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Cash Flow, Consumption Risk, and the
Cross-section of Stock Returns

ZHI DA∗

ABSTRACT

I link an asset’s risk premium to two characteristics of its underlying cash flow: covari-
ance and duration. Using empirically novel estimates of both cash flow characteristics
based exclusively on accounting earnings and aggregate consumption data, I examine
their dynamic interaction in a two-factor cash flow model and find that they are able
to explain up to 82% of the cross-sectional variation in the average returns on size,
book-to-market, and long-term reversal-sorted portfolios for the period 1964 to 2002.
This finding highlights the importance of fundamental cash flow characteristics in
determining the risk exposure of an asset.

DIFFERENCES IN EXPECTED RETURN ACROSS assets are determined by differences in
the assets’ exposure to systematic risk. This key insight in financial economics
is reflected in the standard consumption-based asset pricing model (CCAPM,
see Rubinstein (1976), Lucas (1978), and Breeden (1979)). CCAPM predicts that
an asset’s consumption beta—a measure of the comovement between asset re-
turn and aggregate consumption—determines its expected return. Yet despite
its intuitive appeal, many early empirical tests have not supported this pre-
diction (see Breeden, Gibbons, and Litzenberger (1989)). Beginning with the
seminal work of Bansal and Yaron (2004), advances in our understanding of
“long-run” consumption risk may validate this theoretical position after all.
Indeed, papers such as Parker and Julliard (2005), Bansal, Dittmar, and Lund-
blad (2005), Jagannathan and Wang (2007), Hansen, Heaton, and Li (2008) and
Bansal, Dittmar, and Kiku (2009) point out that systematic consumption risk,
if measured over longer horizons, is able to explain cross-sectional variation in
expected return.

This paper presents further evidence consistent with the implications of the
consumption-based asset pricing model. While many papers evaluate exposure
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to risk using returns and prices, this paper shows that differences in risk premia
can be directly linked to fundamental cash flow characteristics. Pinning risk
premia to cash flows instead of prices or returns has two advantages. In the
short run, price may temporarily deviate from its “fair” value due to mispricing
and liquidity events. More importantly, in typical rational expectations asset
pricing models, prices (and returns) are set by expectations about future cash
flows. Cash flows therefore more directly underlie risk premia. Given this, I
break down the role that cash flow plays and identify two of its important
characteristics. The contribution of this paper is to analyze both characteristics
simultaneously for the first time, revealing their interactions and how these
interactions dynamically impact returns.

The first characteristic of cash flow is the degree of its comovement with con-
sumption, the cash flow covariance. In the consumption-based models of Abel
(1999) and Bansal and Yaron (2004), this type of covariance ultimately deter-
mines stocks’ exposure to systematic risk. Recent empirical work by Bansal,
Dittmar, and Lundblad (2005) shows that the cash flow beta measuring such
comovement explains 62% of the cross-sectional variation in risk premia across
various assets. The second important cash flow characteristic is the temporal
pattern of cash flow, that is, whether the asset pays more cash flow in the future
or now. I call this characteristic cash flow duration. In recent work, both Lettau
and Wachter (2007) and Dechow, Sloan, and Soliman (2004) fundamentally link
duration risk to stock returns.1

Empirically, the impact of these characteristics on the cross-sectional vari-
ation of risk premia can be largely captured by the following two-factor cash
flow model:

Et
[
Ri

t+1 − R ft
] = γ0 + γ1Covi + γ2Covi × Duri

t ,

γ0, γ1 > 0 and γ2 < 0. (1)

The variables Cov and Dur denote the relative cash flow covariance and du-
ration measures, respectively. They are defined relative to the aggregate con-
sumption portfolio. For an asset with positive (negative) Cov, its cash flow
comoves more (less) with aggregate consumption than aggregate consumption
itself. For an asset with positive (negative) Dur, its cash flow duration is higher
(lower) than the duration of the aggregate consumption portfolio. By construc-
tion, the aggregate consumption portfolio will have zero Cov and Dur and will
have an expected return equal to γ0. Consistent with Bansal, Dittmar, and
Lundblad (2005), cash flow covariance has a first-order impact on the cross-
sectional variation of risk premia. Higher cash flow covariance leads to a higher

1 The role of equity duration has been highlighted in the literature. Early literature such as
Jagannathan and Viswanathan (1988) and Connor and Korajczyk (1989) demonstrates that the
replication of a stock’s cash flows in a dynamic world requires bonds; therefore, bond factors con-
tribute to the correct pricing of equities. Using a case study and regression analysis, Cornell (1999,
2000) reemphasizes the importance of equity duration risk in determining a firm’s cost of capital.
The “cash flow duration” in this paper is a purely cash flow-based measure and is different from
the equity duration previously analyzed, which typically uses price information.
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risk premium, much as higher beta leads to higher return in CAPM. Consistent
with the intuition in Lettau and Wachter (2007), cash flow duration also affects
the risk premium. Interestingly, when there is large cross-sectional variation
in cash flow covariance, cash flow duration provides additional explanatory
power through a second-order interaction term with cash flow covariance. In
explaining the return difference of two assets with very different cash flow du-
rations (such as value and growth stock portfolios), it is therefore imperative
to account for cash flow duration.

For analytical tractability and easy economic interpretation, I highlight the
intuition behind the two-factor cash flow model in a simple economy where
both characteristics are modeled as high frequency short-run properties of the
cash flow. The empirical estimates of Cov and Dur, although identifying their
theoretical counterparts up to scaling factors, are estimated in a novel way us-
ing exclusively long-run accounting earnings and aggregate consumption data.
Measuring earnings and consumption over the long run alleviates problems
caused by short-term earnings management (Jones (1991) and Teoh, Welch,
and Wong (1998)), short-term consumption commitment, or delayed response
(Parker and Julliard (2005) and Jagannathan and Wang (2007)).

With these measures of Cov and Dur, I show that the two-factor cash flow
model explains more than 80% of the cross-sectional variation in risk premia
in 60 size-sorted, book-to-market-sorted, and long-term reversal portfolios. The
duration measure adds more than 20% additional explanatory power. I focus
on stock portfolios sorted on size, book-to-market ratio, and past long-term re-
turn as cross-sectional variation in these stock characteristics generates large
and persistent cross-sectional variation in risk premia that is particularly chal-
lenging for many common benchmark models (see Fama and French (1992) and
De Bondt and Thaler (1985)). In the empirical section, I also validate the two-
factor cash flow model using several robustness tests and compare its perfor-
mance to alternative benchmark models.

The empirical cash flow covariance in this paper, measured using long-run
consumption data, is similar to the “long-run” cash flow beta considered by
Bansal, Dittmar, and Lundblad (2005). However, while they show that the cash
flow beta is capable of explaining the short-term return momentum, this paper
is the first, to my knowledge, to empirically show that cash flow covariance,
measured properly using long-run earnings data, also helps to explain the long-
run return reversal. In a theoretical model, Yang (2007) shows that when the
cash flow growth rate of a stock contains two time-varying components that are
exposed to long-run consumption risk, both short-term return momentum and
long-run reversal can be explained. My empirical finding corroborates Yang’s
prediction and thus provides further support for the long-run consumption risk
model of Bansal and Yaron (2004).2

2 As a supplementary exercise motivated by the long-run risk model of Bansal and Yaron (2004),
I also directly model the cash flow covariance as exposure to both long-run and short-run consump-
tion risk in a simple economy and derive the same two-factor cash flow model. Details are provided
in the Internet Appendix available at http://www.afajof.org/supplements.asp.
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A. Other Related Literature

The “cash flow risk” of an asset has been actively researched in recent work,
with the related papers falling into two groups. Papers in the first group focus
on the time series implications of cash flow risk. For example, Bansal and Yaron
(2004) model long-run risk and find that it can explain many time-series prop-
erties of financial markets. Menzly, Santos, and Veronesi (2004) analyze the
predictability of dividend growth and asset return in an economy where assets
have mean-reverting cash flows. Papers in the second group focus on the cross-
sectional implications of cash flow risk. For example, Brennan and Xia (2006)
study the pricing of equity strips in an Intertemporal CAPM (ICAPM) frame-
work. Santos and Veronesi (2004) decompose the CAPM beta into a discount
beta and a cash flow beta and examine which one dominates using cross-section
return data. Santos and Veronesi (2005) extend Menzly, Santos, and Veronesi
(2004) to explain simultaneously the time-series properties of the market port-
folio and the value premium in the cross-section. Hansen, Heaton, and Li (2008)
analyze the risk-return trade-off between cash flow risk and the long-run re-
turn of a security. Cohen, Polk, and Vuolteenaho (2008) empirically analyze
a cash flow-based CAPM beta computed as the covariance between portfolio
and market cash flows and show that it explains the difference in price levels.
Finally, Bansal, Dittmar, and Lundblad (2005) show that a cash flow beta mea-
sure alone explains 62% of the cross-sectional variation in risk premia across
various assets.

This paper’s focus falls with the second group; however, with the exception
of Bansal, Dittmar, and Lundblad (2005), few papers have empirically tested
the cross-sectional implications of cash flow risk in relation to aggregate con-
sumption. This paper contributes to this line of research by showing, both
theoretically and empirically, that the temporal pattern of cash flow as mea-
sured by Dur has additional explanatory power for the cross-section of stock
returns.

The remainder of the paper is organized as follows. Section I derives the
two-factor cash flow model in a simple economy to highlight its intuition.
Section II discusses the empirical estimation of the cash flow characteristics.
Section III provides empirical support for the two-factor cash flow model. Sec-
tion IV briefly summarizes the findings. Appendix A contains detailed proofs.
Appendix B discusses the relation between dividends and earnings as cash flow
measures.

