
Parallel Computing 23:11 (1997) 1699-1715 Cellular Automata for Reaction-Di�usion SystemsJ�org R. WeimarInstitute for Scienti�c Computing, Technical University BraunschweigD{38092 Braunschweig, GermanyTel. +49-531-191-3006; E-mail J.Weimar@tu-bs.deDecember 6, 1996AbstractA class of cellular automata for reaction-di�usion systems is presented. It is based on alocal average for the di�usive dynamics, and closely related to �nite di�erence schemes. Thereactive dynamics is implemented as a lookup-table with probabilistic rules. The rules arederived directly and systematically from the given di�erential equations, using probabilisticrounding to enforce the discretization of the concentration variables. For quantitatively cor-rect modeling, such probabilistic rules are usually necessary, but in some cases a deterministicversion proves su�cient.Keywords: Cellular automata, reaction-di�usion systems, probabilistic rounding, simulation,modeling.IntroductionReaction-di�usion systems are an important class of systems to investigate nonlinear behavior.They also represent many problems arising in chemistry, biology, and other disciplines. Nonlinearreaction-di�usion systems can be simulated by standard numerical techniques, such as �nitedi�erence methods or using alternative approaches such as cellular automata. Many cellularautomata (CA) for reaction-di�usion systems are constructed in such a way that they correspondqualitatively to the solutions of the partial di�erential equations [3, 6]. Here we introduce a classof CA that models the partial di�erential equations also in a quantitatively correct way. OtherCA that can be compared quantitatively to solutions of the partial di�erential equations (PDEs)include CA for excitable media [5, 11] and the class of reactive lattice gas automata [1, 2, 9].The former are restricted to certain phenomena and parameters and the latter are most usefulin situations where microscopic uctuations play an important role. When uctuations are notimportant, a more macroscopic approach as presented here is more e�cient. The CA presentedhere is always more e�cient than explicit numerical techniques, and can in many cases be moree�cient than better numerical techniques.The equation to be simulated is@x(r; t)@t = Dr2x(r; t) + f(x(r; t)); (1)where r gives the position in the spatial domain and f(x) is a nonlinear function, the rate law.In general, x can also have more than one component. In this case the Laplacian operates oneach component independently, but the nonlinear function f couples the di�erent components.1



We present here a systematic construction for a class of CA to simulate such equations. EachCA step can be decomposed into two parts, one to implement the di�usion (Dr2x(r; t)) andthe other to implement the reaction (f(x)) and the rounding necessitated by the use of a �niteset of states.Moving Average for Di�usionFor the di�usive part, we use a modi�ed �nite di�erence scheme (see also [9, 10]), while for thereactive part we use probabilistic rules.The one-dimensional di�usion equation@x(r; t)@t = Dr2x(r; t) (2)is usually discretized asx(r; t+�t)� x(r; t)�t = Dx(r ��r; t)� 2x(r; t) + x(r +�r; t)�r2 ; (3)which can be rewritten asx(r; t+�t) = D �t�r2x(r ��r; t) + �1� 2D �t�r2�x(r; t) +D �t�r2x(r +�r; t): (4)We can generalize this discretization and use more general coe�cients ai:x(r; t +�t) = RXi=�R ai x(r + i�r; t): (5)By using a Taylor-expansion in space for the x(r + i�r), we obtainx(r; t+�t) = c0x(r; t) + c1 @x(r; t)@r + c22 @2x(r; t)@r2 +O(�r3) (6)with c0 = RXi=�R ai (7a)c1 = RXi=�R(i�r)ai (7b)c2 = RXi=�R(i�r)2ai: (7c)We obtain an approximation to the di�usion equation if we also Taylor-expand x(r; t+�t) in tand set c0 = 1 (8a)c1 = 0 (8b)c2 = 2 �t D: (8c)2



Eq. (8a) is a normalization condition. For c1 6= 0, there would be an additional drift term, andeq. (8c) simply speci�es the e�ective di�usion coe�cient. A special case is the situation whereall the ai are equal. Then a = ai = 12R+1 from eq. (8a) and D = R(R+1)6 �r2�t from eq. (8c).This choice of coe�cients is particularly useful since the calculation of the sum in eq. (5) canbe performed as a moving average: Ifx(r; t+�t) = a RXi=�Rx(r + i�r; t): (9)then x(r +�r; t+�t) = x(r; t +�t) + a �x(r + (R+ 1)�r; t)� x(r �R�r; t) �; (10)and proceeding thus along the r-axis, we can calculate the new value x(r; t+�t) for each r withonly two additions per cell instead of (2R + 1) additions.This method is easily generalized to two (or more) dimensions: In this case r is a vector andx(r; t+�t) = RXi=�R RXj=�Rai;j x �r+ (i; j)T�r; t� ; (11)ai;j = a = 1(2R+1)2 , and D = R(R+1)6 �r2�t . We perform the calculations~x�r+ (1; 0)T�r; t� = ~x(r; t) + x �r+ (R+ 1; 0)T�r; t�� x �r� (R; 0)T�r; t� (12a)~~x�r+ (1; 0)T�r; t� = ~~x(r; t) + ~x �r+ (0; R+ 1)T�r; t�� ~x �r� (0; R)T�r; t� (12b)x (r; t+�t) = a ~~x(r; t); (12c)which simply means that we �rst calculate a moving sum in x-direction, then in y-direction, and�nally renormalize. Of course, the recursions need to be set up with proper initializations atthe boundaries. With this method we need only four additions per cell instead of (2R + 1)2 tocalculate the local sum.The method of moving averages can be generalized to use other directions than the Cartesiandirections, e.g., the diagonals. It can also be generalized to three or more dimensions.In the two-dimensional cellular automata we use the average in the two coordinate axes,which leads to a square region of averaging. For di�erent species, we often use di�erent radii R,and thus obtain di�erent di�usion coe�cients (since �r and �t are the same for all species).Reactive Step for Moving Average CAThe second part of the new cellular automaton simulates the reaction. It also incorporates therescaling of the result of the convolution operation. So far in the description of the automatonwe have not mentioned the discretization or scaling of the variables. This is not necessary forthe description of the di�usion operation, since di�usion (and the convolution which implementsit) are linear operations. To be able to call the simulation method a cellular automaton, and tobe able to use a lookup table instead of calculating a nonlinear reaction term, we discretize thevariables. This means that each variable xs(r; t) is an integer in the range [0;Ms]. The numberof discretization levels can be di�erent for di�erent variables xs, and usually it is betweenMs = 1and Ms = 100. Using this discretization it is important to verify that the CA steps respect the3



discretization, i.e., that the outcome of an operation on the integer variables is again an integer.This is the case for the convolution with a mask where all the entries are integers, e.g., ai;j = 1.The non-normalized result is also an integer, now in the range [0;Msc0]. The normalization,i.e., the multiplication by 1=c0 necessary to limit the range to [0;Ms], does not preserve thecell values as integers. That is why it is integrated into the reactive step, which changes thevariables by arbitrary non-integer amounts �t f(x) anyway. At this step some mechanism hasto be introduced to ensure that the result of the reaction step is an integer in the permittedrange.To clarify the separation into two steps, we �rst discretize the reaction-di�usion equation tobe simulated, @x(r; t)@t = Dr2x(r; t) + f(x(r; t)) (13)as x(r; t+�t) = x(r; t) + �tDr2x(r; t) + �tf(x(r; t)) + O(�t2): (14)The result of the convolution operation applied to x(r; t) is approximately�D(x(r; t)) = c0x(r; t) + c2r2x(r; t): (15)We de�ne the operator for the reactive part as�R(c0x(r; t)) = x(r; t) + �t ~f(x(r; t)): (16)The sequential application of �D and �R results in�R(�D(x(r; t)))= �R �c0x(r; t) + c2r2x(r; t)� (17a)= x(r; t) + c2c0r2x(r; t) + �t ~f �x(r; t) + c2c0r2x(r; t)� (17b)= x(r; t) + c2c0r2x(r; t) + �t ~f (x(r; t)) + O(�t2); (17c)which we can identify with Eq. (14) if ~f = f and c2c0 = �tD. The operator �D in Eq. (15) actson an array of integers in the range [0;Ms] to give an array of integers in the range [0;Msc0].The normalization is contained in the operator �R. As de�ned, the output of operator �R isnot an integer number. We introduce another operator �T for truncation, which takes the realnumbers which result from operator �R and produces an integer. The complete dynamics ofthe CA is given by �T��R��D.In the following we consider several di�erent possibilities for the truncation operator �T .Discretization operatorsThere are two ways to present the e�ect of the discretized reaction step �T ��R. The �rst isto plot �T (�R(c0 x)) (or the average h�T (�R(c0 x))i for probabilistic �T ) directly. The otherpossibility is to �ll a lattice with a spatially homogeneous distribution of states with averagevalue x, and then apply �T ��R��D, i.e., one iteration of the cellular automaton, to the wholelattice and plot the resulting concentration h(x) as a function of the input concentration x.These two results di�er by a small amount due to the uctuations.If we �ll a lattice with average concentration x and the smallest possible variance, then eachnode has value bxc with probability 1 � p and bxc + 1 with probability p, where p = x � bxc4
