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Abstract

We develop the first semi-discrete central schemes for Hamilton-Jacobi equations on

triangular meshes. High-order schemes are then obtained by combining our new numerical

fluxes with high-order WENO reconstructions on triangular meshes. The numerical fluxes

are shown to be monotone in certain cases. The accuracy and high-resolution properties of

our scheme are demonstrated in a variety of numerical examples.
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1 Introduction

We consider Cauchy problems for Hamilton-Jacobi (HJ) equations of the form

{

φt(x, t) +H(∇φ(x, t)) = 0, x ∈ Ω ⊂ R2,

φ(x, t = 0) = φ0(x).
(1.1)

It is well known that solutions of (1.1) may develop discontinuous derivatives in finite time and
hence it is necessary to interpret solutions of (1.1) in an appropriate weak sense. Such a formu-
lation in terms of the so-called viscosity solutions is due to Crandall, Evans, Ishii, Lions,. . . (see
[10, 11, 24] and the references therein).
We are interested in approximating solutions of (1.1) on a given conforming triangulation of

the domain Ω. While general theory for approximating solutions of (1.1) can be found in the
works of Barles, Lions, and Souganidis [4, 31, 25], in this work we focus on Godunov-type schemes
for approximating such problems. Godunov-type schemes are based on a global reconstruction
which is evolved exactly in time and sampled at the grid nodes at the next time step. A sub-class
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of these schemes are central schemes in which the evolution stage is carried out at points that
are located away from the discontinuities. Such a procedure eliminates the necessity to deal with
(generalized) Riemann problems on the cell-interfaces, which make central schemes particularly
suitable for multi-dimensional problems and complicated geometries.

We briefly recall the related central schemes for HJ equations on Cartesian meshes. Second-
order fully-discrete central schemes were introduced by Lin and Tadmor [22, 23] (see also [7]).
These schemes were extended to high-orders using suitable weighted essentially non-oscillatory
(WENO) reconstructions by Bryson and Levy [8]. These reconstructions are based on the WENO
schemes by Liu et al. [26] and by Jiang and Shu [16] which extend the ENO schemes of Harten
et al. [13].

Semi-discrete central schemes (on Cartesian meshes) were derived by Kurganov and Tadmor
[20]. The main goal there was to reduce the numerical dissipation by estimating the local speeds
of propagation of information from the interfaces between neighboring computational cells. The
numerical dissipation in these schemes was further reduced by keeping an even more accurate
account over the different local speeds [19]. Bryson and Levy increased the order of accuracy
of these schemes up to fifth-order by combining the semi-discrete numerical fluxes with WENO
reconstructions [9]. This work also provided the theoretical foundation for the monotonicity of
the fluxes of [19, 20]. A version of this schemes with even less numerical dissipation was recently
derived in [6].

We would like to recall some of the related works on upwind schemes for HJ equations. These
include the essentially non-oscillatory (ENO) schemes of Osher, Sethian and Shu [28, 29], and
the WENO schemes of Jiang and Peng [15]. Similar methods on triangular meshes include the
pioneering works of Abgrall et al. [1, 2, 3], Barth and Sethian [5], Kossioris et al. [18], and the
recent work of Zhang and Shu [32] on WENO schemes for HJ equations on triangular meshes.
The high-order WENO reconstructions on triangular meshes that were used in [32] were based
on the results of Hu and Shu [14].

In this paper we present the first semi-discrete central scheme for approximating solutions of
(1.1) on triangular meshes. Our scheme combines a new numerical flux (that was announced in
[21]) with the high-order WENO reconstructions of [32].

The structure of this paper is as follows: We start in Section 2 with the derivation of the
numerical flux for HJ equations on triangular meshes. A couple of examples of high-order recon-
structions on triangular meshes are then discussed in Section 3. Numerical examples that verify
the expected order of accuracy of the schemes as well as the high-resolution properties of the
resulting solutions are given in Section 4. Concluding remarks summarize this work in Section 5.