I. Two-Factor Cash Flow Model

This section describes a mean-reverting cash flow share process in a simple
economy, derives the exact expression for the risk premium on a stock and devel-
ops the two-factor cash flow model as an approximation. The simple economy is
arguably restrictive and unlikely to capture all the ways in which fundamental
cash flow characteristics of a stock determine its risk premium. Nevertheless,
it highlights the key intuition behind the two-factor cash flow model.
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A. The Cash Flow Process

In order to model cash flow covariance and duration parsimoniously, I con-
sider a simple mean-reverting cash flow share process. Let Si

t denote the share
of asset i’s cash flow (D) relative to aggregate consumption (C) at time t, or

Si
t = Di

t

Ct
.

Take the log to get di
t = si

t + ct.3 I then assume that the log cash flow share
follows an AR(1) process:

si
t+1 = (1 − φ)si + φsi

t + λi
{
�ct+1 − Et[�ct+1]

} + εi
t+1

= (1 − φ)si + φsi
t + λiwt+1 + εi

t+1, (2)

where ε is independent of w and t.
The key assumption is that the cash flow share is stationary and mean-

reverting, as captured by an AR(1) process. A similar assumption is made in
Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2004). The mean-
reverting cash flow share process ensures a stationary steady state where no
single asset dominates. Arguably, the AR(1) assumption about cash flow share
may not extend to individual stock and certain sector portfolios. However, I
show that it is a reasonable assumption for the cash flows in buy-and-hold
stock portfolios constructed based on size, book-to-market ratio, and past long-
term stock return.

Define zi
t as si − si

t . Then, given (2), the cash flow growth rate can be written
as

�di
t+1 = �ct+1 + �si

t+1

= �ct+1 + (1 − φ)zi
t + λiwt+1 + εi

t+1,

zi
t+1 = φzi

t − λiwt+1 − εi
t+1.

(3)

The cash flow characteristics of interest are now each captured by one pa-
rameter of the model. Parameter λi measures the contemporaneous covariance
between innovations in cash flow share and innovations in aggregate consump-
tion growth (�ct+1 − Et[�ct+1] = wt+1), and is a measure of relative cash flow
covariance. For an asset with larger λ, its cash flow varies more with the ag-
gregate consumption innovation, resulting in more cash flow covariance. Pa-
rameter zi

t is a relative cash flow duration measure. A higher zi
t also results in

a higher expected cash flow growth rate in the future as in (3), leading to more
cash flow (as a share of aggregate consumption) being paid out in the future.
The term zi

t is purely cash flow-based, which is different from the usual fixed-
income Macaulay duration. The latter is price-based, meaning that it measures

3 Throughout the paper lower case is used to denote the log of the original variable unless
otherwise defined.
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the change in price as a result of a change in discount rate. However, the two
duration measures are related in that they both capture the temporal pattern
of cash flows, making “duration” a reasonable label for zi

t.
Given the simple cash flow process, assets differ from each other only in

terms of the cash flow covariance and duration. As a result, the cross-sectional
variation in risk premia should also be a function of these two cash flow char-
acteristics. To understand the exact relationship between risk premium and
the cash flow characteristics, I need to first specify the dynamics for aggregate
consumption growth and the stochastic discount factor (SDF) in the economy.

B. The Economy

I assume that the log aggregate consumption growth in the economy follows
an ARMA(1,1) process:

�ct+1 = µc(1 − ρ1) + ρ1�ct + wt+1 − ρ2wt ,

wt ∼ N (0, σ 2
w). (4)

The same assumption on consumption growth is made in Campbell (1999),
Bansal and Yaron (2000), and Bansal, Dittmar, and Lundblad (2002), among
others. When ρ2 = 0, the ARMA(1,1) process in (4) reduces to an AR(1) as con-
sidered in Mehra and Prescott (1985). Overall, the simple economy is a special
case of Bansal and Yaron (2004).

To make the algebra simpler and allow the economic intuition to come
through more clearly, I further assume the Epstein and Zin (1989) recursive
utility for the agent, with elasticity of intertemporal substitution ψ = 1. I then
follow Hansen, Heaton, and Li (2008) who show the log SDF in such an economy
can be written as

mt+1 = log δ − �ct+1 + (1 − γ )
1 − ρ2δ

1 − ρ1δ
wt+1 − 1

2

[
(1 − γ )(1 − ρ2δ)

1 − ρ1δ
σw

]2

, (5)

where γ and δ denote the coefficient of risk aversion and the time discount
factor, respectively. An interesting case studied by Bansal and Yaron (2000) is
where ρ1 is close to one and slightly greater than ρ2. In this case, although
the consumption growth very closely resembles an i.i.d. process, the persistent
expected consumption growth rate leads to a larger consumption risk premium
((γ − 1) 1−ρ2δ

1−ρ1δ
) and a potential solution to the equity risk premium puzzle.

C. Expected Return

In this section, I derive an exact expression for expected excess stock return in
the simple economy. This expression can then be used to motivate the two-factor
cash flow model.

Just like a bond, a stock can be considered as a portfolio of claims on future
cash flow payments. These cash flow claims are also known as equity strips.
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Denote Pi
n,t as the time t price of an equity strip that pays a cash flow Di

t+n at
time t + n. I first compute the price and one-period expected (excess) return for
each equity strip. The results are summarized in the following proposition (see
Appendix A for the proof):

PROPOSITION 1: The price-to-cash flow ratio of an equity strip is

Pi
n,t

Di
t

= exp
[
Ai(n) + (1 − φn)zi

t

]
,

where Ai(n) is defined in Appendix A. The risk premium for each equity strip is

R Pi(n) = log Et
[
Ri

n,t+1

/
R ft

] = (1 + φn−1λi)
[
1 + (γ − 1)

1 − ρ2δ

1 − ρ1δ

]
σ 2

w. (6)

The expected (excess) return of a stock is just the value-weighted average of the
expected (excess) returns of all equity strips:

Et
[
Ri

t+1

/
R ft

] =
∞∑

n=1

wi(n) exp[R Pi(n)]

wi(n) = exp
[
Ai(n) + (1 − φn)zi

t

]
∞∑

n=1

exp
[
Ai(n) + (1 − φn)zi

t

] .
(7)

The risk premium of each equity strip comes from the contemporaneous co-
variance between cash flow growth and the SDF. It depends on λi and varies
across stocks. Intuitively, an equity strip with higher cash flow covariance,
as measured by a positive λi, has a higher risk premium, holding maturity
n constant. For an equity strip with infinite maturity (n = ∞), the risk pre-
mium becomes [1 + (γ − 1) 1−ρ2δ

1−ρ1δ
]σ 2

w much as if the cash flow share has no
contemporaneous covariance with consumption growth. This is due to the
mean-reversion in cash flow share that causes the impact of cash flow covari-
ance to decrease with maturity. As a result, for λi > 0 (λi < 0), the risk pre-
mium decreases (increases) in n. The relationship between the risk premium
and maturity therefore depends on the cash flow covariance λi, consistent with
the model in Brennan and Xia (2006). In contrast, the risk premium of the
equity strip always decreases in its maturity in the calibrated model of Lettau
and Wachter (2007) as they do not allow cash flow covariance to vary across
stocks.4

Cash flow duration affects risk premia via its interaction with cash flow
covariance. When cash flow covariance is positive, the risk premium of an

4 In the calibrated model of Lettau and Wachter (2007), shocks in price of risk are not correlated
with shocks in dividend growth or shocks in expected dividend growth. In addition, cash flow
covariance is not directly modeled. While not precisely analogous, such specification is like choosing
a positive constant for cash flow covariance in my model. As a result, the risk premium is decreasing
in maturity for individual equity strips and high duration stocks will have lower expected returns.
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Figure 1. Exact and approximate annual risk premia as functions of cash flow duration
and covariance in the simple economy. The left figure plots the risk premium (Et[Ri

t+1 − Rft])
calculated using the exact solution in (7). The right figure plots the risk premium approximated
by the two-factor cash flow model in (13). The parameters (at a monthly frequency) used for the
simple economy are: γ = 5, ρ1 = 0.965, ρ2 = 0.851, δ = 0.998, σw = 0.01, φ = 0.98, σε = 0.02, and
rf = 0.0025.

individual equity strip decreases with maturity. When this happens, high du-
ration assets will have lower returns since a long-maturity cash flow with a
lower return receives higher present value weight in (7). The reverse logic
holds for negative cash flow covariance—higher duration will lead to a higher
return. The effect of the interaction between the two cash flow characteris-
tics on risk premia can be confirmed in the left graph in Figure 1. This graph
plots the annual expected excess returns calculated using (7) as a function
of both cash flow covariance and duration in the simple economy. The pa-
rameters (at a monthly frequency) used in the calculation are: γ = 5, ρ1 =
0.965, ρ2 = 0.851, δ = 0.998, σw = 0.01, φ = 0.98, σε = 0.02, and rf = 0.0025.
These parameters are chosen consistent with previous literature. For exam-
ple, the ARMA (1,1) parameters (ρ1 and ρ2) are taken from Bansal and Yaron
(2000). The graph shows that, indeed, the impact of cash flow duration on the
risk premium of an asset depends on cash flow covariance.

An interesting feature of the model is that the risk premium on each equity
strip does not vary over time as shown in equation (6) in the simple economy.
The present value weight received by cash flows with different maturities in
equation (7), however, does depend on the cash flow duration, which is time-
varying. This dependence ultimately yields a time-varying risk premium on the
equity (and not the equity strip).

In a more general economy where the elasticity of intertemporal substitu-
tion ψ is not equal to one and additional shocks in the economy are priced,
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additional risk premium terms will appear in (6) that only vary with maturity
n. Their presence provides a channel for cash flow duration to affect the risk
premium on an asset, independent of any interaction with cash flow covariance.
Consequently, cash flow duration Dur could enter the cash flow model of (1) as
a separate third factor. However, when cross-sectional variation in cash flow
covariance in the economy is large, both calibration and empirical results show
the first two factors (Cov and Cov × Dur) to dominate this third Dur factor in
explaining the cross-sectional variation in risk premia.