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Figure 1: Function �R(x) (left) and �R(x) � x (right) for the example systemf(x) = �(x� 0:05)(x � 0:15)(x � 0:5) with M = 10 and c0 = 9.(Here and throughout, bxc is the largest integer not larger than x). This means that theoutput of operator �D, i.e., the sum of c0 local neighbors, has value c0bxc + i with probability� c0i � pi(1 � p)c0�i; i = 0; � � � ; c0. Applying �T��R��D to this lattice and taking the averageover the whole lattice, we geth(x) = c0Xi=0�c0i � pi (1� p)c0�i h�T (�R(c0bxc+ i))i ; (18)which in general is di�erent from h�T (�R(c0 x))i. To make h(x) = x+�tf(x) (as required bythe �rst order �nite di�erence approximation to the di�erential equation), we have to construct�R in a special way (which is described in more detail in [9]). We set�R(c0 x) = x+�tf(x) +�t p(1� p)2c0 d2 f(x)dx2 : (19)The correction term is proportional to 1=Ms, as opposed to the f(x) term, which is proportionalto Ms. Thus the correction term can be neglected for large Ms. Instead of approximatingx+�tf(x), we could also approximateh(x) = x+ Z �t0 f(x(�))d� (20)in order to obtain an approximation to higher order in �t for the reactive term. But notethat the di�usive term remains approximated to O(�t) and O(�x2). Figure 1 shows the func-tions involved for an example system which we use to demonstrate the di�erent discretizationoperators.We now describe the di�erent discretization methods in detail.Probabilistic Minimal Noise RuleThe probabilistic minimal noise method is the most useful rule for simulations when macroscopicphenomena are of interest. We de�ne the probability p = x� bxc to be used in this and otherprobabilistic rules. The truncation operator is de�ned by�T (x) = ( bxc with probability 1� pbxc+ 1 with probability p: (21)If the CA rule is implemented using lookup tables for the operation �T ��R, two tables arenecessary for this rule, one giving bxc, and one giving p, for each possible output of the movingaverage operator �D. 5
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Figure 2: Graphical representation of the probabilistic rule for the example inFigure 1. Large dots mark the possible outcomes, with the grey-level indicatingthe probability. Small dots mark the average.Probabilistic Rule for M=1In the case where M = 1, i.e., only the values 0 and 1 are permitted for a cell, p = x, and thetruncation is simpli�ed to �T (x) = ( 0 with probability 1� x1 with probability x: (22)Only the value of x is stored in a table. In this case it is especially important that the correctionin Eq. (19) is applied, since it can only be neglected for large M .Probabilistic Rule with controlled NoiseIt is often desirable to have a control over the noise generated by the reactive step. The noisegenerated by the probabilistic minimal noise rule varies strongly with x. To control the noiselevel, we set �T (x) = 8>><>>: bxc � n with prob. �M2s vs �mp� = (n(n+m));bxc+m with prob. �M2s vs + np� = (m(n+m));bxc otherwise. (23)where vs controls the variance and n andm are integers suitably selected so that all probabilitiesare non-negative.The resulting average is x, same as for the probabilistic rule with minimal noise. The varianceis controlled by M2s vs, which can also be functions of x. At the limits x = 0 and x = M , thenoise must necessarily be zero.In this case the tables need to store three possible outcomes and two probabilities for eachinput. For more than one species (s > 1) this method also generalizes, and we need to store atleast 2s+1 outcomes and 2s probabilities. A simple selection method based on a binary searchis used to keep the method e�cient (see [9]). 6
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Figure 3: Deterministic rule with simple roundo� for the example. Dots mark theoutcomes (deterministic!), and the curve marks x+�tf(x).Deterministic methodsSince generating one random number for each cell in each time step is a computationally expen-sive operation, it would be advantageous to have a deterministic truncation. The most obviouschoice would be �T (x) = bx+ 0:5c; (24)i.e., ordinary rounding to the next nearest integer. However, this method does not work well inany of the cases we have tried.Better results can be obtained using a method we call error di�usion. This method derivesfrom the idea that a roundo� error at one cell can be compensated at a neighboring cell, sincein the subsequent di�usion step, neighboring cells are again averaged together. To obtain adeterministic rule which does this, we observe that for concentration �elds which vary slowly inspace, nearby cells will have results of �D which are also close to one another in phase space.Thus we perform the compensation of roundo� errors in phase space: The algorithm to constructthe rule table for �T ��R , where out[a] is the outcome of �T ��R given a = �D(x) is shownin pseudo-code:err :=0;for a:= 0 to M * c0 dotemp := PhiR(a) - err;out[a]:= Round( temp );err := out[a] - temp;od The algorithm can easily be generalized to more species, where more possibilities exist todistribute the error in the s-dimensional phase space. Care must be taken that no spurioussteady states appear, i.e., values of a for which a = c0*out[a], since here whole regions can belocked into one value a even if the rate law f(a) is not zero.In these deterministic models, randomness is introduced in the initial conditions and assumedto persist to some degree during the evolution of the cellular automaton. This is not alwaysthe case. Additional sources of randomness can be introduced by integrating another cellular7