Acknowledgment: We would like to thank Adam Oberman for helpful discussions. The work
of D. Levy was supported in part by the National Science Foundation under Career grant No.
DMS-0133511. The work of C.-W. Shu was supported in part by ARO grant DAAD19-00-1-0405,
NSF grant DMS-0207451, and AFOSR grant F49620-02-1-0113.
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2 Central Schemes for Hamilton-Jacobi Equations

2.1 The Scheme

We consider the two-dimensional HJ equation (1.1), and assume a given triangulation, T, of Ω.
We denote the grid points by xα and assume that every such point is surrounded by mα angular
sectors T α

l that are ordered counterclockwise. For simplicity we use the simpler notation Tl = T α
l

(see Fig. 2.1).
Given a time-step, ∆t, we denote the approximate value at time tn = n∆t of φ(xα, t

n) by ϕnα.
Assuming that the values of ϕnα at the grid-points xα are known, we reconstruct a continuous
piecewise-polynomial interpolant ϕ̃α. This interpolant has discontinuous gradients along the
cell-interfaces. We denote the approximation of the gradient at xα that is obtained from the
reconstruction in the cell Tl by ∇ϕ̃α,l. For the purpose of developing the numerical flux there is
no need to assume any particular reconstruction. Admissible reconstructions will be described
in Section 3.
The reconstruction ϕ̃α can now be used to estimate the maximal speeds of propagation of

information from the cell-interfaces in a direction that is perpendicular to the interfaces. In
every sector, Tl, we denote the counterclockwise speed of propagation by a

+
l and the speed of

propagation on the other interface is a−l (see Fig. 2.1). These speeds can be estimated by

a+l = max
{

maxTl {|∇H(∇ϕ̃α,l) · ~nl−1,l|} ,maxTl−1
{|∇H(∇ϕ̃α,l−1) · ~nl−1,l|}

}

a−l = max
{

maxTl {|∇H(∇ϕ̃α,l) · ~nl+1,l|} ,maxTl+1
{|∇H(∇ϕ̃α,l+1) · ~nl+1,l|}

}

.
(2.1)

Here, ~nj,l is the normal vector on the interface between Tj and Tl pointing into Tl.
The evolution stage of Godunov-type schemes will be carried out at points xlα that are located

away from the interfaces, assuming that the time-step is sufficiently small (see Fig. 2.1). The
distance of the evolution point xlα from xα is denoted by dl. Clearly, dl depends on the local
speeds of propagation a±l and on the angle θl. A straightforward computation allows us to define
dl as

dl = ∆td̂l, (2.2)
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where

d̂2l =
(a−l )

2 + 2a−l a
+
l cos θl + (a

+
l )
2

sin2 θl
. (2.3)

We now evolve the interpolant ϕ̃(~x, tn) to the next time step tn+1 at the points xlα according
to (1.1). Since the evolution points are located away from the propagating discontinuities, the
value at the next time-step can be approximated with a first-order Taylor expansion in time, i.e.,

ϕ(xlα, t
n+1) = ϕ̃(xlα, t

n)−∆tH(∇ϕ̃(xlα, tn)) +O(∆t2). (2.4)

Here, the value of the gradient, ∇ϕ̃(xlα, tn), is obtained from the reconstruction, ϕ̃. Expressions
of the form (2.4) hold for every evolution point, xlα, around xα.
In order to combine all these values of ϕ into one value ϕn+1

α , we write a convex combination
of the values from the different sectors with weights sl ≥ 0 that are yet to be determined:

ϕn+1α =

∑mα

l=1 slϕ(x
l
α, t

n+1)
∑mα

l=1 sl
=

∑mα

l=1 sl
[

ϕ̃(xlα, t
n)−∆tH(∇ϕ̃(xlα, tn)

]

∑mα

l=1 sl
. (2.5)

If we now define ρl to be the unit vector in the direction of x
l
α from xα, we can utilize a Taylor

expansion in space

ϕ̃(xlα, t
n) = ϕ̃(xα, t

n) + dlρl · ∇ϕ̃(xlα, tn) +O(∆t2).

Here by ∇ϕ̃(xlα, tn) we refer to the value of the gradient at xα that is associated with the
reconstruction in sector Tl at x

l
α. We may therefore rewrite (2.5) as the fully discrete scheme

ϕn+1α = ϕ̃nα +
∆t

∑mα

l=1 sl

mα
∑

l=1

sl

[

d̂lρl · ∇ϕ̃(xlα, tn)−H(∇ϕ̃(xlα, tn))
]

. (2.6)

A semi-discrete scheme can be now obtained in the limit ∆t→ 0,

d

dt
ϕα(t) = lim

∆t→0

ϕn+1α − ϕnα
∆t

=
1

∑mα

l=1 sl

mα
∑

l=1

sl

[

d̂lρl · ∇ϕ̃lα(t)−H(∇ϕ̃lα(t))
]

, (2.7)

where for each l, ∇ϕ̃lα(t) denotes lim∆t→0∇ϕ̃(xlα, tn). All that remains is to determine the
coefficients sl in (2.7). The consistency of the scheme implies that if the value of the gradient is
identical in every sector that surrounds xα, then the numerical Hamiltonian should becomes the
differential Hamiltonian. Hence, we are seeking for coefficients sl, such that

mα
∑

l=1

sld̂lρl = 0. (2.8)

