Floyd's Algorithm

## All-pairs Shortest Path Problem

Weighted directed graph:
Let vertices be cities, directed edges be the route traveling from one city to the other, and the weight be time spent on an edge.
All-pairs shortest path problem: find the length of the shortest path between every pair of vertices.


|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | 0 | 6 | 3 | $\infty$ | $\infty$ |
| B | 4 | 0 | $\infty$ | 1 | $\infty$ |
| C | $\infty$ | $\infty$ | 0 | 5 | 1 |
| D | $\infty$ | 3 | $\infty$ | 0 | $\infty$ |
| E | $\infty$ | $\infty$ | $\infty$ | 2 | 0 |

Representation of the graph as adjacency matrix.
Element $(i, j)$ is the weight of the edge from vertex $i$ to vertex $j$.

## Floyd's Algorithm

for $k \leftarrow 0$ to $n-1$

> for $i \leftarrow 0$ to $n-1$
> $\quad$ for $j \leftarrow 0$ to $n-1$
$a[i, j] \leftarrow \min (a[i, j], a[i, k]+a[k, j])$
endfor
endfor
endfor

## Result

|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | 0 | 6 | 3 | 6 | 4 |
| B | 4 | 0 | 7 | 1 | 8 |
| C | 12 | 6 | 0 | 3 | 1 |
| D | 7 | 3 | 10 | 0 | 11 |
| E | 9 | 5 | 12 | 2 | 0 |

Solution to the all-pairs shortest path problem. Element ( $i, j$ ) represents the length of the shortest path from vertex $i$ to vertex $j$.

## How Floyd's Algorithm Works



## Parallel Algorithm

1. Partitioning
2. Communication
3. Mapping

## Partitioning

1. Same assignment statement executed $n^{3}$ times 2. Domain decomposition: divide matrix $\mathbf{A}$ into its $n^{2}$ elements

## Communication

|  | $\bigcirc 0000$ | $\bigcirc \bigcirc \bigcirc 00$ | (b) Updating |
| :---: | :---: | :---: | :---: |
| Primitive | $\bigcirc 0000$ | 00000 | a[3,4] when |
| tasks is | $\bigcirc 0000$ | $\bigcirc 0000$ | $k=1$. Need |
| associated w | $\bigcirc \bigcirc \bigcirc 0$ | 00000 | old a[3,4] and |
| each element the distance | $\mathrm{f} \circ \bigcirc \underset{(\text { (a) }}{\circ} \bigcirc \bigcirc$ | $\bigcirc \bigcirc \underset{(\text { b) }}{\circ O O}$ | $\begin{aligned} & \mathrm{a}[3,1] \text { and } \\ & \mathrm{a}[1,4] \end{aligned}$ |
| atrix | 00000 | $\bigcirc 0000$ |  |
|  | 00000 | 00000 | In iterati |
|  | $\bigcirc 0000$ | $\bigcirc 0000$ | every task |
| in row $k$ | $\bigcirc 0000$ | $\bigcirc 0000$ | column |
| broadcasts its value w/in | 00000 | $\bigcirc \bigcirc \underset{\text { (1) }}{\circ} \bigcirc \bigcirc$ | value w/in |

## Row/Column Data Decompositions


(a)

(b)

1. Column-wise block: Broadcast within columns eliminated
2. Row-wise block: Broadcast within rows eliminated

## Expected Things

1. Pseudo code describing the parallel algorithm
2. Justification of choosed communication mode
3. Complexity analysis

What's the computational complexity (assume a hypercube network for simplicity)?
What's the communication cost?
3. Performance table

| Processes | Execution time (sec) |
| :--- | :--- |
| 1 |  |
| 2 |  |
| 3 |  |
| $\ldots$ |  |

## Reference:

1. R.W. Floyd. Algorithm 97: Shortest path. Communication of the ACM 5(6):345, 1962.
2. Ian. Designing and Building Parallel Programs:

Concepts and Tools for Parallel Software Engineering. Reading, MA: Addison-Wesley, 1995.

