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The dominant cost for integration factor (IF) or exponential time dif-

ferencing (ETD) methods is the repeated vector-matrix multiplications in-

volving exponentials of discretization matrices of differential operators. Al-

though the discretization matrices usually are sparse, their exponentials are

not, unless the discretization matrices are diagonal. For example, a two-

dimensional system of N ×N spatial points, the exponential matrix is of a

size of N2 ×N2 based on direct representations. The vector-matrix multi-

plication is of O(N4), and the storage of such matrix is usually prohibitive

even for a moderate size N . In this paper, we introduce a compact represen-

tation of the discretized differential operators for the IF and ETD methods

in both two and three dimensions. In this approach, the storage and CPU

cost are significantly reduced for both IF and ETD methods such that the

use of this type of methods becomes possible and attractive for two or three

dimensional systems. For the case of two-dimensional systems, the required

storage and CPU cost are reduced to O(N2) and O(N3), respectively. The

improvement on three-dimensional systems is even more significant. We

analyze and apply this technique to a class of semi-implicit integration

factor method recently developed for stiff reaction-diffusion equations. Di-

rect simulations on test equations along with applications to a morphogen

system in two dimensions and an intra-cellular signaling system in three

dimensions demonstrate an excellent efficiency of the new approach.

Key Words: Integration factor methods; Exponential time differencing methods; Stiff
reaction-diffusion equations; Morphogen systems; High spatial dimensions.
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2 QING NIE, FREDERIC Y.M. WAN, YONG-TAO ZHANG, XIN-FENG LIU

1. INTRODUCTION

Integration factor (IF) or exponential differencing time (ETD) methods are pop-
ular methods for temporal partial differential equations. In these methods, the
linear operators of the highest order derivative are treated exactly. As a result,
the stability constraint associated with the highest order derivatives are totally
removed, and large time steps can be used. However, the exact treatment of the
differential operator requires evaluating exponentials of the approximation matrix
for the linear differential operator. For periodic systems, this calculation is cheap
both in CPU and storage because the approximation matrix can be diagonalized in
the Fourier space [1, 2, 3, 4, 5, 6, 7]. For non-periodic systems, in which the approx-
imation matrices are not diagonal, storage and calculation of exponentials of the
matrices are significantly more expensive. In two or three spatial dimensions, this
computational cost becomes prohibitive for any practical use, consequently neither
IF nor ETD methods have been used for non-periodic systems.

To illustrate this, we apply the IF or ETD methods to reaction diffusion equations
of this form:

∂u
∂t

= D∆u + F(u), (1)

where u ∈ Rm represent a group of physical or biological species, D ∈ Rm×m is the
diffusion constant matrix, ∆u is the Laplacian associated with the diffusion of the
species u, and F(u) describes the chemical or biological reactions. The first step
of constructing the IF or ETD schemes is to reduce the (1) to a system of ODEs
using method of lines:

ut = Cu + F(u), (2)

where Cu is assumed to be a finite difference approximation of the differential
operator D∆u. Let n denote the total number of spatial grid points (the sum
of the points in every dimension of Rm) for the approximation of the Laplacian
∆u, then u(t) ∈ Rn·m and C representing a spatial discretization of the diffusion
is a block matrix with each block of a size n × n. In a one-dimensional system
with one diffusion, C is a tri-diagonal matrix for a second order central difference
approximation on the diffusion.

The next step of the construction is to multiply (2) by eCt and to integrate it
in time. Different approximation of the integral involving nonlinear term F(u)
results in either the integration factor (IF) method or the exponential time dif-
ferencing (ETD) method [8]. For example, the second order integration factor
Adams-Bashforth method (IFAB2 [9]) has the form

uk+1 = eC∆tuk + ∆t

(
3
2
eC∆tF(uk)− 1

2
e2C∆tF(uk−1)

)
; (3)

and the second order ETD method [2, 9] has a form:

uk+1 = eC∆tuk +
1

∆t
C−2

{
[(I + ∆tC)eC∆t − I − 2∆tC]F(uk)−

[eC∆t − I −∆tC]F(uk−1)
}

. (4)

In (3) and (4), eC∆t is a matrix of size n× n for a system with only one diffusive
species, and uk is the approximate solution at the kth time step. The computational
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COMPACT INTEGRATION FACTOR METHODS IN HIGH SPATIAL DIMENSIONS 3

cost for updating uk+1 at one time step is of order of n2 due to the three vector-
matrix multiplications associated with eC∆t and e2C∆t in (3). During the temporal
updating, these two matrices remain the same for a fixed ∆t, and they only need to
be evaluated once initially from C and be stored. All IF or ETD methods require
storage of these types of exponential matrices because re-calculating them at each
time step is not efficient.

