
Lecture 5: Parallel Matrix
Algorithms (part 2)

1

Column-wise Block-Striped Decomposition

2

Summary of algorithm for computing 𝐜 = 𝐴𝒃

• Column-wise 1D block partition is used to distribute matrix.

• Let 𝐴 = [𝒂1, 𝒂2, … , 𝒂𝑛], 𝒃 = [𝑏1, 𝑏2, … , 𝑏𝑛]
𝑇, and 𝐜 =

[𝑐1, 𝑐2, … , 𝑐𝑛]
𝑇

• Assume each task 𝑖 has column 𝒂𝑖 , 𝑏𝑖 and 𝑐𝑖 (Assume a fine-
grained decomposition for convenience)

1. Read in matrix stored in row-major manner and distribute by
column-wise mapping

2. Each task 𝑖 compute 𝑏𝑖𝒂𝑖 to result in a vector of partial
result.

3. An all-to-all communication is used to transfer partial result:
every partial result element 𝑗 on task 𝑖 must be transferred
to task 𝑗.

4. At the end of computation, task 𝑖 only has a single element
of the result 𝑐𝑖 by adding gathered partial results.

3

4

Proc 4’s init.

Processor 0’s initial computation

Processor 1’s initial computation

Proc 2’s init. comput

Proc 3’s init. comput

c0 = a0,0 b0 + a0,1 b1 + a0,2 b2 + a0,3 b3 + a4,4 b4

c1 = a1,0 b0 + a1,1 b1 + a1,2 b2 + a1,3 b3 + a1,4 b4

c2 = a2,0 b0 + a2,1 b1 + a2,2 b2 + a2,3 b3 + a2,4 b4

c3 = a3,0 b0 + a3,1 b1 + a3,2 b2 + a3,3 b3 + b3,4 b4

c4 = a4,0 b0 + a4,1 b1 + a4,2 b2 + a4,3 b3 + a4,4 b4

After All-to-All Communication

5

Proc 0 Proc 1 Proc 2
Proc 3

a0,0 b0

a0,1 b1

a0,2 b2

a0,3 b3

a4,4 b4

a1,0 b0

a1,1 b1

a1,2 b2

a1,3 b3

a1,4 b4

a2,0 b0

a2,1 b1

a2,2 b2

a2,3 b3

a2,4 b4

a3,0 b0

a3,1 b1

a3,2 b2

a3,3 b3

b3,4 b4

Proc 4

a4,0 b0

a4,1 b1

a4,2 b2

a4,3 b3

a4,4 b4

Reading a Column-wise Block-Striped Matrix

read_col_striped_matrix()
– Read from a file a matrix stored in row-major order and distribute it

among processes in column-wise fashion.

– Each row of matrix must be scattered among all of processes.

 read_col_striped_matrix()

 {

 …

 // figure out how a row of the matrix should be distributed

 create_mixed_xfer_arrays(id,p, *n, &send_count, &send_disp);

 // go through each row of the matrix

 for(i = 0; i < *m; i++)

 {

 if(id == (p-1)) fread(buffer,datum_size, *n, infileptr);

 MPI_Scatterv(...);

 }

}
6

• int MPI_Scatterv(void *sendbuf, int *sendcnts, int *displs,
MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype
recvtype, int root, MPI_Comm comm)
– MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a

varying count of data to be sent to each process.

– sendbuf: address of send buffer

– sendcnts: an integer array specifying the number of elements to send to
each processor

– displs: an integer array. Entry i specifies the displacement (relative to
sendbuf from which to take the outgoing data to process i

7

http://www.mpi-forum.org/docs/mpi-11-
html/node72.html

http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html
http://www.mpi-forum.org/docs/mpi-11-html/node72.html

Printing a Colum-wise Block-Striped Matrix
print_col_striped_matrix()

– A single process print all values
– To print a single row, the process responsible for printing must gather

together the elements of that row from entire set of processes

print_col_striped_matrix()
{
 …
 create_mixed_xfer_arrays(id, p, n, &rec_count, &rec_disp);
 // go through rows
 for(i =0; i < m; i++)
 {
 MPI_Gatherv(a[i], BLOCK_SIZE(id,p,n), dtype, buffer,
 rec_count, rec_disp, dtype, 0, comm);

 }
}

8

• int MPI_Gatherv(void *sendbuf, int sendcnt, MPI_Datatype
sendtype, void *recvbuf, int *recvcnts, int *displs, MPI_Datatype
recvtype, int root, MPI_Comm comm)
– Gathers into specified locations from all processes in a group.

– sendbuf: address of send buffer

– sendcnt: the number of elements in send buffer

– recvbuf: address of receive buffer (choice, significant only at root)

– recvcounts: integer array (of length group size) containing the number of
elements that are received from each process (significant only atroot)

– displs: integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from
process i (significant only at root)

9

Distributing Partial Results

• 𝑐𝑖 = 𝑏0𝒂𝑖,0 + 𝑏1𝒂𝑖,1 + 𝑏2𝒂𝑖,2 +⋯+ 𝑏𝑛𝒂𝑖,𝑛

• Each process need to distribute 𝑛 − 1 terms to other processes
and gather 𝑛 − 1 terms from them (assume fine-grained
decomposition).

