Floyd's Algorithm

All-pairs Shortest Path Problem

Weighted directed graph:

Let vertices be cities, directed edges be the route traveling from one city to the other, and the weight be time spent on an edge.

All-pairs shortest path problem: find the length of the shortest

path between every pair of vertices.

	Α	В	С	D	Ε
Α	0	6	3	∞	∞
В	4	0	∞	1	∞
С	∞	∞	0	5	1
D	∞	3	∞	0	∞
Ε	∞	∞	∞	2	0

Representation of the graph as adjacency matrix.

Element (i,j) is the weight of the edge from vertex *i* to vertex *j*.

Floyd's Algorithm

for
$$k \leftarrow 0$$
 to $n-1$
for $i \leftarrow 0$ to $n-1$
for $j \leftarrow 0$ to $n-1$
 $a[i,j] \leftarrow \min(a[i,j], a[i,k] + a[k,j])$
endfor
endfor
endfor

Result

	Α	B	С	D	E
Α	0	6	3	6	4
В	4	0	7	1	8
С	12	6	0	3	1
D	7	3	10	0	11
Ε	9	5	12	2	0

Solution to the all-pairs shortest path problem. Element (i,j) represents the length of the shortest path from vertex ito vertex j.

How Floyd's Algorithm Works

Parallel Algorithm

- 1. Partitioning
- 2. Communication
- 3. Mapping

Partitioning

Same assignment statement executed n³ times
Domain decomposition: divide matrix A into its n² elements

Communication

000 \bigcirc \bigcirc ()() (b) Updating () a[3,4] when () () (a) Primitive k = 1. Need ()()()() tasks is old a[3,4] and associated with O() \cap a[3,1] and each element of \bigcirc \bigcirc a[1,4] the distance (a) (b)matrix \bigcirc 0 0 0() \bigcirc () ()(d) In iteration k: ()()O()()In iteration k: every task ()()()() ()every task in column k \bigcirc ()()()() in row k broadcasts \bigcirc \bigcirc \bigcirc broadcasts its value w/in (d) (c) its value w/in task row task column

Row/Column Data Decompositions

Column-wise block: Broadcast within columns eliminated
Row-wise block: Broadcast within rows eliminated

Expected Things

- 1. Pseudo code describing the parallel algorithm
- 2. Justification of choosed communication mode
- 2. Complexity analysis

What's the computational complexity (assume a hypercube network for simplicity)?

What's the communication cost?

3. Performance table

Processes	Execution time (sec)
1	
2	
3	

Reference:

1. R.W. Floyd. Algorithm 97: Shortest path. *Communication of the ACM* 5(6):345, 1962.

2. Ian. Designing and Building Parallel Programs:Concepts and Tools for Parallel SoftwareEngineering. Reading, MA: Addison-Wesley, 1995.