For a system in one spatial dimension, the size of eC∆t usually can be handled
[9, 5, 8]. In two or three spatial dimensions, corresponding to a large n, the required
storage of eC∆t may become prohibitive if the one-dimensional approach [9, 5, 8]
is directly applied to the higher dimensional system. For instance, in a three-
dimensional system with a moderate number of spatial gridpoints such as 40×40×
40, it yields n = 6.4 × 104. The required storage is O(n2) = O(109); that is not
manageable for a typical machine. This bottle-neck limits application of IF and
ETD methods for non-periodic systems in two or three spatial dimensions.

In this paper, we reduce the required storage by introducing a compact repre-
sentation for the matrix approximating the differential operator. The new compact
form, in the case of equal spacing in each spatial direction (for simplicity of illus-
tration), involves storage only proportional to the number of unknowns, i.e. the
dimension of u, unlike the non-compact approach, which is proportional to the
square of the unknowns. For example, in a two-dimensional system of N ×N grid
points, the unknown values of u at the grid points are stored as a N × N ma-
trix analogous to its natural spatial partition [10]. As a result, the exponential of
the discretized Laplacians in ETD and IF methods is N × N . The new approach
needs only O(N2) storage and O(N3) operations, compared to the O(N4) storage
requirement and an O(N4) operation count in the non-compact approach. In three
dimensions, the improvement for the new approach is even more significant. For a
system with N × N × N grid points, the new approach needs O(N3) storage and
O(N4) operations, compared to O(N6) storage and O(N6) operations using the
non-compact representation.

The compact representation can be easily used in IF and ETD methods with-
out altering the stability properties of these methods. Their implementations are
straightforward, and the number of grid points in each spatial direction does not
need to be the same. The new technique is tested for simple linear systems as well
as nonlinear systems arising from biological applications in both two and three di-
mensions, using a class of semi-Implicit Integration Factor (IIF) method developed
recently for systems with stiff reactions [8].

In Section 2, we derive the semi-implicit integration factor methods using the
compact representation, along with a stability analysis. This is done for both two-
and three- dimensions. In Section 3, we test the new methods on linear systems
and a couple of nonlinear models in cell and developmental biology.

2. COMPACT IMPLICIT INTEGRATION FACTOR (CIIF) IN
HIGH SPATIAL DIMENSIONS

2.1. Two dimensions
To distinguish the new compact implicit integration factor method from the stan-

dard IIF, we denote it as cIIF. In this section, we illustrate the new method by ap-
plying the IIF method with the new compact representation to a two-dimensional
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4 QING NIE, FREDERIC Y.M. WAN, YONG-TAO ZHANG, XIN-FENG LIU

reaction-diffusion equation with periodic boundary conditions in the x direction
and Neumann boundary conditions in the y direction:





∂u
∂t = D

(
∂2u
∂x2 + ∂2u

∂y2

)
+ F(u), (x, y) ∈ Ω = {a < x < b, c < y < d};

∂u
∂x (a, y, t) = ∂u

∂x (b, y, t) = 0;

u(x, c, t) = u(x, d, t), ∂u
∂y (x, c, t) = ∂u

∂y (x, d, t).

(5)

We first discretize the spatial domain by a rectangular mesh: (xi, yj) = (a + i ×
hx, c+j×hy) where hx = (b−a)/(Nx+1), hy = (d−c)/(Ny +1) and 0 ≤ i ≤ Nx+1
and 0 ≤ j ≤ Ny +1. Using the second order central difference discretization on the
diffusion, we obtain a system of nonlinear ODEs

dui,j

dt
= D

(
ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

)
+ F(ui,j). (6)

Next we define three matrices U, A and B by

U =




u1,1 u1,2 · · · u1,Ny u1,Ny+1

u2,1 u2,2 · · · u2,Ny
u2,Ny+1

...
...

...
...