D. Two-Factor Cash Flow Model, an Approximation

This section presents the two-factor cash flow as an approximation of the
true expected (excess) return in equation (7), and highlights its intuition.5

The true expected (excess) return (7) can be approximated as

Et
[
Ri

t+1 − R ft
] ≈

∞∑
n=1

wi(n)R Pi(n). (8)

Consider a linear approximation of the risk premium on individual equity strip
RPi(n) around some fixed maturity n∗:

R Pi(n) ≈ R Pi(n∗) + R Pi′
n (n∗)(n − n∗),

where RPi′
n(n∗) denotes the first derivative of RPi

n with respect to n, evaluated
at n∗. Equation (8) then becomes

Et
[
Ri

t+1 − R ft
] ≈ R Pi(n∗) + R Pi′

n (n∗)

[ ∞∑
n=1

wi(n)n − n∗
]

. (9)

Direct computation shows that

R Pi(n∗) = a0 + a1λ
i, (10)

R Pi′
n (n∗) = a2λ

i, (11)
∞∑

n=1

wi(n)n − n∗ ≈ a3zi
t ,

a0 > 0, a1 > 0, a2 < 0, and a3 > 0,

(12)

where a0 to a3 are constants.6 Equation (10) states that the risk premium is
directly related to the relative cash flow covariance measure (a1 > 0). The in-
tuition is clear: a higher cash flow covariance should lead to a higher return,

5 The Internet Appendix available at http://www.afajof.org/supplements.asp contains an alter-
native derivation of the two-factor cash flow using the usual return-based beta representation
framework, which also relates the cash flow characteristics directly to the standard return-based
consumption beta.

6 Their expressions and the details of computation can be found in the Internet Appendix avail-
able at http://www.afajof.org/supplements.asp.
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much as a high beta stock should earn a higher return. Equation (11) highlights
the fact that the relationship between the risk premium and the maturity of
an equity strip depends on its cash flow covariance, λ. If λ is positive, then the
risk premium on the equity strip decreases with maturity, leading to a nega-
tive RPi′

n(n∗). The reverse logic holds for negative λ. In other words, RPi′
n(n∗)

is negatively related to λ (a2 < 0). Finally, recall that the Macaulay duration
is defined in the fixed income literature as present value-weighted time. The
term

∑
nwi(n)n − n∗ can then be easily interpreted as a relative duration, thus

explaining (12). Substituting (10), (11), and (12) into (9) gives us the two-factor
cash flow model:

Et
[
Ri

t+1 − R ft
] ≈ γ0 + γ1λ

i + γ2
(
zi

tλ
i). (13)

Figure 1 gives us a sense of the performance of the two-factor cash flow model
(13) as an approximation of the true expected (excess) return model (7). The left
and right graphs plot the expected (excess) returns under the true model and
the two-factor approximation, respectively, for a range of cash flow covariances
and durations. The two-factor cash flow model seems to do a reasonable job
describing the cross-sectional variation in risk premia in the simple economy.

II. Measuring Cash Flow Duration and Covariance

Having described the two-factor model and its intuition in a simple model,
I proceed to empirically measure the cash flow characteristics and test their
relation to the risk premium.

I measure cash flow duration and covariance using only aggregate consump-
tion and firm cash flow data. Thus, like recent studies of cash flow consumption
risk, this paper directly ties risk premia to fundamentals rather than to return-
based risk factors. However, the empirical procedure in this paper, differs from
previous studies of cash flow consumption risk in two important ways. First,
while previous studies estimate the cash flow of a portfolio by rebalancing the
portfolio over time, I instead adopt a buy-and-hold procedure similar to that
used in Cohen, Polk, and Vuolteenaho (2008) that is more appropriate for my
empirical analysis. Whenever a portfolio is formed, I hold its composition con-
stant and trace out its cash flow over time. By keeping the composition of the
portfolio unchanged, it becomes possible to estimate cash flow duration even
for a portfolio that pays very little dividends at portfolio formation (such as
the current growth portfolio). In addition, the resulting cash flow will not de-
pend on stock prices at the time of rebalancing, which are potentially subject
to mispricing.

This paper also differs from previous studies in its measurement of cash
flow. Previous studies measure cash flow using dividend (including share re-
purchase) data. There are potential problems associated with dividends. Some
firms are expected to pay no dividends for a long time into the future and
most firms tend to keep a stable dividend payout policy in the near future.
Other empirical difficulties associated with working with dividend data are
also highlighted in a review article by Campbell (2000). Taking these concerns
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into consideration, I use instead the theoretically equivalent, but empirically
better behaved, earnings data to estimate cash flow characteristics. The rela-
tionship between dividend data and earnings data is discussed in Vuolteenaho
(1999), who makes use of the accounting clean surplus identity to show that
(see Appendix B for details)

∞∑
n=0

ρn�di(t, n + 1) =
∞∑

n=0

ρnei(t, n + 1) − κ

1 − ρ
− ξ i

t , (14)

where e is the accounting return or log of one plus ROE (Return on book equity)
and ξ is the log cash flow-to-book equity ratio. The terms κ and ρ are constants
defined in Appendix B. The notation xi(t, n + 1) represents the variable of inter-
est (x) n + 1 years after portfolio formation for portfolio i formed in year t. Equa-
tion (14) essentially states that if we look at the infinite horizon, cash flow and
earnings data contain the same information. The summations involving n are
actually summations over time as n indexes the years since portfolio formation.

Recall that in the previous section I model cash flow duration and covariance
as high frequency cash flow characteristics. Here I base the empirical mea-
sures of cash flow duration and covariance on long-run earnings data because
the equivalence between earnings data and cash flow data only holds over a long
horizon. Moreover, the empirical long-run earnings-based measures are closely
related to their theoretical counterparts. It can be shown that the empirical
long-run earnings-based measures identify their theoretical counterparts (λi

and zi
t) up to scaling factors in the simple economy.7 Long-run earnings-based

measures have an additional advantage. At the annual horizon, earnings data
may suffer from the discretionary choices of management on the timing of ac-
cruals and other types of accounting manipulations as documented in Jones
(1991) and Teoh, Welch, and Wong (1998) among others. The impact of such
earnings management will be significantly reduced if earnings are “smoothed”
over much longer horizons as implicitly incorporated in (14) and the empirical
cash flow measures.

Having established my empirical procedure, the next two sections describe
in detail the cash flow duration and covariance measures.

A. Cash Flow Duration

The cash flow duration for a given portfolio (say the “growth” portfolio) is
constructed as follows. For each year in the sample (say t = 1990), consider
firms in the growth portfolio in that year. For this set of firms, I construct an
ex post duration (Duri

t) by following their earnings over years after formation
and using the formula

Duri
t = �e

t
i − κ

1 − ρ
− ξ i

t − Et
[
��c

t

]
, (15)

7 Details can be found in the Internet Appendix available at http://www.afajof.org/
supplements.asp.
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where �e
t

i = ∑∞
n=0 ρnei(t, n + 1) and ��c

t = ∑∞
n=0 ρn�ct+n+1. The term �e

t mea-
sures the discounted sum of all future accounting returns, ξ i

t measures the log
portfolio cash flow-to-book equity ratio at portfolio formation, and Et[��c

t ] mea-
sures the time t expectation of the discounted sum of all future consumption
growth. The expectation is computed under the assumption that consumption
growth follows an ARMA(1,1) process. It does not, however, generate cross-
sectional variation in cash flow duration. Intuitively, Duri

t in (15) measures cash
flow duration since higher duration means higher expected cash flow growth
in the future. This is either because expected future earnings (as measured by
�e

t ) are high, thus financing higher future cash flow payout, or because the
current cash flow (as measured by ξ i

t ) is low, providing a low base for higher
future growth.

To estimate the term �ei
t , I break it into two terms, namely, a finite summation

term and the terminal value term:

�e
t

i =
N−1∑
n=0

ρnei(t, n + 1) +
∞∑

n=N

ρnEt
[
ei(t, n + 1)

]
.

The terminal value term is estimated as
∞∑

n=N

ρnEt
[
ei(t, n + 1)

] = ρN

1 − ρ
ei

t .

In turn, ei
t , is estimated as the time-series average of {ei(t, n), n = 1, . . . , N}.

Once the ex post cash flow durations of the growth portfolio are estimated
for each year in my sample, I construct a time-series average across all years to
obtain the average cash flow duration for the growth portfolio. Put another way,
the portfolio cash flow duration measure (Duri) is defined as the times-series
average of Duri

t. I also consider an ex ante portfolio duration measure (D̂uri
t )

by projecting �ei
t on a set of time t measurable cash flow instruments.

B. Cash Flow Covariance

Cash flow covariance λi can be identified by regressing
∑∞

n=0 ρn[ei(t, n + 1) −
�ct+n+1] (long-run accounting returns) on

∑∞
n=0 ρnwt+n+1 (long-run consump-

tion innovations). I denote the regression coefficient Covi. Empirically, I replace
the infinite summation by a finite summation. I fit an ARMA(1,1) process on
�ct+1 and the residual terms are the estimates of {wt}.

Although λi is modeled theoretically as the contemporaneous covariance be-
tween cash flow share and consumption innovation, it is empirically estimated
by regressing long-run accounting returns on long-run consumption innova-
tions. I use long-run consumption innovations since short-term consumption
growth is problematic due to measurement error, consumption commitment,
or delayed response. Recent studies show that cross-sectional variation in ex-
pected excess returns can be explained if consumption growth over a longer
horizon is used (see Daniel and Marshall (2004), Parker and Julliard (2005),
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and Jagannathan and Wang (2007)). Finally, the summation used in the long-
run measures also helps to alleviate possible measurement errors from seasonal
adjustment in consumption data.

III. Empirical Results

This section tests empirically the relationship between cash flow charac-
teristics and expected (excess) return as captured by the two-factor cash flow
model.

A. Data and Portfolio Construction

Quarterly log aggregate consumption (c) data are used.8 I measure �ct an-
nually (fourth quarter to fourth quarter) to match the cash flow data series. In
addition, since investors are more likely to make consumption and investment
decisions together during the fourth quarter, fourth quarter to fourth quarter
consumption growth better explains cross-sectional stock returns, as shown in
Jagannathan and Wang (2007).

