General 1 ${ }^{\text {st }}$ derivative approximation (obtained by Lagrange interpolation)

The interpolation nodes are given as:

$$
\begin{array}{ll}
\left(x_{0},\right. & \left.f\left(x_{0}\right)\right) \\
\left(x_{1},\right. & \left.f\left(x_{1}\right)\right) \\
\left(x_{2},\right. & \left.f\left(x_{2}\right)\right) \\
\ldots \\
\left(x_{N},\right. & \left.f\left(x_{N}\right)\right)
\end{array}
$$

By Lagrange Interpolation Theorem (Thm 3.3):
$f(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{N, k}(x)+\frac{\left(x-x_{0}\right) \cdots\left(x-x_{N}\right)}{(N+1)!} f^{(N+1)}(\xi(x))$
Take $1^{\text {st }}$ derivative for Eq. (1):
$f^{\prime}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{N, k}^{\prime}(x)+\frac{\left(x-x_{0}\right) \cdots\left(x-x_{N}\right)}{(N+1)!}\left(\frac{d\left(f^{(N+1)}(\xi(x))\right)}{d x}\right)+\frac{1}{(N+1)!}\left(\frac{d\left(\left(x-x_{0}\right) \cdots\left(x-x_{N}\right)\right)}{d x}\right) f^{(N+1)}(\xi(x))$
Set $x=x_{j}$, with x_{j} being x-coordinate of one of interpolation nodes. $j=0, \ldots, N$.
$f^{\prime}\left(x_{j}\right)=\sum_{k=0}^{n} f\left(x_{k}\right) L^{\prime}{ }_{N, k}\left(x_{j}\right)+\frac{f^{(N+1)}(\xi(x))}{(N+1)!} \prod_{\substack{k=0 ; \\ k \neq j}}^{N}\left(x_{j}-x_{k}\right)$---------- (N+1)-point formula to approximate $f^{\prime}\left(x_{j}\right)$.
The error of $(\mathrm{N}+1)$-point formula is $\frac{f^{(N+1)}(\xi(x))}{(N+1)!} \prod_{\substack{k=0 \\ k \neq j}}^{N}\left(x_{j}-x_{k}\right)$.

Example. The three-point formula with error to approximate $f^{\prime}\left(x_{j}\right)$.
Let interpolation nodes be $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$.
$f^{\prime}\left(x_{j}\right)=f\left(x_{0}\right)\left[\frac{2 x_{j}-x_{1}-x_{2}}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}\right]+f\left(x_{1}\right)\left[\frac{2 x_{j}-x_{0}-x_{2}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}\right]+f\left(x_{2}\right)\left[\frac{2 x_{j}-x_{0}-x_{1}}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\right]+\frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0 ; \\ k \neq j}}^{2}\left(x_{j}-x_{k}\right)$

Mostly used three-point formula (see Figure 1)

Let x_{0}, x_{1}, and x_{2} be equally spaced and the grid spacing be h.

$$
\text { Thus } x_{1}=x_{0}+h \text {; and } x_{2}=x_{0}+2 h
$$

1. $f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[-3 f\left(x_{0}\right)+4 f\left(x_{1}\right)-f\left(x_{2}\right)\right]+\frac{h^{2}}{3} f^{(3)}\left(\xi\left(x_{0}\right)\right)$ (three-point endpoint formula)
2. $f^{\prime}\left(x_{1}\right)=\frac{1}{2 h}\left[-f\left(x_{0}\right)+f\left(x_{2}\right)\right]+\frac{h^{2}}{6} f^{(3)}\left(\xi\left(x_{1}\right)\right)$ (three-point midpoint formula)
3. $f^{\prime}\left(x_{2}\right)=\frac{1}{2 h}\left[f\left(x_{0}\right)-4 f\left(x_{1}\right)+3 f\left(x_{2}\right)\right]+\frac{h^{2}}{3} f^{(3)}\left(\xi\left(x_{2}\right)\right) \quad$ (three-point endpoint formula)

Figure 1. Schematic for three-point formula

Mostly used five-point formula

1. Five-point midpoint formula

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{12 h}\left[f\left(x_{0}-2 h\right)-8 f\left(x_{0}-h\right)+8 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right]+\frac{h^{4}}{30} f^{(5)}(\xi)
$$

2. Five-point endpoint formula

$\underline{2^{\text {nd }} \text { derivative approximation (obtained by Taylor polynomial) }}$

Approximate $f\left(x_{0}+h\right)$ by expansion about x_{0} :
$f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4}$
Approximate $f\left(x_{0}-h\right)$ by expansion about x_{0} :
$f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{2}\right) h^{4}$
Add Eqns. (3) and (4):

$$
f\left(x_{0}-h\right)+f\left(x_{0}+h\right)=2 f\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right) h^{2}+\left[\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4}+\frac{1}{24} f^{(4)}\left(\xi_{2}\right) h^{4}\right]
$$

Thus

Second derivative midpoint formula

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{12} f^{(4)}(\xi)
$$

