finegrained decomposition for convenience)
column-wise distribution

1. Read in matrix stored in row-major manner and distribute by column-wise mapping
2. Each task i compute $b_{i} \boldsymbol{a}_{i}$ to result in a vector of partial result.
3. An all-to-all communication is used to transfer partial result: every partial result element j on task i must be transferred to task j.
4. At the end of computation, task i only has a single element of the result c_{i} by adding gathered partial results.

After All-to-All Communication

$a_{0,0} b_{0}$	$a_{1,0} b_{0}$	$a_{2,0} b_{0}$	$a_{3,0} b_{0}$	$a_{4,0} b_{0}$
$a_{0,1} b_{1}$	$a_{1,1} b_{1}$	$a_{2,1} b_{1}$	$a_{3,1} b_{1}$	$a_{4,1} b_{1}$
$a_{0,2} b_{2}$	$a_{1,2} b_{2}$	$a_{2,2} b_{2}$	$a_{3,2} b_{2}$	$a_{4,2} b_{2}$
$a_{0,3} b_{3}$	$a_{1,3} b_{3}$	$a_{2,3} b_{3}$	$a_{3,3} b_{3}$	$a_{4,3} b_{3}$
$a_{4,4} b_{4}$	$a_{1,4} b_{4}$	$a_{2,4} b_{4}$	$b_{3,4} b_{4}$	$\boldsymbol{a}_{4,4} \boldsymbol{b}_{4}$
oc 0	Proc 1	Proc 2	Proc 3	Proc 4

Reading a Column-wise Block-Striped Matrix

read_col_striped_matrix()

- Read from a file a matrix stored in row-major order and distribute it among processes in column-wise fashion.
- Each row of matrix must be scattered among all of processes.

```
read_col_striped_matrix()
```

\{
// figure out how a row of the matrix should be distributed
create_mixed_xfer_arrays(id,p, *n, \&send_count, \&send_disp);
// go through each row of the matrix
for ($\mathrm{i}=0 ; \mathrm{i}<{ }^{*} \mathrm{~m} ; \mathrm{i}++$)
\{
if(id == (p-1)) fread(buffer,datum_size, *n, infileptr);
MPI_Scatterv(...);
\}
\}

- int MPI_Scatterv(void *sendbuf, int *sendcnts, int *displs, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm)
- MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying count of data to be sent to each process.
- sendbuf: address of send buffer
- sendcnts: an integer array specifying the number of elements to send to each processor
- displs: an integer array. Entry i specifies the displacement (relative to sendbuf from which to take the outgoing data to process i

Printing a Colum-wise Block-Striped Matrix

 print_col_striped_matrix()- A single process print all values
- To print a single row, the process responsible for printing must gather together the elements of that row from entire set of processes
print_col_striped_matrix()
\{
create_mixed_xfer_arrays(id, p, n, \&rec_count, \&rec_disp);
// go through rows for($\mathrm{i}=0 ; \mathrm{i}$ < m; i++)
\{
MPI_Gatherv(a[i], BLOCK_SIZE(id,p,n), dtype, buffer, rec_count, rec_disp, dtype, 0, comm);
- int MPI_Gatherv(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int *recvents, int *displs, MPI_Datatype recvtype, int root, MPI_Comm comm)
- Gathers into specified locations from all processes in a group.
- sendbuf: address of send buffer
- sendcnt: the number of elements in send buffer
- recvbuf: address of receive buffer (choice, significant only at root)
- recvcounts: integer array (of length group size) containing the number of elements that are received from each process (significant only atroot)
- displs: integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i (significant only at root)

Distributing Partial Results

- $c_{i}=b_{0} \boldsymbol{a}_{i, 0}+b_{1} \boldsymbol{a}_{i, 1}+b_{2} \boldsymbol{a}_{i, 2}+\cdots+b_{n} \boldsymbol{a}_{i, n}$
- Each process need to distribute $n-1$ terms to other processes and gather $n-1$ terms from them (assume fine-grained decomposition).
- MPI_Alltoallv() is used to do this all-to-all exchange