Since I examine annual returns and the cash flow characteristics are em-
pirically measured using long-run earnings data, I construct test portfolios
by sorting stocks along several characteristics that generate persistent cross-
sectional dispersion in average stock returns. These characteristics include the
firm’s market value (size), book-to-market ratio, and past long-run returns.
Every June starting from 1964, I group all stocks issued by industrial firms
in NYSE, Amex and NASDAQ into 10 size-sorted portfolios and 10 book-to-
market-sorted portfolios.9 Fama and French (1992), among many others docu-
ment that small stocks and stocks with high book-to-market ratios earn higher
returns that cannot be explained by the CAPM. I then sort these stocks into 10
long-term reversal portfolios based on their past 3-year returns 1 year prior to
portfolio formation. De Bondt and Thaler (1985) document that past winners
tend to underperform relative to past losers over the long run. I do not consider
momentum portfolios because the cross-sectional variation in average returns
across momentum portfolios decreases significantly after 6 months, rendering
the long-run earnings-based cash flow measures less relevant.

I record the first year annual returns of the portfolios after their forma-
tion. Following Shumway (1997), I assign a return of −0.3 to firms delisted

8 Consumption data from 1951Q2 to 2005Q1 are kindly made available by Sydney Ludvigson
at her website—http://www.econ.nyu.edu/user/ludvigsons/. Detailed information on the data con-
struction can be found in the Appendix of Lettau and Ludvigson (2001a).

9 I exclude financial firms (SICCD in [6000, 6999]) and utilities companies (SICCD in [4900,
4999]). I follow Fama and French’s (1996) procedure in measuring the book equity of a firm. The
book-to-market ratio in June of year t is book equity for the fiscal year ending in calendar year
t − 1, divided by market equity at the end of December of year t − 1. Size is defined as market
equity at the end of June of year t. To avoid potential data errors and extreme outliers, I exclude
stocks whose book-to-market ratios exceed the 99th percentile or fall below the 1st percentile. In
addition, I exclude stocks whose book-to-market ratios are negative.
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Table I

Descriptive Statistics of 30 Portfolios
Every June, I construct 10 book-to-market (BM-sorted) portfolios, 10 size (ME-sorted) portfolios, and 10 reversal
(PastRet-sorted) portfolios. The portfolio characteristics at formation and annual returns during the first year
after portfolio formation are reported. All values are time-series averages across the 1964 to 2002 period. Market
Equity (ME) is measured in millions. BM denotes the book-to-market ratio and PastRet denotes the past-3-year
(prior 2 to 4 years) return. I also directly test the validity of the AR(1) assumption on the cash flow share for the 30
portfolios. I first fit an AR(1) process for the cash flow share and compute the residuals. I then test whether these
residuals violate the white noise condition using the Ljung-Box (LB) Q test. Both the LB Q test statistics and the
associated p-values are reported. In addition, I test the stationarity of the cash flow share using the Augmented
Dickey-Fuller test with a constant and a lag of one. The t-values are reported (∗∗means the hypothesis of a unit
root can be rejected at the 99% confidence level and ∗means the hypothesis can be rejected at the 95% confidence
level). The cash flow share in year t is computed as the log of the ratio between the portfolio cash flow (sum of
common dividend and common share repurchase) and aggregate consumption during year t.

Panel A: 10 Book-to-Market (BM-Sorted) Portfolios

Growth 2 3 4 5 6 7 8 9 Value

ME 1,955.2 1,334.0 992.4 889.4 640.1 561.5 458.0 356.1 269.6 143.8
BM 0.16 0.29 0.41 0.52 0.64 0.77 0.92 1.11 1.37 1.86
PastRet 1.550 1.248 1.035 0.807 0.659 0.537 0.413 0.298 0.167 0.019
Return 0.108 0.100 0.126 0.124 0.123 0.144 0.136 0.161 0.163 0.174
LB Q test 7.48 5.91 15.90 15.70 10.62 12.38 6.45 27.52 9.96 10.57

stat
p-value 0.680 0.822 0.103 0.108 0.388 0.261 0.776 0.002 0.444 0.392
ADF t-value −5.32∗∗ −4.24∗∗ −3.65∗∗ −11.19∗∗ −5.91∗∗ −6.78∗∗ −3.36∗ −3.33∗ −1.37 −3.01∗

Panel B: 10 Size (ME-Sorted) Portfolios

Small 2 3 4 5 6 7 8 9 Big

ME 4.3 10.4 19.0 31.6 52.1 87.6 151.7 282.9 651.6 6184.6
BM 1.10 0.98 0.93 0.87 0.82 0.77 0.73 0.68 0.63 0.58
PastRet 0.046 0.272 0.396 0.526 0.620 0.731 0.766 0.826 0.823 0.784
Return 0.272 0.190 0.173 0.148 0.151 0.148 0.138 0.136 0.138 0.116
LB Q test 5.37 7.16 13.80 9.21 10.34 4.05 3.71 10.51 10.05 5.28

stat
p-value 0.865 0.711 0.182 0.512 0.411 0.945 0.959 0.397 0.436 0.872
ADF t-value −8.11∗∗ −6.10∗∗ −5.22∗∗ −7.79∗∗ −7.01∗∗ −7.62∗∗ −1.16 −1.64 −3.03∗ −4.71∗∗

Panel C: 10 Reversal (PastRet-Sorted) Portfolios

Winner 2 3 4 5 6 7 8 9 Loser

ME 2,457.4 2,733.0 2,646.1 2,272.8 1,867.7 1,293.3 1,122.9 868.8 564.5 286.5
BM 0.51 0.63 0.72 0.78 0.84 0.91 0.97 1.03 1.08 1.11
PastRet 3.174 1.361 0.913 0.642 0.442 0.274 0.115 −0.045 −0.224 −0.501
Return 0.093 0.099 0.125 0.135 0.134 0.124 0.130 0.149 0.138 0.166
LB Q test 6.23 5.97 6.05 8.05 7.85 13.95 12.50 4.42 5.02 8.28

stat
p-value 0.796 0.818 0.811 0.624 0.644 0.175 0.253 0.926 0.890 0.601
ADF t-value −5.25∗∗ −2.42 −4.62∗∗ −5.33∗∗ −1.04 −6.88∗∗ −4.35∗∗ −3.22∗ −4.93∗∗ −2.59

for performance related reasons (delisting code is 500 or in [520, 584]). Table I
presents descriptive statistics on the 30 portfolios. The sampling period is from
1964 to 2002. Consistent with previous literature, sorting on size, book-to-
market ratio, and past long-run return generates sizable dispersion in average
portfolio returns during this period.
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For each year t, after I form the portfolios, I hold them for 10 years. All
accounting cash flow data are converted to real terms using the Personal Con-
sumption Expenditure (PCE) deflator. I record the return on equity (ROE) of
each portfolio from year t + 1 to year t + 10. Following Vuolteenaho (2002), I
define ROEt as aggregate portfolio earnings measured according to U.S. Gen-
erally Accepted Accounting Principles (GAAP) (COMPUSTAT data item 172)
at year t divided by aggregate portfolio book equity at year t − 1. For firms
that disappear due to delisting, merger, or acquisition, I assume we invest the
proceeds from such events in the original portfolios that contained the disap-
peared firms. In this way, the portfolio ROE will not be altered. At the portfolio
level, the ROE is well above −1; I can therefore compute e = log (1 + ROE)
without risking the number in brackets becoming negative or too close to zero.
Finally, I compute the portfolio cash flow-to-book equity ratio at portfolio for-
mation, which is used later in computing cash flow duration. This ratio is de-
fined as the aggregate portfolio common dividend plus common share repur-
chase of the portfolio formation year divided by the aggregate portfolio book
equity of the portfolio formation year. Common dividend is measured using
COMPUSTAT data item 21. Following Grullon and Michaely (2002), common
share repurchase is defined as expenditure on the purchase of common and pre-
ferred stocks (data item 115) minus any reduction in the book value of preferred
stock.

I directly test the stationarity of the log cash flow share using the Augmented
Dickey-Fuller test with a constant and a lag of one. The log cash flow share in
year t is computed as the log of the ratio between the portfolio cash flow (sum
of common dividend and common share repurchase) and aggregate consump-
tion during year t. The sampling period is again from 1964 to 2002, so I have a
time series of 38 cash flow shares for each of the 30 portfolios. The alternative
hypothesis on the existence of a unit root is rejected for most of the 30 port-
folios (24 out of 30, see Table I). Using the Ljung-Box Q test, I also test the
AR(1) assumption on the log cash flow share by examining whether the AR(1)
residuals are white noises. The p-values associated with the tests are higher
than 0.05 for almost all the portfolios (29 out of 30), which means that the
AR(1) assumption cannot be rejected. In conclusion, the AR(1) assumption im-
posed on the log cash flow share seems to be reasonable at least at the portfolio
level.

B. Portfolio Cash Flow Characteristics

Table II breaks down the average cash flow duration for the 30 portfolios.
I choose N = 7 when estimating the future earnings component �ei

t . Similar
estimates are obtained if N is 5 or 10. Due to the 7-year holding period of a
portfolio, the sampling period is reduced from 1964 to 2002 to 1964 to 1995.
The t-values are computed using GMM standard errors, which account for both
cross-sectional and time-series error correlations using the Newey and West
(1987) formula of seven lags. I report the differences in the cash flow duration
estimates between extreme portfolios in the last two columns.
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Table II
Average Cash Flow Duration Measures of 30 Portfolios

I measure average cash flow duration (Duri) as the time-series average of �e
t

i − κ
1−ρ

− ξ i
t − Et [��c

t ]. The future

earnings component (�ei
t ) measures the average sum of discounted future accounting returns since portfolio

formation (the cutoff N is chosen to be seven). The current payout component (ξ i
t ) measures the average log cash

flow-to-book equity ratio at portfolio formation. Et[��c
t ] is estimated under the assumption that consumption

growth follows the ARMA(1,1) process. The t-values are computed using GMM standard errors, which account
for both cross-sectional and time-series error correlations, with Newey and West (1987) formula of seven lags.
The last two columns report the differences in the cash flow duration estimates between extreme portfolios.