These coefficients can be determined using the results of Abgrall [2]. We denote by µl+1/2 a
unit vector in a direction that is aligned with the interface between the sectors Tl and Tl+1, and
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Figure 2.2: The angles around xα

assume that θl < π (which is indeed the case with a triangulation). It was shown in [2] that for
any ε,

mα
∑

l=1

γl+ 1

2

µl+ 1

2

= 0, (2.9)

provided that

γl+ 1

2

= ε

[

tan

(

θl
2

)

+ tan

(

θl+1
2

)]

. (2.10)

In order to incorporate (2.9)–(2.10) into our framework, we split each angle θl into two parts θ
±
l

that are defined as

θ±l = arcsin
a±l
d̂l
, (2.11)

(see Fig. 2.2). The consistency condition (2.8) is then satisfied if the weights sl are taken as
sl = βl/d̂l, where

βl = tan

(

θ+l + θ−l−1
2

)

+ tan

(

θ−l + θ+l+1
2

)

.

With these notations, a consistent, semi-discrete scheme is given by

d

dt
ϕα(t) =

1
∑mα

l=1
βl
d̂l

mα
∑

l=1

βl

[

ρl · ∇ϕ̃lα(t)−
H(∇ϕ̃lα(t))

d̂l

]

. (2.12)

Remarks.

1. The order of accuracy of the scheme (2.12) is determined by the order of accuracy of the
reconstruction ϕ̃α, and the order of the ODE solver. Due to the known properties of
viscosity solutions of HJ equations and the structure of Godunov-type schemes, we
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assume a global underlying continuous piecewise-smooth reconstruction. We note that, in
practice, the final semi-discrete scheme (2.12) uses only values of the gradient that is
computed in the different cells around each grid points xα. This means that all that we
need from the reconstruction is the values of these gradients. High-order reconstructions
on triangular meshes are discussed in Section 3.

2. There are several ways to simplify the scheme (2.12). One possibility is to replace the
different speeds of propagation at every grid point by their maximum, i.e.,
aα = maxl{a+l , a−l }. This implies that d̂l = aα/ sin(θl/2). In this case the scheme (2.12)
becomes

d

dt
ϕα(t) =

aα
∑mα

l=1 βl sin
θl
2

mα
∑

l=1

βl

[

ρl · ∇ϕ̃lα(t)−
sin θl

2

a
H(∇ϕ̃lα(t))

]

. (2.13)

If, in addition, the triangulation of the domain is such that the angles are identical
around each point, i.e., θ = θl, for all l, then (2.13) takes the simpler form

d

dt
ϕα(t) =

1

mα

mα
∑

l=1

[

aα

sin θ
2

ρl · ∇ϕ̃lα(t)−H(∇ϕ̃lα(t))
]

. (2.14)

In the special case of a Cartesian grid with equal spacing in the x- and y-directions, the
number of angular sectors at each point is mα = 4, and sin(θ/2) = sin(π/4) =

√
2/2. If

we assume that the velocities are identical in both directions, the scheme (2.14) becomes

d

dt
ϕα(t) =

aα
2

(

ϕ+x − ϕ−x + ϕ+y − ϕ−y
)

(2.15)

−1
4

[

H
(

ϕ+x , ϕ
+
y

)

+H
(

ϕ−x , ϕ
+
y

)

+H
(

ϕ+x , ϕ
−
y

)

+H
(

ϕ−x , ϕ
−
y

)]

,

with the obvious notations. E.g. H(ϕ+x , ϕ
+
y ) is the Hamiltonian evaluated at the gradient

at xα that is taken from the first quadrant. The scheme (2.15) is identical to the
semi-discrete central scheme for Cartesian grids [9, 20].

3. The following Lax-Friedrichs-type scheme on triangular meshes was derived by Abgrall [2]:

d

dt
ϕα(t) =

a

π

mα
∑

l=1

βl+ 1

2

ρl+ 1

2

·
(∇ϕ̃lα(t) +∇ϕ̃l+1α (t)

2

)

−H

(∑mα

l=1 θl∇ϕ̃lα
2π

)

. (2.16)

Here ρl+1/2 is the unit vector in the direction of the interface between the sectors Tl and
Tl+1, and βl+1/2 = tan(θl/2) + tan(θl+1/2). The derivation of (2.16) involved evolution
points that were located on the interfaces between the sectors. This resulted with the
form of the dissipative term in (2.16) that contains averages of gradients in adjacent
sectors. Also, the scheme (2.16) involves a Hamiltonian that is evaluated at the average of
the derivatives that are computed in different sectors (with weights that are proportional
to the angles). This term was postulated to be in this form, and could have taken different
forms. In our case (2.12), this term takes the form of an average over the Hamiltonian
that is evaluated in different sectors and is dictated by the derivation of the scheme.
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Figure 2.3: grid value at xα and two triangles containing xα and grid vectors v