...
uNx,1 uNx,2 · · · uNx,Ny

uNx,Ny+1




Nx×(Ny+1)

, (7)

A =
D

h2
x

·




− 2
3

2
3

1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1

2
3 − 2

3




Nx×Nx

, (8)

and

B =
D

h2
y

·




−2 1 0 0 · · · 1
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

. . . . . . . . .
0 0 · · · 1 −2 1
1 0 · · · 0 1 −2




(Ny+1)×(Ny+1)

. (9)

In terms of these three matrices, the semi-discretized form (6) becomes

dU
dt

= AU + UB + F(U). (10)

This formulation is based on a compact representation previously developed for
solving a two-dimensional Poisson’s equation and other related separable equations
[10].

To apply the integration factor technique to the compact discretization form (10),
we multiply (10) by exponential matrix e−At from the left, and e−Bt from the right
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COMPACT INTEGRATION FACTOR METHODS IN HIGH SPATIAL DIMENSIONS 5

TABLE I

A list of polynomials defined in (15) that correspond to the second,

third and fourth order methods.

Order 2 3 4

p−1(τ) τ/∆t τ(τ + ∆t)/(2∆t2) τ(τ + ∆t)(τ + 2∆t)/(6∆t3)

p0(τ) (∆t− τ)/∆t −(τ + ∆t)(τ −∆t)/∆t2 −(τ −∆t)(τ + ∆t)(τ + 2∆t)/(2∆t3)

p1(τ) 0 τ(τ −∆t)/(2∆t2) (τ −∆t)τ(τ + 2∆t)/(2∆t3)

p2(τ) 0 0 −(τ −∆t)τ(τ + ∆t)/(6∆t3)

to obtain

d(e−AtUe−Bt)
dt

= e−AtF(U)e−Bt. (11)

Integration of (11) over one time step from tn to tn+1 ≡ tn + ∆t, where ∆t is the
time step, leads to

Un+1 = eA∆tUneB∆t + eA∆t

(∫ ∆t

0

e−AτF(U(tn + τ))e−Bτdτ

)
eB∆t. (12)

To construct a scheme of rth order truncation error, we approximate the integrand
in (12),

G(τ) ≡ e−AτF(U(tn + τ))e−Bτ , (13)

using a (r−1)th order Lagrange polynomial at a set of interpolation points tn+1, tn, ..., tn+2−r:

P(τ) ≡
r−2∑

j=−1

ejA∆tF(Un−j)ejB∆tpj(τ), 0 ≤ τ ≤ ∆t (14)

where

pj(τ) =
r−2∏

k=−1
k 6=j

τ + k∆t

(k − j)∆t
. (15)

The specific form of the polynomial (15) at low orders is listed in Table I.
In terms of P(τ), (12) takes the form,

Un+1 = eA∆tUneB∆t + eA∆t

(∫ ∆t

0

P(τ)dτ

)
eB∆t. (16)

So the new r−th order implicit schemes are

Un+1 = eA∆tUneB∆t + ∆t


α1F(Un+1) +

r−2∑

j=0

α−je
(j+1)A∆tF(Un−j)e(j+1)B∆t


 ,

(17)
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6 QING NIE, FREDERIC Y.M. WAN, YONG-TAO ZHANG, XIN-FENG LIU

TABLE II

Coefficients for cIIF schemes with localized nonlinear systems.

Order α1 α0 α−1 α−2

1 1 0 0 0

2 1
2

1
2

0 0

3 5
12

2
3

− 1
12

0

4 9
24

19
24

− 5
24

1
24

where α1, α0, α−1, · · · , α−r+2 are coefficients calculated from the integrals of the
polynomial in P(τ),

α−j =
1

∆t

∫ ∆t

0

r−2∏
k=−1
k 6=j

τ + k∆t

(k − j)∆t
dτ, −1 ≤ j ≤ r − 2. (18)

In Table II, the value of coefficients, α−j , for schemes of order up to four are listed.
In particular, the second order approximation of

∫ ∆t

0
G(τ)dτ

∫ ∆t

0

G(τ)dτ ≈ F(Un) + e−A∆tF(Un+1)e−B∆t

2
∆t (19)

leads to the second order IIF scheme (cIIF2)