Panel A: 10 Book-to-Market (BM-Sorted) Portfolios

Growth 2 3 4 5 6 7 8 9 Value (1–10) (1∼3)–(8∼10)

Future 3.49 3.02 2.68 2.49 2.23 2.05 1.79 1.64 1.30 1.09
earnings

Current −2.40 −2.48 −2.59 −2.67 −2.71 −2.81 −2.88 −3.02 −3.14 −3.47
payout

Dur 1.47 1.08 0.84 0.75 0.52 0.44 0.24 0.23 0.01 0.13 1.34 1.007
t-value 7.92 15.31 12.88 13.28 3.86 2.97 1.53 1.53 0.05 0.75 4.54 4.73

Panel B: 10 Size (ME-Sorted) Portfolios

Small 2 3 4 5 6 7 8 9 Big (1–10) (1∼3)–(8∼10)

Future 0.54 0.85 1.04 1.10 1.27 1.34 1.63 1.87 1.98 2.34
earnings

Current −4.01 −3.80 −3.74 −3.57 −3.47 −3.33 −3.26 −3.14 −3.02 −2.66
payout

Dur 0.08 0.20 0.34 0.22 0.28 0.22 0.45 0.57 0.56 0.56 −0.48 −0.36
t-value 0.16 0.50 1.05 0.67 0.95 0.62 2.05 3.28 4.17 4.33 −1.21 −1.35

Panel C: 10 Reversal (PastRet-Sorted) Portfolios

Winner 2 3 4 5 6 7 8 9 Loser (1–10) (1∼3)–(8∼10)

Future 2.61 2.46 2.44 2.26 2.14 2.17 2.03 1.96 1.86 1.57
earnings

Current −2.90 −2.75 −2.72 −2.73 −2.73 −2.77 −2.78 −2.90 −3.07 −3.41
payout

Dur 1.10 0.78 0.73 0.57 0.44 0.52 0.38 0.40 0.50 0.54 0.56 0.39
t-value 12.71 7.34 5.65 3.85 2.15 2.99 1.92 1.65 2.18 1.86 2.43 2.41

Panel A contains average duration estimates for 10 book-to-market-sorted
portfolios. The average cash flow duration measure Dur decreases almost mono-
tonically with book-to-market. As expected, growth stocks have higher cash
flow durations than value stocks. The difference in Dur between two extreme
portfolios is 1.34 and highly significant. The high duration of growth stocks
is largely driven by higher earnings in the future. Both the future earnings
component (average �e

t ) and the current accounting payout rate (average ξt)
decrease in book-to-market. The larger average payout rate for growth stocks
is mainly driven by their small book values. Since the future earnings com-
ponent decreases faster than the current payout rate as we move from growth
stocks to value stocks, the impact of higher future earnings dominates, resulting
in higher average cash flow durations for growth stocks. As Cohen, Polk, and
Vuolteenaho (2008) point out, a bias may partly contribute to this pattern as I
sort stocks according to book-to-market ratio. To the extent we underestimate
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the book equity value of a stock, we tend to sort that stock to growth portfo-
lios. This error in measurement will increase the future earnings component,
resulting in an increase in the duration measure. Even if this bias is accounted
for, the pattern will not likely change given the significant difference in average
duration measures between extreme growth and value stocks (robust t-value
above 4.5).

Panel B contains average duration estimates for 10 size-sorted portfolios. In
general, small stocks have lower average cash flow duration than big stocks.
This is because most of the traded small stocks are “distressed” stocks and their
cash flows, if any, are expected to decrease in the future. Both future earnings
and current payout rate increase in size, but the future earnings component
increases more rapidly. Evidently, the impact of future earnings again domi-
nates. Lastly, the difference in Dur between two extreme size-sorted portfolios
is calculated to be 0.48 (in absolute terms). Sorting on size, then, induces a
smaller spread in cash flow duration than sorting on book-to-market.

Panel C contains average duration estimates for 10 reversal portfolios. In
general, past losers have lower average cash flow duration than past winners.
This pattern is mainly driven by a difference in the future earnings component:
Past winners have higher future earnings than past losers. The dispersion in
the current payout rate is much smaller across the 10 portfolios. Overall, the
difference in Dur between two extreme reversal portfolios is 0.56 and significant
(t-value = 2.43).

Table III contains the cash flow covariance for the 30 portfolios. I replace the
infinite sum in measuring long-run accounting returns and consumption inno-
vations by a finite sum up to N. I present estimates for N = 5, 7, and 10. Due to
the need to hold portfolios N years ahead, the sampling period associated with
each N spans from 1964 to 2002 − N. The estimates of Cov are obtained using
overlapping OLS regressions. As with Dur, I compute robust t-values for Cov
using GMM standard errors, which account for both cross-sectional and time-
series error correlations, with the Newey and West (1987) formula of N lags.
For all choices of N, value stocks, small stocks, and past losers have higher cash
flow covariance measures than growth stocks, large stocks, and past winners,
accordingly, consistent with cash flow covariance being an important deter-
minant of risk premia. A large N makes the estimate closer to its theoretical
analog. On the other hand, a large N accumulates measurement error in cash
flow data and reduces the sample size, making the estimates empirically less
accurate. Due to this trade-off, I choose the cash flow covariance estimates as-
sociated with N = 7 for the main cross-sectional analysis and I also verify the
results to be very similar when cash flow covariance is measured with N equal
to 5 or 10.

C. Cross-sectional Analysis

In this section, I empirically examine the two-factor cash flow model (13)
in the cross-section. To achieve higher statistical power, I adopt finer sorts by
sorting sample stocks into 20 portfolios using size, book-to-market, and past
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Table III

Cash Flow Covariance Measures of 30 Portfolios
I regress

∑N
n=0 ρn[ei (t, n + 1) − �ct+n+1] on

∑N
n=0 ρnwt+n+1 for each of the 30 portfolios, where {wt} are consump-

tion growth innovations. The regression coefficient Covi measures the cash flow covariance for portfolio i. I repeat
the regressions for different horizons (N ), and the associated sampling period for each N is from 1964 to 2002 − N.
I report the OLS estimates in the first row and the associated t-values below. The t-values are computed using
GMM standard errors, which account for both cross-sectional and time-series error correlations, with Newey and
West (1987) formula of N lags. The last two columns report the differences in the cash flow covariance estimates
between extreme portfolios.

Panel A: 10 Book-to-Market (BM-Sorted) Portfolios

Growth 2 3 4 5 6 7 8 9 Value (1–10) (1 3)–(8 10)

N = 5 −3.78 −2.54 −2.00 −1.38 −0.50 −0.61 0.13 0.00 1.25 0.98 −4.76 −3.52
−2.38 −3.61 −3.17 −1.86 −0.54 −0.66 0.13 0.00 0.92 1.41 −2.24 −2.24

N = 7 −4.39 −3.33 −2.50 −1.81 −0.20 −0.96 0.43 0.32 1.04 0.79 −5.18 −4.12
−2.58 −3.35 −3.91 −1.80 −0.17 −0.95 0.44 0.35 0.90 1.35 −2.37 −2.47

N = 10 −4.39 −4.15 −2.89 −2.95 −0.74 −1.48 −0.50 −0.22 0.29 0.03 −4.42 −3.84
−1.54 −2.27 −3.08 −5.09 −0.91 −1.96 −1.32 −0.33 0.57 0.13 −1.48 −1.76

Panel B: 10 Size (ME-Sorted) Portfolios

Small 2 3 4 5 6 7 8 9 Big (1–10) (1 3)–(8 10)

N = 5 1.07 0.19 −0.53 0.25 −0.45 0.38 0.24 −0.71 −1.05 −0.64 1.70 1.04
0.54 0.15 −0.35 0.15 −0.28 0.21 0.16 −0.68 −1.13 −0.82 1.10 1.27

N = 7 3.16 0.96 0.24 0.67 0.27 0.73 0.91 −0.37 −0.76 −0.85 4.01 2.11
1.18 0.52 0.12 0.32 0.14 0.36 0.55 −0.34 −0.87 −1.25 1.95 1.56

N = 10 4.82 1.48 2.66 2.85 2.03 1.97 1.57 −0.17 −0.47 −1.41 6.23 3.67
1.22 0.58 0.85 1.14 0.95 1.23 0.94 −0.17 −0.71 −4.63 1.60 1.38

Panel C: 10 Reversal (PastRet-Sorted) Portfolios

Winner 2 3 4 5 6 7 8 9 Loser (1–10) (1 3)–(8 10)

N = 5 −3.08 −1.21 −0.74 −1.24 1.41 −0.10 0.00 0.96 0.59 0.12 −3.19 −2.23
−3.97 −2.04 −1.27 −1.33 0.94 −0.12 0.00 0.46 0.36 0.06 −1.62 −1.46

N = 7 −3.80 −1.16 −0.87 −1.71 1.32 0.18 −0.19 1.10 1.14 1.32 −5.13 −3.13
−5.99 −1.57 −2.26 −1.95 0.92 0.22 −0.16 0.51 0.63 0.65 −2.53 −1.80

N = 10 −5.15 −1.54 −1.41 −2.06 1.63 0.05 −0.15 1.01 0.56 1.02 −6.17 −3.56
−8.36 −1.56 −5.93 −6.40 2.07 0.13 −0.23 0.49 0.46 0.37 −2.00 −1.55

long-run return characteristics to obtain 60 test portfolios in total. I then re-
peat the earlier procedure to compute the cash flow duration and covariance
measures for each of the 60 portfolios. In the cross-section, I first estimate the
unconditional version of the two-factor cash flow model:

E
[
Ri

t+1 − R ft
] = γ0 + γ1Covi + γ2Covi × Duri, (16)

where I use the average duration measure (Duri). This allows for a direct com-
parison with other common pricing models that do not allow for time-varying
portfolio characteristics. As the next period’s earning surprise is empirically cor-
related with the next period’s return innovation, and since I estimate �ei

t using
forward-looking earning data, such correlation might introduce a bias in the
cross-sectional analysis. Since both Duri and E[Ri

t+1 − Rft] are time-series av-
erages, earnings surprises will be averaged out across time and the bias should
be small. I also estimate the ex ante measure of cash flow duration—D̂uri

t
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using only currently observable instrumental variables. When I replace Duri

with D̂uri (the time-series average of D̂uri
t ) in the cross-sectional regression,

the results hardly change. In the next section, I use the ex ante measure of cash
flow duration and other alternative duration measures that are time-varying
in the cross-sectional analysis.