2.2 Monotonicity

In this section we provide a partial result regarding the monotonicity of our scheme (2.12). For
simplicity we consider the monotonicity of the scheme in the case where the speeds of propagation
do not depend on the gradients of the reconstruction, i.e., they are all equal to a constant that is
determined based on a-priori bounds. Hence, we assume a = maxl,± a

±
l , which also implies that

θ+l = θ−l = θl/2.
Monotonicity means that if we rewrite our scheme (2.12) in terms of grid differences,

d

dt
ϕα(t) = F (ϕα, ϕα − ϕ′), (2.17)

where ϕα−ϕ′ is a vector of grid differences that involve the central node, then F is non-increasing
in all arguments [27].
We assume that the gradient of ϕ in the triangle Tl is constant in that triangle. The normal

to the plane connecting the three corners of Tl is given by

(vl,l+1, ϕ
l,l+1
α − ϕα)× (vl−1,l, ϕl−1,lα − ϕα),

and hence the gradient of ϕ in the sector Tl, ∇ϕlα is given by (see Fig. 2.3)
1

C

(

(ϕα − ϕl−1,lα )vyl,l+1 − (ϕα − ϕl,l+1α )vyl−1,l, (ϕα − ϕl,l+1α )vxl−1,l − (ϕα − ϕl−1,lα )vxl,l+1
)

.

Here, C = (vl,l+1× vl−1,l) · k and k is the unit vector pointing out of the plane. The superscripts
x and y denote the x− and y-components of the various vectors. We note that C is a negative
quantity. Letting u1 = ϕα−ϕl,l+1α , the derivative of the gradient of ϕl

α with respect to u1 is given
by

∂

∂u1
∇ϕlα =

1

C
(−vyl−1,l, vxl−1,l).

This means that

ρl ·
∂

∂u1
∇ϕlα =

1

C
ρl · nl−1,l||vl−1,l|| =

1

C
sin(

θl
2
)||vl−1,l||,

where nl−1,l is the unit normal vector pointing into Tl (and is in the plane defined by Tl). Similarly

∂

∂u1
∇ϕl+1α =

1

C ′
(vyl+1,l+2,−vxl+1,l+2) =

1

C ′
||vl+1,l+2||nl+2,l+1,
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where C ′ = (vl+1,l+2 × vl,l+1) · k and nl+2,l+1 is the normal vector from Tl+2 pointing into Tl+1.
Since these are the only two quantities in F that involve u1, we may evaluate the partial

derivative of F with respect to u1. Letting K = 1/
∑mα

l=1
βl
d̂l
(which we note is a positive quantity)

we have

∂F

∂u1
=

1

K

βl||vl−1,l||
Cd̂l

(

d̂lρl · nl−1,l −∇H(∇ϕlα) · nl−1,l
)

(2.18)

+
1

K

βl+1||vl+1,l+2||
C ′d̂l+1

(

d̂l+1ρl+1 · nl+2,l+1 −∇H(∇ϕl+1α ) · nl+2,l+1
)

=
1

K

βl||vl−1,l||
Cd̂l

(

d̂l sin(
θl
2
)−∇H(∇ϕlα) · nl−1,l

)

+
1

K

βl+1||vl+1,l+2||
C ′d̂l+1

(

d̂l+1 sin(
θl+1
2
)−∇H(∇ϕl+1α ) · nl+2,l+1

)

.

We consider only the first term as an analogous argument holds for the second term. Eq. (2.11)
implies that sin(θl/2) = a/d̂l. Also, from (2.1) we know that ∇H(∇ϕl

α) ·nl−1,l ≤ a, which means
that

d̂l sin(
θl
2
)−∇H(∇ϕlα) · nl−1,l ≥ 0.

Since C < 0 and since we assume that the triangulation is such that the βl’s are positive, we can
conclude that the first term in (2.18) is non-positive. By similar arguments the second term in
(2.18) is non-positive, which means that F is non-increasing in u1. The same is true for all the
variables of F and hence the scheme is monotone.