Un+1 = eA∆t

(
Un +

∆t

2
F(Un)

)
eB∆t +

∆t

2
F(Un+1). (20)

Like the one-dimensional form [8], the nonlinear reaction term at tn+1 in (20)
is decoupled from the diffusion terms. As a result, only a local nonlinear system
needs to be solved at each spatial grid point. The two matrices eA∆t and eB∆t

are Nx ×Nx and (Ny + 1)× (Ny + 1), respectively. Both are orders of magnitude
smaller than the size of the matrix, Nx(Ny + 1)×Nx(Ny + 1), in the non-compact
representation. As to be demonstrated in direct numerical simulations in Section
3, this saving in storage is critical for carrying out simulations with even moderate
numbers of spatial grid points. Also, the new approach requires fewer operations.
In the non-compact approach, a matrix-vector multiplication with operations of the
order of N2

x(Ny + 1)2 dominates the computational cost at each time step. In the
new approach, the corresponding calculations are two matrix-matrix operations of
an order of Nx(Ny +1)2 +N2

x(Ny +1), which is significantly smaller. Also, because
of the smaller size of those matrices, the initial calculations of the exponentials of
those matrices become cheaper as well. Therefore, the new method is advantageous
in both CPU time and memory savings.
Remark 1 The compact explicit IF (cIF) can be derived in a similar way. For
example, the compact form of the IFAB2 (3) takes the form:

Un+1 = eA∆tUneB∆t + ∆t

(
3
2
eA∆tF(Un)eB∆t − 1

2
e2A∆tF(Un−1)e2B∆t

)
. (21)
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COMPACT INTEGRATION FACTOR METHODS IN HIGH SPATIAL DIMENSIONS 7

Remark 2 The compact semi-discretization system (10) can also be used for other
types of methods, such as the ETD methods. In the derivation of ETD schemes
based on a non-compact representation, only the F in the integrand (an integral
similar to the one in (12)) is approximated by an interpolation polynomial, with
the exponential function unchanged in the integrand; then a direct integration of
the approximate integrand leads to the ETD methods [8]. For a compact system
with (12), one needs to evaluate

∫ ∆t

0

e−AτP (τ)e−Bτ (22)

where P (τ) is a polynomial matrix, and matrices A, B have dimensions Nx ×Nx,
Ny ×Ny respectively. After assuming that

P (τ) =
∑

p

C(p)τp, (23)

(22) takes the form of

∑
p

∫ ∆t

0

e−AτC(p)τpe−Bτdτ. (24)

If the matrices A, C(p), and B commute with each other, (24) can be simplified as

∑
p

C(p)

∫ ∆t

0

e−(A+B)ττpdτ. (25)

The integral in (25) can be integrated explicitly through integration by parts, and
the matrices C(p) and

∫ ∆t

0
e−(A+B)ττpdτ have the same dimension N = Nx =

Ny. The total operation of evaluating (25) is O(N3) due to the matrix-matrix
multiplication in (25). The overall computational cost is similar to the cIIF methods
discussed above.

If matrices A, C(p), and B do not commute, one may need to consider the
eigenspace of matrices A and B in order to evaluate (22) explicitly [11, 12]. Assum-
ing an eigenvalue decomposition A = V diag(a1, · · · , aNx

)V −1 and B = Wdiag(b1, · · · , bNy
)W−1,

then the (i, n)th element of matrix (24) is

∑
p

Nx∑

j,k=1

Ny∑

l,m=1

fjmVijV
−1
jk C

(p)
kl WlmW−1

mn, (26)

where fjm ≡ ∫ ∆t

0
e−(aj+bm)ττpdτ can be evaluated recursively through integration

by parts. The operation count of (26) is O(N2
xN2

y ), and it leads to an operation
count of O(N3

xN3
y ) for generating the whole matrix (24). The cost associated with

such an approach is even more expensive than the non-compact approach.
To obtain the ETD type methods that do not require any commutativity proper-

ties on the matrices A and B, and have the same order of operation count as that
of the cIIF schemes, one may leave only one of the exponential functions unchanged
and apply the polynomial approximation to the rest of the integrand in (12). To
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8 QING NIE, FREDERIC Y.M. WAN, YONG-TAO ZHANG, XIN-FENG LIU

illustrate this approach, we first approximate the integrand

G(τ) ≡ F(U(tn + τ))e−Bτ , (27)

using a r−1th order Lagrange polynomial at a set of interpolation points tn+1, tn, ..., tn+2−r:

P(τ) ≡
r−2∑

j=−1

F(Un−j)ejB∆t
r−2∏

k=−1
k 6=j

τ + k∆t

(k − j)∆t
. (28)