I use the GMM approach for the cross-sectional analysis, where I stack mo-
ment conditions in both the time-series and cross-sectional regressions in a
one-stage GMM system, similar to the procedure discussed in Cochrane (2001)
and Bansal, Dittmar and Lundblad (2002). The moment conditions are chosen
such that the estimates of γ0, γ1, and γ3 are identical to those obtained using
OLS cross-sectional regressions. The associated robust t-values are computed
using GMM standard errors. The covariance matrix of the moment conditions
is computed using the Newey and West (1987) formula of seven lags. The re-
sulting robust t-values thus account for error correlation both cross-sectionally
and in the time series. In particular, they adjust for estimation errors in both
Cov and Dur in the time-series regression. For comparison, I also run the more
commonly used Fama and MacBeth (1973) regression and report the associated
t-values. The Fama-MacBeth regression produces identical point estimates.

I estimate three alternative return-based models as benchmarks. They are:

(1) the standard CAPM:

E
[
Ri

t+1 − R ft
] = γ0 + γ1β

i
M K T ;

(2) the standard Consumption-based CAPM estimated using returns:

E
[
Ri

t+1 − R ft
] = γ0 + γ1β

i
�c;

and (3) the Fama and French (1993) three-factor model:10

E
[
Ri

t+1 − R ft
] = γ0 + γ1β

i
M K T + γ2β

i
SM B + γ3β

i
H M L.

The cross-sectional regression results are presented in Table IV. The cash
flow covariance measure alone explains 58% of the cross-sectional variation in
expected excess returns. While cash flow covariance estimated using long-run
consumption data has been shown to be able to explain short-term return mo-
mentum (Bansal, Dittmar, and Lundblad (2005)), this paper to my knowledge,
is the first to empirically show that a long-run cash flow covariance, measured
properly, also helps to explain the long-run return reversal.

It is interesting that cash flow covariance measured using long-run consump-
tion data is able to explain both short-term return momentum and long-run
return reversals. One potential explanation is given by Yang (2007), who mod-
els two time-varying components of exposure to the long-run consumption risk
in the cash flow growth rate of a stock—a fast mean-reverting component and
a slow mean-reverting component. The cash flow innovation is positively cor-
related with one component while negatively correlated with the other. As a

10 I thank Ken French for providing data on the three factors.
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Table IV
Cross-sectional Regressions

Results of cross-sectional regressions of average excess returns on the 60 portfolios on cash flow
duration and covariance measures are presented in Panel A. The coefficient estimates are obtained
from OLS regressions. However, the robust t-values are computed using GMM standard errors
which account for both cross-sectional and time-series error correlations, with Newey and West
(1987) formula of seven lags. The one-stage GMM estimation is carried out by stacking moment
conditions of both time-series regressions and cross-sectional regressions. For comparison, I also
run the standard Fama-MacBeth regressions and report the associated (FM) t-values. Results of
cross-sectional regressions of alternative models are presented in Panel B as benchmarks. I report
both Fama-MacBeth t-values and Shanken t-values which account for errors in the estimates of
factor loadings. Finally, both R2 and adjusted-R2 of the regressions are reported. The sampling
period is 1964 to 1995.

Panel A: Cross-sectional Regression of Cash Flow Models

Intercept Cov Dur × Cov Dur R2 / adj R2

One Factor:
Coefficient 0.087 0.019 0.583
FM t-value 2.67 3.79 0.576
Robust t-value 2.60 3.31

Two Factors:
Coefficient 0.075 0.037 −0.024 0.818
FM t-value 2.43 4.04 −3.29 0.812
Robust t-value 2.23 3.40 −2.57

Three Factors:
Coefficient 0.083 0.036 −0.026 −0.018 0.821
FM t-value 2.89 3.67 −3.95 −0.72 0.811
Robust t-value 2.14 3.43 −3.11 −0.44

Panel B: Cross-sectional Regression of Alternative Models

Intercept �c MKT SMB HML R2 / adj R2

CAPM:
Coefficient −0.065 0.142 0.269
FM t-value −1.15 2.02 0.269
Shanken t-value −0.89 1.50

CCAPM:
Coefficient 0.004 0.021 0.279
FM t-value 0.12 2.77 0.279
Shanken t-value 0.07 1.51

FF Three Factors:
Coefficient −0.011 0.064 0.058 0.032 0.514
FM t-value −0.38 1.60 2.23 1.23 0.497
Shanken t-value −0.33 1.19 1.50 0.84

result, sorting on past returns is likely to generate a positive spread in the fast
mean-reverting component, explaining the short-run return momentum, and
a negative spread in the slow mean-reverting component, thus explaining the
long-run return reversal. These two components are not directly modeled in
my paper, but it is conceivable that my cash flow covariance, measured using
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long-run cash flow on a seven-year buy-and-hold portfolio, is likely to capture
the slow mean-reverting component empirically. In contrast, the cash flow beta
in Bansal, Dittmar, and Lundblad (2005), estimated using cash flow on quar-
terly rebalanced portfolio, is more likely to capture the fast mean-reverting
component empirically. Overall, the empirical finding that cash flow covariance
also helps to explain the long-run return reversal provides additional support
for the long-run risk model of Bansal and Yaron (2004).

While cash flow covariance does a reasonable job explaining the cross-
sectional variation in risk premia, cash flow duration also provides additional
explanatory power. After adding in a second factor, Cov × Dur, which contains
cash flow duration, Cov remains significant. However, the second factor is also
significant, which means that cash flow duration still has additional explana-
tory power. The R2 from the addition of this second factor increases to 82%. The
incremental R2 of adding the second factor is 24% (the incremental adjusted-R2

is also about 24%). The coefficient on the second factor Cov × Dur is negative,
consistent with the theoretical prediction and simulation result—that is, cash
flow duration increases expected return when cash flow covariance is nega-
tive and reduces expected return when cash flow covariance is positive, as
demonstrated in Figure 1. Finally, I add Dur as a third factor to test whether
it provides any additional explanatory power on a stand-alone basis. This term
has a negative coefficient, consistent with both Dechow, Sloan, and Soliman
(2004) and Lettau and Wachter (2007), who find that high duration leads to
lower stock returns. However, this negative coefficient is not significant; the
additional explanatory power of the factor Dur in terms of incremental R2 is
less than 1%.

Overall, the two-factor cash flow model, compared to the standard CCAPM
or the one- or three-factor models, seems to capture most of the cross-sectional
variation in risk premia. With just one factor—covariance—the cash flow model
yields a higher R2 and a more significant consumption risk premium than the
standard CCAPM in which consumption beta is estimated using returns. The
cash flow model with only cash flow covariance, which can stand in as a first-
order approximation of the true model, explains a reasonably large portion of
the cross-sectional variation in expected excess returns, confirming the findings
in Bansal, Dittmar, and Lundblad (2005). Figure 2 contains a graphic repre-
sentation of this. However, this figure also shows that the relationship between
realized and fitted expected excess returns is still somewhat nonlinear, largely
due to the omission of the second-order effect. The second-order effect is well
captured by the second factor Cov × Dur, an interaction term between cash
flow covariance and duration. If I account for this second-order term explicitly
in a two-factor cash flow model, the relationship between realized and fitted
expected excess returns becomes linear. The two-factor cash flow model per-
forms better than the three-factor model in terms of yielding a higher R2 and
more significant risk premium. The two-factor cash flow model accounting for
cash flow duration well explains the expected excess returns of all 60 portfolios,
including the smallest size portfolio and lowest book-to-market portfolio, where
all other models considered slightly falter.
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Figure 2. Realized and fitted excess returns of 60 portfolios. b1 and b20 are the extreme
growth and value portfolios, respectively. s1 and s20 are the smallest and biggest portfolios, respec-
tively. r1 and r20 are the portfolios with the highest and lowest past return, respectively. Details
of the cross-sectional regressions are in Table IV.
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D. Monte Carlo Analysis

The robust t-values estimated in the cross-sectional analysis are derived us-
ing asymptotic statistics and could potentially be imprecise due to the small
sample size. To examine the finite-sample empirical distribution for various
key parameters such as the risk premia on the cash flow characteristics and
the cross-sectional regression R2, I follow the procedure in Bansal, Dittmar,
and Lundblad (2005) and conduct two Monte Carlo experiments. These exper-
iments show that the empirical results reflect economic content rather than
random chance.

The first Monte Carlo experiment is conducted under the alternative hy-
pothesis that the two-factor model is incorrect. I simulate 10,000 time series
of long-run consumption innovations (

∑7
n=0 ρnwt+n+1) modeled as i.i.d. with a

standard deviation matched to the data. I then regress the observed long-run
accounting returns (

∑7
n=0 ρn[ei(t, n + 1) − �ct+n+1]) on the simulated long-run

consumption innovations to obtain the cash flow covariance measures. I also
simulate 10,000 cross-sections of 60 cash flow durations from a multivariate
normal distribution with a zero mean vector and a covariance matrix matched
to its empirical counterpart. Finally, I estimate the two-factor cash flow model
using the observed average excess returns on the 60 portfolios, the estimated
cash flow covariances, and the simulated cash flow durations. By construc-
tion, the population values of cash flow covariances and durations and the risk
premia terms should all be zeros. Consequently, the R2 of the cross-sectional
regression should also be zero.