3 High-Order Reconstructions on Triangular Meshes

In this section we review two third-order reconstructions from [32] (see also [14]). We start
with a linear reconstruction. First, we solve an interpolation problem on a large stencil. We
then split the large stencil into smaller pieces, obtaining a (low-order) interpolant on each. We
conclude with a convex combination of the low-order interpolants that provides the desired
(formal) accuracy. The second reconstruction is of WENO-type. Here, we replace the linear
weights in the convex combination by non-linear weights. This procedure reduces the spurious
oscillations that otherwise develop at singularities. We would like to emphasize that the scheme
developed in Section 2, i.e., Eq. (2.12), does not depend on any particular reconstruction and
the reconstructions described here are provided for the sake of completeness. Extensions to
fourth-order are described in [32].

3.1 A Linear Reconstruction

We overview the linear third-order reconstruction from [32]. The problem can be formulated as
an interpolation problem, in which the main question is how to choose the interpolation points.
The solution is not so obvious, in particular since the geometry of the mesh might change, which
means that stability considerations might imply that it might be better to use different stencils
around different triangular sectors.
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Figure 3.1: The nodes used for the large stencil of the third-order reconstruction around Tl. The
point G is the barycenter of the cell Tl

Assuming a given triangular sector, Tl, the procedure for approximating the components of
the derivatives at its three nodes is composed of two steps. First, we look for a large stencil
that will provide a stable, third-order approximation of the derivative. There are many ways for
choosing such a stencil around any given sector, and we are interested in a compact stencil and
a stable reconstruction. In the second step we break the large stencil into several small stencils
(all of which are based on grid-points that are in the large stencil). Each small stencil provides
a second-order approximation of the derivative. These stencils are chosen following compactness
and stability considerations. We take sufficiently many such stencils (which will amount to five)
such that they can be linearly combined to achieve the desired accuracy of the derivative.
We start by considering an angular sector, Tl, of which its three nodes are denoted by i1, i2, i3.

To obtain a third-order approximation of the derivative at these points, (∇ϕ)i1 , (∇ϕ)i2 , (∇ϕ)i3 ,
we first construct a cubic polynomial. Since we are solving a two-dimensional problem, there are
ten free parameters that we have to determine. These will be given by interpolation requirements
on a stencil that is yet to be determined.
With this in mind, we number the nodes in the neighboring mesh-points as {1, . . . , 9} (in the

way that is portrayed in Fig. 3.1), and consider the ordered set W = {1, . . . , 9}. The nodes are
numbered as in Fig. 3.1 in order to avoid biasing the stencil in a particular direction. We note
that the geometry of the mesh might imply that some of these points can be identical. If this
is the case, more remote points are added to the list. We omit the details and refer to [32]. We
now set a threshold δ and use the following algorithm:

1. Set the interpolation points as S0 = {i1, i2, i3, 1, . . . 7}.

2. Form the 10× 10 interpolation coefficients matrix A and compute its reciprocal condition
number, c(A).

3. While c(A) < δ, add the next node in W to S0 and compute the least squares interpolation
coefficients matrix A from the nodes in S0. Compute c(A).
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4. The final S0 is the large stencil.

Remark. The numerical simulations of [32] showed that at most 12 nodes are needed in order to
satisfy the condition c(A) ≥ δ when the threshold is set as δ = 10−3. This is the value that was
used in our simulations in Section 4.
We denote the interpolation polynomial that is obtained from the stencil S0 by p

3(x, y). This
polynomial, p3(x, y), can be used to estimate a third-order approximation of the derivatives at
the three nodes of Tl. Our goal now is to split the stencil S0 into several small stencils in such a
way that we will be able to recover the third-order accuracy with a convex combination of these
smaller stencils. In this case, we will generate five quadratic polynomials, ps, s = 1, . . . , 5, such
that a third-order approximation to the derivatives in the x- and y-direction at {i1, i2, i3}, will
be given by

∂

∂x
ϕ(xij , yij) ≈

∂

∂x
p3(xij , yij ) =

5
∑

s=1

γs,x,ij
∂

∂x
ps(xij , yij), j = 1, 2, 3, (3.1)

∂

∂y
ϕ(xij , yij ) ≈

∂

∂y
p3(xij , yij) =

5
∑

s=1

γs,y,ij
∂

∂y
ps(xij , yij), j = 1, 2, 3.