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Figure 4: Deterministic rule with error di�usion for the example. Dots mark theoutcomes (deterministic!), and the curve marks x+�tf(x).automaton into the rule. An extra bit could be simulated which uses a CA rule that exhibitsrandom behavior.Additional noise can be introduced by adding a random contribution to temp before roundingo�: out[a] := Round(temp+ noise � (random()� 0:5)); (25)thus making the di�erence between neighboring values of out[a] bigger than required by theerror-di�usion.Examples of Moving Average CAWe now present a number of examples of simulating reaction-di�usion systems with the mov-ing average CA. The examples are systems that show interesting nonlinear behavior, such asbistability, wavefronts, spatial patterns, etc.The example applications shown here are used because they are fairly simple, nonlinear,and results can be compared with other CA methods to simulate these or similar systems. TheSchl�ogl model has also been used in the �rst reactive lattice gas automata [2]. Those automataconcentrate on the uctuations and are very ine�cient for macroscopic simulations. The secondsystem is a typical example for excitable media, which have been modeled in many instancesin a qualitative way (starting with [6]). In contrast to these automata, which can capture thewave propagation phenomena qualitatively, the systematic construction of CA from the reaction-di�usion system presented here has the advantage that it is applicable to all R-D equations, andthat the solutions are quantitatively correct.Schl�ogl ModelFirst we consider a one-species model, namely the Schl�ogl model [8] in the bistable regime, whichis described macroscopically by the cubic rate law (the nonlinear term in the reaction-di�usionequation (13)) f(x) = �k(x� x0)(x� x1)(x� x2): (26)8



Figure 5: Schl�ogl model simulated using the moving-average CA with probabilisticrules. Snapshots at t = 50; 100; 150; 200; 250; 300; 500; 1000, �t = 0:2, size 200 �200 cells, 55 discretization levels.We simulate the symmetric case (x1�x0) = (x2�x1), where we use x0 = 0:1, x1 = 0:5, x2 = 0:9.The parameter k, together with �t and the size of the neighborhood we use (3�3) determine thespace and time scales. Using a probabilistic rule and starting with a uniform initial conditionx = 0:5, we can observe a departure from the unstable steady state x1 = 0:5. In di�erent regionsof space concentrations develop to di�erent values of x, and a separation of regions with x = x0and x = x2 takes place. Once regions with the two stable states have developed, the dynamics isdetermined by the movement of the interface between the regions, which can be approximatedby N = c+DK (27)where N is the velocity of the interface in the normal direction, c is the speed of a planarinterface (here c = 0), D the di�usion coe�cient (D = 1=3 in lattice time and space units), andK the curvature of the interface. This linear dependence can be derived analytically [12] andveri�ed in the simulations [9]. A sequence of images is shown in Figure 5.Note that if we use the probabilistic minimal noise rule and an odd number of discretizedstates, e.g., 0 � � � 50, then the unstable steady state x1 � 50 = 25 remains unchanged for uniforminitial conditions, since in this case there is no noise to force a departure from the steady state.If we have an even number of discretization levels (e.g., 0 � � � 51), then x1 � 51 = 25:5 can not berepresented exactly, and automatically we have a small deviation from the steady state, whichleads to the development of the two stable steady states.Similar, but worse problems appear with the deterministic rules: In this case spurious steadystates appear near both the stable and the unstable steady states. As an example, we comparein Figure 6 the di�erent rules with the following initial conditions: x(r; 0) = rL , i.e., a gradientin concentration. We show the resulting horizontal concentration pro�le after 100 time steps.The result of the probabilistic simulation corresponds to the exact solution (apart from thesmall uctuations). The discretization problems depend also on �t: for small �t, the di�erencebetween x+�tf(x) and x is so small that after truncation by �T , the result remains the same,and in this way a spurious steady state (where f(x) seems to be zero) appears. To avoid theseproblems, the probabilistic rule should be used when reliability or precision is required. Thedeterministic method is faster and could be used in combination with the probabilistic methodto speed up transients.