The result of the first experiment is presented in Panel A of Table V. The
risk premia are estimated with sizable errors, but their distributions are
centered at the population values of zeros. The point estimate of the risk
premium on Cov of 0.037 exceeds the 95th percentile of its empirical distri-
bution. The point estimate of the risk premium on Cov × Dur of −0.024 also
exceeds the 95th percentile of its empirical distribution. The cross-sectional R2

and adjusted-R2 both exceed the 95th percentiles of their corresponding em-
pirical distributions. These results indicate that if the two-factor cash flow
model is incorrect, observing the magnitudes of risk premia and the cross-
section R2 that I find in data would be unlikely. The two-factor cash flow
model is therefore unlikely a result of random chance but reflects economic
content.

The second Monte Carlo experiment is conducted under the null hypothesis
that the two-factor model is correct. I simulate 10,000 cross-sections of 60 port-
folio cash flow durations from a multivariate normal distribution where the
mean vector and the covariance matrix are matched to their empirical counter-
parts. To simulate the cash flow covariances, consider the regression used to
estimate them:

7∑
n=0

ρn [
ei(t, n + 1) − �ct+n+1

] = constanti + Covi
7∑

n=0

ρnwt+n+1 + erri
t .
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Table V
Monte Carlo Analysis

This table reports the empirical distribution of the estimated parameters in the cross sectional
analysis. Panel A reports the parameter distributions under the alternative hypothesis that the
two-factor model is incorrect. 10,000 samples are simulated under the assumption that cash flow
covariances and durations are zeros in the population. Panel B reports the parameter distributions
under the null hypothesis that the two-factor model is correct. 10,000 samples are simulated under
the assumption that the cash flow characteristics and risk premia in the population are equal to
their empirical counterparts.

Panel A: Under the “Alternative” Hypothesis

Under “Alter” 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5%

Risk Premia on 0.000 −0.030 −0.027 −0.024 0.000 0.023 0.027 0.030
Cov (γ1)

Risk Premia on 0.000 −0.019 −0.015 −0.011 0.000 0.011 0.015 0.020
Cov × Dur(γ2)

R2 0.000 0.005 0.010 0.024 0.207 0.483 0.535 0.574
Adj R2 −0.035 −0.030 −0.025 −0.011 0.179 0.465 0.518 0.559

Panel B: Under the “Null” Hypothesis

Under “Null” 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5%

Risk Premia on 0.037 0.003 0.011 0.016 0.027 0.038 0.042 0.045
Cov (γ1)

Risk Premia on −0.024 −0.030 −0.028 −0.025 −0.017 −0.008 0.000 0.009
Cov × Dur(γ2)

R2 1.000 0.113 0.208 0.348 0.666 0.784 0.804 0.819
Adj R2 1.000 0.082 0.180 0.325 0.654 0.777 0.797 0.813

I simulate 10,000 time series of consumption growth innovations {wt} from an
i.i.d. normal distribution with zero mean and a standard deviation matched
to the data. Each time series of simulated consumption growth innovations
is then converted to a time series of long-run consumption growth innovations
(
∑7

n=0 ρnwt+n+1). I also simulate 10,000 time series of the error terms erri from a
multivariate normal distribution with zero mean vector and the covariance ma-
trix matched to its empirical counterpart. Each time series of simulated erri,
combined with the estimated intercept terms (constanti), the estimated cash
flow covariance Covi, and the simulated long-run consumption innovations,
generates a time series of simulated long-run accounting returns for portfo-
lio i. These simulated long-run accounting returns are then regressed on the
simulated long-run consumption innovations to estimate the simulated cash
flow covariances. Finally, 10,000 cross-sections of average excess returns are
simulated from the two-factor model with the error term drawn from a normal
distribution matched to its empirical distribution.

The result of the second experiment is presented in Panel B of Table V. Due
to the estimation errors associated with the cash flow covariance and duration
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in the time series, the corresponding median risk premium estimates are bi-
ased away from their population values and towards zero. Consequently, the
R2 estimates are also biased down from their population value of one. The
fact that estimates are biased towards zero even under the null hypothesis
suggests that our empirical risk premium and R2 estimates are likely con-
servative. Finally, I find that the risk premium estimate on Cov is mostly
positive and that on Cov × Dur is mostly negative. This indicates that de-
spite the large time-series imprecision, one should still be able to recover
in data the true pricing relation as suggested by the two-factor cash flow
model.

E. Robustness and Additional Diagnostics

I run several robustness checks on the cash flow models and present the
results in Table VI. Although the two-factor cash flow model explains the return
on the smallest portfolio particularly well, I verify that the smallest portfolio
does not drive the result. Panel A reports the results of the test in which I
exclude the smallest-sized portfolio from the cross-sectional analysis. Although
the R2 on the two-factor cash flow model decreases, it is still reasonably high at
71.4%. More importantly, the incremental R2 when moving from the one-factor
model to the two-factor model is still 18% (incremental adjusted-R2 is about
17%), indicating the incremental explanatory power of cash flow duration is
not driven by the smallest portfolio. In addition, risk premia on both cash flow
factors are still significant.11

In Panels B and C, I report the results of the cross-sectional analysis when
cash flow covariance (Cov) is measured with a holding horizon of 5 years and
10 years (N = 5 and N = 10, respectively). The results are very similar to the
benchmark case where N = 7. The risk premia on both cash flow factors are
significant and cash flow duration provides roughly 20% additional explanatory
power in terms of incremental R2 (or adjusted-R2).

11 I also test the two-factor cash flow model on book-to-market and size double-sorted portfolios.
Similar to other benchmark models, the two-factor cash flow model is not able to explain the aver-
age return on the small growth portfolio. Once the small growth portfolio is excluded, the two factor
model has an R2 of above 80% and the risk premium terms are significant and assume the correct
signs. There are several potential reasons why the two-factor model fails on the small-growth port-
folio. First, the mean-reverting cash flow share assumption may be violated for the small-growth
stocks. Second, the function of equity strip’s risk premium on its maturity might be very convex
for the small growth portfolio. When approximating the true equity risk premium in (7), a “cash
flow convexity” term might be needed in addition to the cash flow duration. In addition, I test the
two-factor model on 15 industry portfolios. The mean-reverting cash flow share assumption is not a
good assumption for the industry portfolios (rejected for 8 out of the 15 portfolios), making the esti-
mation of the cash flow characteristics imprecise. Although the two cash flow characteristic factors
assume risk premia of the correct signs and do a reasonable job in describing the cross-sectional
variation in stock excess returns (adjusted-R2 is above 0.5), their risk premia are not statistically
significant. Detailed results on industry portfolios can be found in the Internet Appendix available
at http://www.afajof.org/supplements.asp.
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I address the forward-looking problem associated with the cash flow duration
estimation in Panel D by estimating an ex ante measure of cash flow duration,
D̂uri

t , as Et[�e
t

i] − κ
1−ρ

− ξ i
t − Et[��c

t ].
To directly compute Et[�ei

t ], I apply a predictive regression. Specifically, each
year from 1965 to 1995, I compute �ei

t for each of my 60 portfolios and regress
them on a set of instruments X in a balanced panel setting:

�e
t = βX + u. (17)

Variables with upper bars are cross-sectionally demeaned so there is no con-
stant term in (17). I avoid choosing variables that contain price informa-
tion, as one of the main objectives of this paper is to measure risk using
only accounting cash flow information. The variables I include in the vector
X are: log current ROE (et = log (1 + ROEt)), log current book dividend yield
(DIVt = log (1 + Dt/Bt)), and percentage sales growth from year t − 1 to year
t (SGt = Salest/Salest−1 − 1). The three variables turn out to explain a large
portion of the cross-sectional variation in �e

t with an R2 of above 0.8 over the
full sample. I also repeat the same panel regression in two subsamples and
obtain qualitatively similar results.12 The regression coefficients β on all three
variables are positive and significant. Since ROE is persistent, high current
earnings are likely to be associated with high earnings in the near future,
resulting in a positive coefficient on et. The positive coefficient on DIVt is con-
sistent with the empirical relation in Table II: �e

t is positively correlated with
book dividend yield ξt, since firms facing more growth opportunities tend to pay
less dividends. Finally, the coefficient on SGt is also positive since higher sales
growth indicates greater growth potential in the future. Once I estimate the
regression (17), I can compute the ex ante cash flow duration measure (up to a
constant) for each of the 60 portfolios as

D̂uri
t = β̂X i

t − κ

1 − ρ
− ξ i

t − Et
[
��c

t

]
.

If I replace the previous cash flow duration measure Duri with the time-series
average of the ex ante cash flow duration measure D̂uri

t in the cross-sectional
analysis, the results are qualitative very similar as reported in the first two rows
of Panel D, although the significance level on the risk premium terms and the R2

are slightly reduced, potentially due to the omission of other useful instruments
in the prediction equation (17). I also allow duration to be time-varying in
the cross-sectional analysis (the number of cross-sectional moment conditions
increases from one to T ). The results are again very similar as evident in the
last two rows of Panel D.

12 Finally, I also examine the rolling window estimates of cash flow duration measure. At each
year, I reestimate (17) using data from 1965 through the current year, so the duration measure
D̂urt is only computed using information available at year t. For this calculation, I start my port-
folio construction at year 1975 so I have enough data to compute reasonably reliable estimates of
D̂urt , even during early years. Such rolling window estimation provides similar cash flow duration
measures for the 60 portfolios.
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Intuitively, dividend yield is inversely related to cash flow duration. How-
ever, since dividend yield is computed using price, which reflects all types of
risk, it may not be a “clean” measure of cash flow duration. For instance, if
I were to replace Dur with D/P—the dividend yield where D includes both
common dividend payout and common share repurchase—the dividend yield
does not provide too much additional explanatory power as shown in Panel E.
In addition, the risk premium on the second factor, Cov × D/P, is associated
with the wrong sign. It is marginally insignificant when the time-series aver-
age D/P is used and becomes insignificant once I allow for time-variation in
D/P.