Here, γs,x,ij and γs,y,ij are the linear weights for the derivatives in the x- and y-directions, respec-
tively. They depend only on the local geometry of the mesh and should satisfy the normalization
constraints,

∑5
s=1 γs,x,ij = 1 and

∑5
s=1 γs,y,ij = 1. Under these additional conditions, a simple

calculation shows that the number of quadratic interpolants has to be greater than or equal to
five, which is the reason as of why we set it as five [14, 32].
We are now seeking for five small stencils Γs, s = 1, . . . , 5, for the target triangle Tl such

that S0 = ∪5s=1Γs. We associate with each such stencil a quadratic polynomial ps. We note that
while the stencils are going to be identical for all the nodes in a given angular sector and in
both directions, the linear weights γs,x,ij and γs,y,ij can be different for each node and for each
direction. We summarize the stages given in [32, Procedure 2.2] as follows (for further details
see [32]):

1. Obtain a large stencil S0.

2. For each s = 1, . . . , 5 find a set of candidate small stencils Ws = {Γ(r)s , r = 1, . . . , ns}
in the following way. The nodes i1, i2, i3 are included in every Γ

(r)
s . Let A

(r)
s denote the

center of Γ
(r)
s , where A

(r)
s is given in Table 3.1. Find at least 3 additional nodes other than

i1, i2, i3 such that they have the shortest distance from A
(r)
s and the points in Γ

(r)
s induce

an interpolation coefficient matrix A with a good reciprocal condition number (c(A) ≥ δ).
Based on the experiments in [32] a maximum number of 8 nodes are required to reach the
threshold δ = 10−3.

3. Obtain n1 × · · · × n5 groups of small stencils by taking one small stencil Γ
(rs)
s from each

Ws, s = 1, . . . , 5. Eliminate the groups that contain the same small stencils and those that
do not satisfy the condition ∪5s=1Γ

(rs)
s = S0.

4. For each group {Γ(rs)s , s = 1, . . . , 5} compute the associated linear weights γ(rs)s,x,ij
and γ

(rs)
s,y,ij

,
such that (3.1) is satisfied for {i1, i2, i3}. Candidate stencils that involve solving ill-posed
linear systems are eliminated from further considerations.
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5. For the remaining groups, find the minimum value γl of all the linear weights γ
(rs)
s,x,ij

,γ
(rs)
s,y,ij

on the three vertices {i1, i2, i3}. The group for which γl is the biggest is taken as the final
five small stencils for the sector Tl. These five small stencils are denoted by Γs, s = 1, . . . , 5.

s ns A
(1)
s A

(2)
s A

(3)
s

1 1 G – –
2 3 1 4 7
3 3 2 5 8
4 3 3 6 9

5 ≤ 9 A
(r)
5 are 4-9 and

the middle points
of 4–8, 5–9, 6–7

Table 3.1: The values of A
(r)
s . The entries refer to the node numbers in Fig. 3.1

Remark. Since the linear weights depend on the geometry of the triangulation, some of them
might be negative. It is therefore required to take special measures to avoid the stability problems
that result from negative weights in the presence of large gradients. In the numerical simulations
we apply the technique for handling negative weights in WENO schemes that was recently
proposed in [30].

3.2 A WENO Reconstruction

In the previous section we showed how to obtain a third-order reconstruction of the derivatives in
the x- and y-direction in each grid point. This was done by finding an accurate linear combination
of small stencils (each of which results with a second-order reconstruction) such that the overall
combination is a third-order reconstruction of the derivative. We now use these results to derive
a WENO reconstruction of the derivative. This is done, as usual, by replacing the linear weights
by nonlinear weights aiming at reducing the spurious oscillations that might develop in regions
that contain discontinuities.

We consider the x-directional derivative at the vertex i of the cell Tl, whose coordinates
are (xi, yi). Following Section 3.1, we denote by ps(x, y), s = 1, . . . , 5, the sth interpolation
polynomial associated with the sth stencil on the cell Tl. A third-order WENO reconstruction
for the x-derivative is given in terms of the convex combination

(ϕx)i =
5

∑

s=1

ws
∂

∂x
ps(xi, yi). (3.2)

The weights, ws, associated with ps(x, y) are given by

ws =
w̃s

∑5
m=1 w̃m

, (3.3)
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Figure 4.1: Left: coarsest uniform mesh with h = 2/5; Right: coarsest non-uniform mesh with
N = 105 nodes.

with

w̃s =
γs,x

(ε+ βs)2
, s = 1, . . . , 5. (3.4)

Here, γs,x is the linear weight associated with stencil s for computing the x-derivative at (xi, yi),
ε is set as a small number to prevent the denominator from vanishing, and βs is the oscillation
indicator associated with the sth stencil.

The oscillatory indicator, βs, is given by

βs =
∑

|η|=2

∫

Tl

(Dηps(x, y))
2dxdy. (3.5)

An expression analogous to (3.2) holds for the derivative in the y-direction.