Figure 8.13 Function MPI_A11 toallv allows every MPI process to gather data items from all the processes in the communicator. The simpler function MPI _All toall should be used in the case where all of the groups of data items being transferred from one process to another have the same number of elements.
int MPI_Alltoallv(void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int *rdispls, MPI_Datatype recvtype, MPI_Comm comm);

- sendbuf: starting address of send buffer (choice)
- sendcounts: integer array equal to the group size specifying the number of elements to send to each processor
- sdispls: integer array (of length group size). Entry j specifies the displacement (relative to sendbuf) from which to take the outgoing data destined for process j
- recvbuf: address of receive buffer (choice)
- recvcounts: integer array equal to the group size specifying the maximum number of elements that can be received from each processor
- Rdispls: integer array (of length group size). Entry i specifies the displacement (relative to recvbuf at which to place the incoming data from process i

Send of MPI_Alltoallv()

Each node in parallel community has

Process 0 Sends to Process 0

0	A
1	B
2	C
3	D
4	E
5	F
6	G

Process 0 Sends to Process 1

Process 0 Sends to Process 2

0	A
1	B
2	C
3	D
4	E
5	F
6	G

send to receive
 buffer of proc 2

index
Proc 0 send buffer

Receive of MPI_Alltoallv()

proc 0

proc 1

0	O
1	P
2	Q
3	R
4	S
5	T
6	U

1	0
2	1
4	3

proc 0

RE
CE
I
VE

Parallel Run Time Analysis (Column-wise)

- Assume that the \# of processes p is less than n
- Assume that we run the program on a parallel machine adopting hypercube interconnection network (Table 4.1 lists communication times of various communication schemes)

1. Each process is responsible for n / p columns of matrix. The complexity of the dot production portion of the parallel algorithm is $\Theta\left(n^{2} / p\right)$
2. After all-to-all personalized communication, each processor sums the partial vectors. There are p partial vectors, each of size n / p. The complexity of the summation is $\Theta(n)$.
3. Parallel communication time for all-to-all personalized broadcast communication:

- Each process needs to send p messages of size n / p each to all processes.

$$
\begin{aligned}
& t_{\text {comm }}=\left(t_{s}+t_{w}\left(\frac{n}{p}\right)\right)(p-1) . \text { Assume } p \text { is large, then } \\
& t_{\text {comm }}=t_{s}(p-1)+t_{w} n .
\end{aligned}
$$

- The parallel run time: $T_{p}=\frac{n^{2}}{p}+n+t_{s}(p-1)+t_{w} n$

2D Block Decomposition

Summary of algorithm for computing $\boldsymbol{y}=A \mathbf{b}$

- 2D block partition is used to distribute matrix.
- Let $A=\left[a_{i j}\right], \mathbf{b}=\left[b_{1}, b_{2}, \ldots, b_{n}\right]^{T}$, and $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{T}$
- Assume each task is responsible for computing $d_{i j}=a_{i j} b_{j}$ (assume a fine-grained decomposition for convenience of analysis).
- Then $y_{i}=\sum_{j=0}^{n-1} d_{i j}$: for each row i, we add all the $d_{i j}$ to produce the ith element of \boldsymbol{y}.

P_{0}	P_{1}	P_{2}	P_{3}
P_{4}	P_{5}	P_{6}	P_{7}
P_{8}	P_{9}	P_{10}	P_{11}
P_{12}	P_{13}	P_{14}	P_{15}

1. Read in matrix stored in row-major manner and distribute by 2D block mapping. Also distribute \boldsymbol{b} so that each task has the correct portion of \boldsymbol{b}.
2. Each task computes a matrix-vector multiplication using its portion of A and \boldsymbol{b}.
3. Tasks in each row of the task grid perform a sumreduction on their portion of \boldsymbol{y}.
4. After the sum-reduction, \boldsymbol{y} is distributed by blocks among the tasks in the first column of the task grid.

Distributing \boldsymbol{b}

- Initially, b is divided among tasks in the first column of the task grid.
- Step 1:
- If p square
- First column/first row processes send/receive portions of b
- If p not square
- Gather b on process 0,0
- Process 0, 0 broadcasts to first row processes
- Step 2: First row processes scatter b within columns

When p is a square number
(a)

When p is not a square number
(b)