The last alternative measure of cash flow duration is the consensus long-
term earnings growth forecast (LTG) issued by equity analysts. High LTG in-
dicates analyst optimism on the expected future earnings growth of the com-
pany and therefore is likely associated with higher cash flow duration. The
consensus LTG is collected from I/B/E/S on June and then averaged at the port-
folio level. Due to the availability of LTG, the sampling period is shortened
to 1982 to 1995. Once I replace Dur with LTG, I find qualitatively similar re-
sults in Panel F. The risk premium on the second factor, Cov × LTG, is negative
and significant although the R2 becomes much smaller (0.43) potentially due
to the reduced sample size. In addition, once time-varying LTG is allowed,
the risk premium on the second factor, Cov × LTG, becomes marginally in-
significant (t-value= −1.82), again likely a result of a much smaller sample
size.

As a model misspecification check, I include portfolio characteristics as addi-
tional variables in the cross-sectional analysis using a Fama-MacBeth regres-
sion approach (see Jagannathan and Wang (1998) on using portfolio character-
istics to detect model misspecification). The characteristics chosen are size and
book-to-market after log transformation. The results are presented in Table VII.
I find that the portfolio characteristics are not significant in the cross-sectional
regressions of the two-factor cash flow model (Panel A), so model misspecifica-
tion is unlikely. In contrast, both size and book-to-market are significant in the
cross-sectional regressions for the commonly used Fama-French three-factor
model, indicating possible model misspecification (Panel B), consistent with
previous research (see Daniel and Titman (1997) and Lettau and Ludvigson
(2001b) for example). Finally, when I put the Fama-French three factor loadings
and the two cash flow factors in one cross-sectional regression as a “horse race,”
the two cash flow factors seem to drive out the loadings on the Fama-French
factors.

To summarize the results, the cash flow models estimated using pure cash
flow data sufficiently explain the cross-sectional variation of expected excess
returns of book-to-market, size, and long-term reversal portfolios. An interac-
tion term involving cash flow duration captured using the variable Dur has
additional explanatory power on top of covariance risk. A two-factor cash flow
model that accounts for the cash flow duration performs better than most of the
commonly used models estimated using returns. Furthermore, it is not likely
to suffer from model misspecification.
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Table VII
Diagnostic Cross-sectional Regressions

I report results on additional cross-sectional regressions using the Fama-MacBeth methodology. I
include common characteristics of the 60 portfolios in the regressions in Panels A and B. Log (ME)
denotes the log of market value of equity and Log(BM) denotes the log of book-to-market ratio. Both
R2s and adjusted-R2s of the regressions are reported. Panel C reports the results of a regression
where cash flow characteristics and three-factor betas are included at the same time. The sampling
period is 1964 to 1995.

Panel A: Cash Flow Models with Portfolio Characteristics

Intercept Cov Cov × Dur log (ME) log (BM) R2/adj R2

Coefficient 0.101 0.033 −0.022 −0.004 0.828
FM t-value 1.34 5.84 −4.30 −0.47 0.819
Coefficient 0.077 0.036 −0.025 0.011 0.820
FM t-value 2.56 3.37 −4.15 0.54 0.810

Panel B: FF Three-Factor Model with Portfolio Characteristics

Intercept MKT SMB HML log (ME) log (BM) R2/adj R2

Coefficient 0.167 0.027 0.006 0.013 −0.020 0.549
FM t-value 3.49 0.72 0.21 0.46 −3.20 0.516
Coefficient −0.006 0.102 0.029 −0.070 0.074 0.637
FM t-value −0.19 2.54 1.17 −2.34 4.85 0.611

Panel C: Cash Flow Model versus FF Three-Factor Model

Intercept Cov Cov × Dur MKT SMB HML R2/adj R2

Coefficient 0.059 0.034 −0.021 0.015 0.008 −0.014 0.830
FM t-value 1.91 6.35 −5.29 0.40 0.32 −0.53 0.814

IV. Conclusion

This paper links the cross-sectional variation in assets’ returns directly to
the cross-sectional variation in their fundamental cash flow characteristics. In
particular, I examine two such characteristics: Cov (covariance—how cash flow
varies with aggregate consumption), and Dur (duration—whether cash flow
occurs further in the future). Their impact on the cross-sectional variation in
expected excess return can be largely captured by a two-factor cash flow model
with the two factors being Cov and Cov × Dur. The intuition behind such a
model is illustrated in a simple economy where a portfolio’s cash flow as a
share of aggregate consumption is mean-reverting.

Empirically, cash flow covariance and duration are estimated using only long-
run consumption and accounting earnings data for 60 book-to-market-sorted,
size-sorted and long-term reversal portfolios. I show that cash flow covariance
alone is able to explain about 60% of the cross-sectional variation in risk premia
across the 60 portfolios. The finding that cash flow covariance measured using
long-run consumption data helps to explain long-run return reversal provides
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new empirical support for the long-run risk model of Bansal and Yaron (2004).
Cash flow duration provides additional explanatory power of about 20% in
terms of incremental R2 through its interaction with cash flow covariance.
Overall, the two-factor cash flow model incorporating both cash flow charac-
teristics is able to explain 82% of the cross-sectional variation in risk premia.

This paper provides empirical support that fundamental cash flow character-
istics including both covariance and duration are important in understanding
the difference in risk premia across assets. In addition, the two-factor cash flow
model provides a new way to estimate a financial asset’s risk exposure and can
be used in the cost-of-capital calculation even in the absence of price or return
information.

Appendix A: Proof of Proposition 1

To compute the price of an equity strip, Pi
n,t, I make use of the fact that

Et
[
Mt+1 Pi

n−1,t+1

] = Pi
n,t ,

which implies

Et

[
Mt+1

Di
t+1

Di
t

Pi
n−1,t+1

Di
t+1

]
= Pi

n,t

Di
t

. (A1)

Conjecture that

Pi
n,t

Di
t

= exp
[
Ai(n) + B(n)zi

t

]
. (A2)

Since Pi
0,t = Di

t, we have Ai(0) = B(0) = 0.
Equations (A1) and (A2) imply

Et
[
exp

{
mt+1 + �si

t+1 + �ct+1 + Ai(n − 1) + B(n − 1)zi
t+1

}]
= exp

{
Ai(n) + B(n)zi

t

}
.

Under the assumptions on aggregate consumption (4), the SDF (5) and the cash
flow process (3), evaluating the expectation, and matching terms involving zi

t,
we have

(1 − φ) + B(n − 1)φ = B(n).

Solving the difference equation with initial condition B(0) = 0, we have

B(n) = 1 − φn.
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Matching constants, it follows that

Ai(n) = Ai(n − 1) + log δ − 1
2

[
(1 − γ )(1 − ρ2δ)

1 − ρ1δ
σw

]2

+ 1
2

[
φn−1λiσw + (1 − γ )(1 − ρ2δ)

1 − ρ1δ
σw

]2

+ 1
2

(
φn−1σ i

ε

)2,

where σ i
ε is the standard deviation of εi. Therefore, Ai(n) can also be solved

iteratively given the initial condition as

Ai(n) = n log δ + (λiσw)2 + (σ i
ε )2

2
1 − φ2n

1 − φ2
+ (1 − γ )(1 − ρ2δ)λiσ 2

w

1 − ρ1δ

1 − φn

1 − φ
.

Define the return on individual cash flow claim as

Ri
n,t+1 = Pi

n−1,t+1

Pi
n,t

= Pi
n−1,t+1

/
Di

t+1

Pi
n,t

/
Di

t

Di
t+1

Di
t

and take the log:

ri
n,t+1 = Ai(n − 1) − Ai(n) + B(n − 1)zi

t+1 − B(n)zi
t + �si

t+1 + �ct+1.

The one-period innovation is

ri
n,t+1 − Et

[
ri

n,t+1

] = (1 + φn−1λi)wt+1 + φn−1εi
t+1.

Therefore,

log Et
[
Ri

n,t+1

/
R ft

] = (1 + φn−1λi)
[
1 + (γ − 1)

1 − ρ2δ

1 − ρ1δ

]
σ 2

w.

Appendix B: Moving from Cash Flows to Earnings

The clean-surplus identity implies

Bi
t+1 ≡ Bi

t + X i
t+1 − Di

t+1,

where Bi, Xi, and Di denote firm i’s book value of equity, earnings, and cash
flow, respectively. Therefore, log accounting return can be written as

ei
t+1 = log

(
Bi

t+1 + Di
t+1

Bi
t

)
= log

(
1 + X i

t+1

Bi
t

)
= log

(
1 + RO Ei

t+1

)
.

Denoting the log cash flow-to-book equity ratio as ξ i
t = di

t − bi
t, we have

ei
t+1 = log

(
exp

( − ξ i
t+1

) + 1
) + �di

t+1 + ξ i
t . (B1)
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Consider the log-linear approximation of (B2) first proposed by Vuolteenaho
(1999):

ei
t+1 ≈ κ − ρξ i

t+1 + �di
t+1 + ξ i

t , (B2)

where ρ = 1
1+D/B

such that D/B denotes the average book dividend yield. The
term ρ is chosen to be 0.95, which corresponds to an average book dividend
yield of 5.26%, close to its historical value. The constant κ is related to ρ by

κ = −(1 − ρ) log (1 − ρ) − ρ log (ρ).

With the choice of ρ = 0.95, we have κ = 0.1985. Rearrange (B2) to get

�di
t+1 = ei

t+1 − κ + ρξ i
t+1 − ξ i

t .

Direct computation shows that

∞∑
n=0

ρn�di(t, n + 1) =
∞∑

n=0

ρnei(t, n + 1) − κ

1 − ρ
− ξ i

t ,

where I assume

lim
n−→∞ ρnξ i

t+n = 0.
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