4 Numerical Examples

In most of the numerical examples we use two kinds of triangular meshes. Both are shown in
Fig. 4.1. The first kind is a “uniform triangular mesh” shown in Fig. 4.1 (left). The particular
mesh in Fig. 4.1 (left) is a coarse mesh with h = 2/5 where h is the length of the right-angled side.
The second mesh is a “nonuniform triangular mesh” such as the one shown in Fig. 4.1 (right).
The mesh in the figure is a coarse mesh with N = 105 nodes. Refinements of non-uniform meshes
are done by splitting each triangle into four similar triangles. The reconstructions we use in all
the simulations are the third-order linear and WENO reconstructions from Section 3. We refer to
the flux (2.12) together with the linear reconstruction of Section 3.1 as the “linear scheme”. We
refer to (2.12) together with the WENO reconstruction of Section 3.2 as the “WENO scheme”.
The ODE solver we used is the third-order strong stability preserving Runge-Kutta (SSP-RK)
method [12].
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Linear scheme WENO scheme
N L1-error order L∞-error order L1-error order L∞-error order
105 2.03E-01 — 3.50E-01 — 4.63E-01 — 7.24E-01 —
385 3.16E-02 2.68 6.12E-02 2.51 1.69E-01 1.46 2.62E-01 1.47
1473 4.17E-03 2.92 9.02E-03 2.76 3.32E-02 2.34 7.10E-02 1.88
5761 5.30E-04 2.97 1.20E-03 2.91 5.09E-03 2.70 1.70E-02 2.07
22785 6.68E-05 2.99 1.54E-04 2.96 5.84E-04 3.12 2.53E-03 2.74

Table 4.1: Accuracy test for the 2D Linear equation (4.1) on non-uniform meshes with the
third-order Linear and WENO Schemes at t = 2.

Example 1. A 2D Linear Equation

Consider the two-dimensional linear equation

{

φt + φx + φy = 0, −2 ≤ x < 2,−2 ≤ y < 2,

φ(x, y, 0) = sin(π
2
(x+ y)),

(4.1)

with periodic boundary conditions.
We solve (4.1) with the linear and the WENO scheme on non-uniform meshes up to time

t = 2. Since this is a linear problem with constant coefficients, the flux with the local speeds
and the flux with the global speeds are identical. The L1- and L∞-errors and orders of accuracy,
that are shown in Table 4.1, confirm the expected third-order accuracy.

Example 2. A 2D Burgers Equation

Consider the two-dimensional Burgers equation







φt +
1

2
(φx + φy + 1)

2 = 0, −2 ≤ x < 2,−2 ≤ y < 2,

φ(x, y, 0) = − cos
(

π
2
(x+ y)

)

,
(4.2)

augmented with periodic boundary conditions.
We use this example to investigate the difference between flux that use a global constant

speed and those that use local speeds. A scheme with a global constant speed is obtained from
(2.13) when we replace aα by a = maxα aα. We solve (4.2) on non-uniform meshes up to time
t = 0.5/π2. This is before the solution develops any singularities. Table 4.2 shows the L1-
and L∞-accuracy results that are obtained with the scheme that used a global constant speed.
Table 4.3 shows the L1- and L∞-errors and orders of accuracy that are obtained when local
speeds are taken into account in the numerical flux. In both cases we use linear and WENO
schemes. In all cases we verify the expected third-order of accuracy. Indeed, the errors obtained
when using a global speed are larger than the error obtained when accounting for local speeds.
In Fig. 4.2 we plot the solution of (4.2) at time t = 1.5/π2, after the solution developed

discontinuous derivatives. The solution is obtained with a third-order WENO scheme and a
uniform mesh with mesh spacing h = 1/10.
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Linear scheme WENO scheme
N L1-error order L∞-error order L1-error order L∞-error order
105 2.28E-02 — 6.89E-02 — 6.53E-02 — 1.63E-01 —
385 3.80E-03 2.58 1.81E-02 1.93 1.64E-02 2.00 5.94E-02 1.46
1473 5.32E-04 2.83 3.90E-03 2.22 3.50E-03 2.23 1.66E-02 1.84
5761 6.99E-05 2.93 6.99E-04 2.48 5.98E-04 2.55 3.63E-03 2.19
22785 8.96E-06 2.96 8.87E-05 2.98 7.26E-05 3.04 4.95E-04 2.87

Table 4.2: Accuracy for the 2D Burgers equation (4.2) on non-uniform meshes with third-order
Linear and WENO Schemes at t = 0.5/π2. A Global constant speed.