– MPI_Alltoallv() is used to do this all-to-all exchange

10

int MPI_Alltoallv(void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int
*rdispls, MPI_Datatype recvtype, MPI_Comm comm);

• sendbuf: starting address of send buffer (choice)
• sendcounts: integer array equal to the group size specifying

the number of elements to send to each processor
• sdispls: integer array (of length group size). Entry j specifies

the displacement (relative to sendbuf) from which to take the
outgoing data destined for process j

• recvbuf: address of receive buffer (choice)
• recvcounts: integer array equal to the group size specifying

the maximum number of elements that can be received from
each processor

• Rdispls: integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf at which to place the
incoming data from process i

11

12

proc 0 proc 1 proc 2

send buffer

send count

array

send displacement

array

Each node in parallel

community has

Send of MPI_Alltoallv()

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

 Process 0 Sends to Process 0

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

send to receive
buffer of proc
with same rank
as index

this chunk
of send
buffer
goes to
receive
buffer of
proc 0

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Process 0 Sends to Process 1

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

index

send to receive
buffer of proc 1

0 2

1 3

2 2

0 A

1 B

2 C

3 D

4 E

5 F

6 G

Process 0 Sends to Process 2

Proc 0 send buffer

sendcount
Array

0

2

5

sdispl Array

index

send to receive
buffer of proc 2

2 0

3 2

1 5

0

1

2

3

4

5

6

7

8

proc 0

3 0

3 3

2 6

0

1

2

3

4

5

6

7

8

proc 1

2 0

1 2

4 3

0

1

2

3

4

5

6

7

8

proc 2

RE
CE
I
VE

rc
n
t

r
d
s
pl r

b
u
f
f
e
r

Receive of MPI_Alltoallv()

2 0

3 2

2 5

0 A

1 B

2 C

3 D

4 E

5 F

6 G

proc 0 proc 1 proc 2

2 0

3 2

1 5

0 A

1 B

2

3

4

5

6

7

8

proc 0

SE
N
D

RE
CE
I
VE

rc
n
t

r
d
s
pl r

b
u
f
f
e
r

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5

6

7

8

rc
n
t

r
d
s
pl r

b
u
f
f
e
r

0 H

1 I

2 J

3 K

4 L

5 M

6 N

3 0

3 3

1 6

0 O

1 P

2 Q

3 R

4 S

5 T

6 U

1 0

2 1

4 3

2 0

3 2

1 5

0 A

1 B

2 H

3 I

4 J

5 O

6

7

8

rc
n
t

r
d
s
pl r

b
u
f
f
e
r

Parallel Run Time Analysis (Column-wise)
• Assume that the # of processes 𝑝 is less than 𝑛

• Assume that we run the program on a parallel machine adopting
hypercube interconnection network (Table 4.1 lists communication
times of various communication schemes)

1. Each process is responsible for 𝑛/𝑝 columns of matrix. The complexity
of the dot production portion of the parallel algorithm is Θ(𝑛2/𝑝)

2. After all-to-all personalized communication, each processor sums the
partial vectors. There are 𝑝 partial vectors, each of size 𝑛/𝑝 . The
complexity of the summation is Θ(𝑛).

3. Parallel communication time for all-to-all personalized broadcast
communication:
– Each process needs to send 𝑝 messages of size 𝑛/𝑝 each to all processes.

 𝑡𝑐𝑜𝑚𝑚 = (𝑡𝑠 + 𝑡𝑤
𝑛

𝑝
) 𝑝 − 1 . Assume 𝑝 is large, then

 𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 𝑝 − 1 + 𝑡𝑤𝑛.

• The parallel run time: 𝑇𝑝 =
𝑛2

𝑝
+ 𝑛 + 𝑡𝑠(𝑝 − 1) + 𝑡𝑤𝑛

18

2D Block Decomposition

19

Summary of algorithm for computing 𝒚 = 𝐴b

• 2D block partition is used to distribute matrix.

• Let 𝐴 = [𝑎𝑖𝑗], 𝐛 = [𝑏1, 𝑏2, … , 𝑏𝑛]
𝑇, and 𝒚 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑇

• Assume each task is responsible for computing 𝑑𝑖𝑗 = 𝑎𝑖𝑗𝑏𝑗

(assume a fine-grained decomposition for convenience of
analysis).

• Then 𝑦𝑖 = 𝑑𝑖𝑗
𝑛−1
𝑗=0 : for each row 𝑖, we add all the 𝑑𝑖𝑗 to

produce the 𝑖𝑡ℎ element of 𝒚.

1. Read in matrix stored in row-major manner and
distribute by 2D block mapping. Also distribute 𝒃 so
that each task has the correct portion of 𝒃.

2. Each task computes a matrix-vector multiplication using
its portion of 𝐴 and 𝒃.

3. Tasks in each row of the task grid perform a sum-
reduction on their portion of 𝒚.

4. After the sum-reduction, 𝒚 is distributed by blocks
among the tasks in the first column of the task grid.

20

Distributing 𝒃

• Initially, b is divided among tasks in the first
column of the task grid.

• Step 1:
– If p square

• First column/first row processes send/receive
portions of b

– If p not square
• Gather b on process 0, 0
• Process 0, 0 broadcasts to first row processes

• Step 2: First row processes scatter b within columns

21

22

When p is a square number

When p is not a square number