9
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Figure 6: Schl�ogl model with di�erent rounding methods.FitzHugh-Nagumo Model { Excitable MediaAs an example for excitable media we use the FitzHugh-Nagumo model [4, 7]. This is a two-variable reaction-di�usion system derived from the Hodgkin-Huxley model for nerve-impulsepropagation. Of the two variables, one (u) corresponds to the electric potential across themembrane of the nerve cell. This variable changes rapidly and has a large di�usion coe�cient.The second variable (v) corresponds to ion concentrations, which change slowly and have a smalldi�usion coe�cient (which we set to zero in some cases).There are many di�erent ways to write and re-scale the equations for the FitzHugh-Nagumomodel.The essential feature of this model is that the evolution of u is a cubic function of u andcontains an additive linear term of v. The evolution of v has one term proportional to u andone term proportional to v. The equations we use here are_u = Dur2u+ (a� u)(u� 1)u� v (28a)_v = Dvr2v + e(bu� v) (28b)with a < 1, e > 0, and b � 0.The reactive dynamics contains three free parameters, related to the position of the inter-section of the u- and v-nullcline (here a), the slope of the v-nullcline (here b), and the relativespeed of the evolution of u and v (here e) (The nullclines are the curves in phase space wherethe reactive parts of _u and _v in Eq. (28) are zero).The homogeneous solutions are oscillatory for a < 0. For a � 0, there can be one or twosteady states. We only consider a > 0. In this case the state u1 = 0; v1 = 0 is always stable.For b < (1� a)2=4 there exists another stable state at u3 = �1 + a+p(1� a)2 � 4b� =2 andv3 = b u3, as well as an unstable steady state at u2 = �1 + a�p(1� a)2 � 4b� =2 and v2 = b u2.The characteristic feature of excitable media is that if the system is perturbed away fromthe stable steady state more than a small threshold, the return to the unique stable steady statedoes not follow a direct path, but proceeds via a long excursion in phase space. In the presence10
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Figure 7: Phase portrait of the FitzHugh-Nagumo model. The nullclines are thesolid lines, and the dashed line is the trajectory of one point as the wave passes.The grey point indicates a special initial condition used for Figure 8.of di�usion, this long excursion allows adjoining regions to cross the excitability threshold whichgives rise to traveling waves. Since there is only one stable steady state, these waves are nottransitions between one state and another (as in the bistable Schl�ogl model), but a transitoryperturbation. This allows waves to traverse the same region repeatedly. Examples are wavesthat travel perpetually on one-dimensional circular domains, or spiral waves in two or threedimensions. Such a spiral wave can be initiated by disrupting a planar wave, e.g. by setting aregion at the wave front back to the steady state. Another possibility to initiate spiral waves isto �nd initial conditions that will spontaneously develop into spiral waves even if uctuationsare very small. We can expect that an initial condition that gives rise to spontaneous spiralswould lie on the unstable branch of the nullcline for x, so that some points will move to thepositive (excited) branch, and other points will move directly to the negative (recovering) branchof the u-nullcline. However, there is no way to indicate which point on the unstable nullclineshould be chosen. We can �nd such a point using methods similar to a bisection method for�nding roots of a function [9]. For the parameters used here, the point u = 0:16, v = 0:006was found to be a good candidate for this initial condition. If we start with uniform initialconditions of this value, many pairs of spirals develop due to the small uctuations introducedby the probabilistic rounding. For other initial conditions the uctuations are much too smallto have any macroscopic e�ect. A large example with many spirals is shown in Figure 8.If we increase the uctuations introduced by the roundo� operation, we can arrive at asituation where a nucleation on a circular wave can appear spontaneously even without specialinitial conditions. An example is shown in Figure 9.Parallel Implementation with Load-balancingThe cellular automaton has been implemented for simulation on a network of workstationsusing the message-passing system PVM for communication. The program is organized using themaster-slave concept: The master process interacts with the user via a comand interpreter andsome visualization processes, and sends data and instructions to one or more slave processes. Theslaves perform the actual CA updating, and exchange data on the boundaries directly with eachother. For parallel processing we use a one-dimensional decomposition of the two-dimensionaldomain. This is more e�cient than a two-dimensional decomposition, since in the 2-d case ascatter/gather operation has to be performed in order to compose the messages that exchangeinformation at the boundaries, and twice the number of messages are sent, which reduces the11