Linear scheme WENO scheme
N L1-error order L∞-error order L1-error order L∞-error order
105 1.30E-02 — 2.98E-02 — 3.94E-02 — 1.01E-01 —
385 1.87E-03 2.79 6.03E-03 2.31 9.86E-03 2.00 4.95E-02 1.04
1473 2.49E-04 2.91 1.56E-03 1.95 2.24E-03 2.14 1.48E-02 1.74
5761 3.20E-05 2.96 2.23E-04 2.81 3.97E-04 2.50 3.49E-03 2.09
22785 4.05E-06 2.98 3.21E-05 2.80 4.70E-05 3.08 4.88E-04 2.84

Table 4.3: Accuracy for the 2D Burgers equation (4.2) on non-uniform meshes with third-order
Linear and WENO Schemes at t = 0.5/π2. Local speeds of propagation.
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Figure 4.2: The 2D Burgers equation (4.2) at t = 1.5/π2 on a uniform mesh with h = 1/10. The
solution is obtained with a third-order WENO scheme and a local speeds flux.
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Figure 4.3: A 2D HJ equation with a non-convex flux (4.3) at t = 1.5/π2. The solution is
obtained with a third-order WENO scheme on a nonuniform mesh with N = 1473 nodes and a
local speed flux.

Example 3. A Non-Convex Flux

Consider the following HJ equation with a non-convex flux:
{

φt − cos(φx + φy + 1) = 0, −2 ≤ x < 2,−2 ≤ y < 2,

φ(x, y, 0) = − cos(π(x+y)
2
),

(4.3)

augmented with periodic boundary conditions.
In this example we use a non-uniform mesh with N = 1473 nodes. At t = 1.5/π2 the solution

develops a discontinuous derivative. In Fig. 4.3 we show the results obtained using the third-order
WENO scheme with the local speed flux.

Example 4. A 2D Riemann Problem

Consider the following two-dimensional Riemann problem:
{

φt + sin(φx + φy) = 0, −1 < x < 1,−1 < y < 1,

φ(x, y, 0) = π(|y| − |x|).
(4.4)

We solve (4.4) on a uniform triangular mesh with 40× 40× 2 elements. The scheme we use is a
third-order WENO scheme with a local speeds flux. Fig. 4.4 shows the results obtained at time
t = 1.

Example 5. An Optimal Control Problem

Consider the following optimal control problem

{

φt + (sin y)φx + (sinx+ sgn(φy))φy − 1
2
sin2 y − (1− cos x) = 0, −π < x < π,−π < y < π,

φ(x, y, 0) = 0,
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Figure 4.4: The 2D Riemann problem (4.4) at t = 1. The solution is obtained with a third-order
WENO scheme and a local speeds flux on a uniform triangular mesh with h = 1/20.

(4.5)

with periodic boundary conditions, see [29].
We approximate solutions of (4.5) on a the uniform triangular mesh with 40×40×2 elements

using a third-order WENO scheme with local speed flux. The solution at t = 1 is shown in
Fig. 4.5 (left). The corresponding optimal control ω = sgn(φy) is shown in Fig. 4.5 (right).

Example 6. A 2D Eikonal equation

Consider the following two-dimensional Eikonal equation which arises in geometric optics [17]:

{

φt +
√

φ2x + φ2y + 1 = 0, 0 ≤ x < 1, 0 ≤ y < 1,

φ(x, y, 0) = 0.25(cos(2πx)− 1)(cos(2πy)− 1)− 1.
(4.6)

We approximate solutions of (4.6) using the third-order WENO scheme with the local speeds
flux. We use the non-uniform mesh that is shown in Fig. 4.6 (left). The solution at t = 0.6 is
shown in Fig. 4.6 (right).

5 Conclusion

In this paper we derived the first central scheme for Hamilton-Jacobi equations on unstructured
grids. Similarly to any other Godunov-type method, this scheme is obtained by an exact evolution
of a reconstruction which is then projected back onto the mesh points. The order of accuracy
of the scheme is determined by the accuracy of the reconstruction and the accuracy of the
ODE solver. The reconstructions we chose to work with are the third-order linear and WENO
reconstructions on triangular meshes [32].
While we have proved the monotonicity of the scheme in the special case of a global constant

local speeds of propagation, we believe that the scheme is monotone in the general case (for a
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Figure 4.5: An optimal control problem (4.5) at t = 1 solved on a uniform triangular mesh with
h = 2π/40. The solution is obtained with a third-order WENO scheme and a local speeds flux.
Left: the solution; Right: the optimal control ω = sgn(φy).
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Figure 4.6: The 2D Eikonal equation (4.6). Left: the non-uniform mesh used in this example;
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proper choice of the speeds where some global bounds are taken into consideration [29]). This
point remains as an open problem which we hope to address in the future.
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