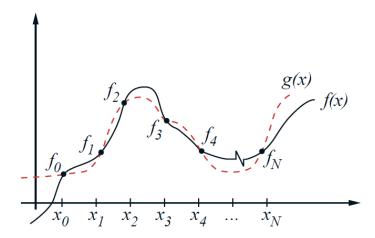
General 1st derivative approximation (obtained by Lagrange interpolation)

The interpolation nodes are given as:



$$(x_0, f(x_0))$$

$$(x_1, f(x_1))$$

$$(x_2, f(x_2))$$

. . .

$$(x_N, f(x_N))$$

By Lagrange Interpolation Theorem (Thm 3.3):

$$f(x) = \sum_{k=0}^{n} f(x_k) L_{N,k}(x) + \frac{(x - x_0) \cdots (x - x_N)}{(N+1)!} f^{(N+1)}(\xi(x))$$
 (1)

Take 1st derivative for Eq. (1):

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_{N,k}(x) + \frac{(x - x_0) \cdots (x - x_N)}{(N+1)!} \left(\frac{d \left(f^{(N+1)} \left(\xi(x) \right) \right)}{dx} \right) + \frac{1}{(N+1)!} \left(\frac{d \left((x - x_0) \cdots (x - x_N) \right)}{dx} \right) f^{(N+1)} \left(\xi(x) \right)$$

Set $x = x_j$, with x_j being x-coordinate of one of interpolation nodes. j = 0, ..., N.

$$f'(x_j) = \sum_{k=0}^n f(x_k) L'_{N,k}(x_j) + \frac{f^{(N+1)}(\xi(x))}{(N+1)!} \prod_{\substack{k=0; \ k\neq j}}^N (x_j - x_k) - \dots (N+1)$$
-point formula to approximate $f'(x_j)$.

The error of (N+1)-point formula is $\frac{f^{(N+1)}(\xi(x))}{(N+1)!}\prod_{\substack{k=0;\\k\neq j}}^{N}(x_j-x_k).$

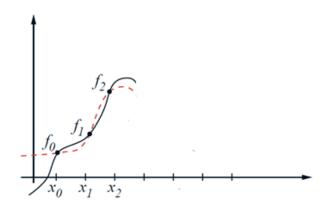
Example. The three-point formula with error to approximate $f'(x_i)$.

Let interpolation nodes be $(x_0, f(x_0)), (x_1, f(x_1))$ and $(x_2, f(x_2))$.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right] + f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_k) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_k) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_k) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_k) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_k) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_k) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_1)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_1}{(x_j - x_0)(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0 - x_0}{(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0}{(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0}{(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0; k \neq j}}^{2} (x_j - x_0) \left[\frac{x_j - x_0}{(x_j - x_0)} \right] + \frac{f^{(3)}(\xi(x))}{6} \prod_{\substack{k=0;$$

Mostly used three-point formula (see Figure 1)

Let x_0, x_1 , and x_2 be equally spaced and the grid spacing be h.



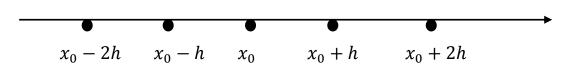
Thus $x_1 = x_0 + h$; and $x_2 = x_0 + 2h$.

- 1. $f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_1) f(x_2)] + \frac{h^2}{3} f^{(3)}(\xi(x_0))$ (three-point endpoint formula)
- 2. $f'(x_1) = \frac{1}{2h} [-f(x_0) + f(x_2)] + \frac{h^2}{6} f^{(3)} (\xi(x_1))$ (three-point midpoint formula)
- 3. $f'(x_2) = \frac{1}{2h} [f(x_0) 4f(x_1) + 3f(x_2)] + \frac{h^2}{3} f^{(3)}(\xi(x_2))$ (three-point endpoint formula)

Figure 1. Schematic for three-point formula

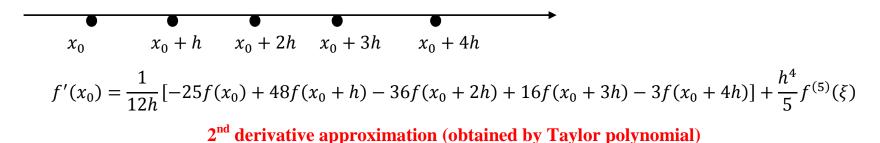
Mostly used five-point formula

1. Five-point midpoint formula



$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi)$$

2. Five-point endpoint formula



$$x_0 - h$$
 x_0 $x_0 + h$

Approximate $f(x_0 + h)$ by expansion about x_0 :

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$
(3)

Approximate $f(x_0 - h)$ by expansion about x_0 :

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_2)h^4$$
(4)

Add Eqns. (3) and (4):

$$f(x_0 - h) + f(x_0 + h) = 2f(x_0) + f''(x_0)h^2 + \left[\frac{1}{24}f^{(4)}(\xi_1)h^4 + \frac{1}{24}f^{(4)}(\xi_2)h^4\right]$$

Thus

Second derivative midpoint formula

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi)$$