Figure 8: Many spirals developed from the initial conditions u = 0:16; v = 0:006in a large (500� 500) system with �t = 2, after 500 time steps (showing variableu). The CA uses the probabilistic roundo� method with 55 states for u and 256states for v.
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Figure 9: Repeated spontaneous nucleation in the FitzHugh-Nagumo model withnoise. The system size is 300�300 cells, �t = 1, and the noise level is s2 = 0:0013for both variables (variable v shown).
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performance in this case since message startup times are rather long.In a heterogeneous network of (nondedicated) workstations, it is important to distribute theload properly. We have implemented a dynamic load balancing which works as follows: Themaster instructs the slaves to perform a certain number (N) of CA steps. For each step, theslaves calculate the local update function and exchange data on the boundaries. To determinethe relative speed and load, each slave measures the time taken for the data interchange step,from the time the �rst message (of two) is prepared for sending, till both messages are receivedfrom the neighbors. This time consists of message startup times, but mostly of time spentwaiting for messages from the neighbors. After N update steps (usually N = 100), the mastercollects the data, receiving one slice from each slave, and also collects the waiting times for eachslave. In addition the master has measured the total time taken for the N steps.To calculate the new load we determine the relative speed of each slave. Let wi be thewaiting and communication time (per iteration) of slave i, ni the width of the slice that slavei works on, and t the average length of one iteration as seen by the master. We then calculatethe relative calculation speed of each slave ass0i = nit� wi (29)which is then normalized to a sum of one by calculating s0 =Pi s0i and si = s0i=s0. For the nextset of updates, we distribute the work according toni = n si: (30)This distribution of work minimizes the time slave processes spend waiting for data from the(possibly much slower) neighbors. Since load balancing takes place regularly, this scheme adaptsto changing machine loads automatically. Of course, due to the centralized load calculation, itdoes not scale up to arbitrarily large numbers of processors.Unfortunately, the balance between computation and communication is such that on work-stations connected by ethernet, a speedup can only be achieved for very large simulations (e.g.,more than 500 � 500 cells). In most cases we found speedups of less than one. Nevertheless,the master-slave concept with only one slave is very e�cient and allows considerable exibil-ity in utilizing remote workstations while keeping the master process, and thus the I/O andvisualization process, on the local workstation.ConclusionWe have presented a systematic construction of cellular automata for the simulation of reaction-di�usion systems. These cellular automata have been shown to produce results that are inquantitative agreement with analytical solutions and standard numerical techniques. The cel-lular automata use a moving average technique to implement the di�usive dynamics, and aprobabilistic rounding to implement the reactive part. The probabilistic rounding leads to re-sults that are exact on average, thereby allowing the strong discretization that is implied bythe de�nition of cellular automata. The simulation technique is especially e�cient for compli-cated reactive terms, since the reactive step is implemented as a table lookup, and the completenonlinear function is only evaluated to initialize the table. As a massively parallel model, thecellular automata simulation can be easily parallelized, and adaptive load-balancing has beenimplemented for the simulation on workstations.14
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