Then (12) becomes

Un+1 = eA∆tUneB∆t + eA∆t

(∫ ∆t

0

e−AτP(τ)dτ

)
eB∆t. (29)

A first order implicit approximation to G(τ) of the form

P(τ) = F(Un+1)e−B∆t, 0 ≤ τ ≤ ∆t, (30)

leads to a first order implicit scheme

Un+1 = eA∆tUneB∆t + A−1(eA∆t − I)F(Un+1). (31)

A second order implicit approximation to G(τ),

P(τ) =
1

∆t

[F(Un)(∆t− τ) + F(Un+1)e−B∆tτ
]
, 0 ≤ τ ≤ ∆t, (32)

leads to a second order implicit scheme

Un+1 = eA∆tUneB∆t +
1

∆t

{
[A−2(I − eA∆t) + ∆tA−1eA∆t]F(Un)eB∆t+

[A−2(eA∆t − I)−∆tA−1]F(Un+1)
}

. (33)

Like the implicit ETD methods based on the non-compact representation, the
nonlinear function of Un+1 in the compact implicit ETD (33) is also multiplied
by terms involving the approximated differential operators and their exponentials.
This non-local coupling makes the implicit ETD method inefficient. In contrast,
in IIF [8] and cIIF, the diffusion term and nonlinear reaction term are decoupled.
This makes IIF more desirable.

The compact explicit ETD (cETD) methods can be derived similarly. For exam-
ple, the compact form of the second order ETD method (4) becomes

Un+1 = eA∆tUneB∆t +
1

∆t
A−2

{
[(I + ∆tA)eA∆t − I − 2∆tA]F(Un)eB∆t−

[eA∆t − I −∆tA]F(Un−1)e2B∆t
}

. (34)



ACCEPTED MANUSCRIPT 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

COMPACT INTEGRATION FACTOR METHODS IN HIGH SPATIAL DIMENSIONS 9

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

q∆t=2 

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

q∆t=2 

q∆t=1 

q∆t=0.5 

FIG. 1. Stability regions (exterior of the closed curves) for cIIF2 with (q1+q2)∆t = 0.5, 1, 2,
where q = q1 + q2.

2.2. Stability analysis of cIIF methods
The linear stability of the high-dimensional cIIF methods can be analyzed by

an approach similar to that for the one-dimensional system [2, 13, 8]. We test the
linear stability on the the following linear equation

ut = −q1u− q2u + du with q1, q2 > 0, (35)

where q1 and q2 represent diffusions in the x and y directions respectively. The
boundaries of the stability region, a family of curves for different values of (q1 +
q2)∆t, based on the test problem (35) are presented for the second and third order
implicit integration factor methods. The quantity (q1 + q2)∆t involves the ratio
between the time step and the spatial grid for the discretization of the reaction-
diffusion equation (1).

To obtain the stability region, we apply cIIF2 (20) to the equation (35), then
substitute un = einθ into the resulted equation. This leads to

eiθ = e−q1∆t(1 +
1
2
λ)e−q2∆t +

1
2
λeiθ, (36)

where λ = d∆t. The equations for λr, the real part of λ, and λi, the imaginary
part of λ, become

λr =
2(1− e−2(q1+q2)∆t)

(1− e−(q1+q2)∆t)2 + 2(1 + cos θ)e−(q1+q2)∆t
,

λi =
4(sin θ)e−(q1+q2)∆t

(1− e−(q1+q2)∆t)2 + 2(1 + cos θ)e−(q1+q2)∆t
. (37)

Since q1 + q2 > 0, we have λr > 0 for 0 ≤ θ ≤ 2π. Therefore, the stability region is
in the left half complex plane. This implies that the second order IIF is A−stable.
In Fig. 1, the stability region of the method is plotted for (q1 + q2)∆t = 0.5, 1, 2.
The exterior of the closed curves located on the complex plane at λr > 0 is the
stability region.
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FIG. 2. Stability regions for the third order cIIF scheme with (q1 + q2)∆t =
0, 0.45, 0.5, 0.6, 1.0, where q = q1 + q2.

When q1 + q2 → 0, the stability region will coincide with the domain λr < 0; and
when q1 +q2 →∞, the stability region becomes the entire complex plane excluding
the point (2, 0).

For the third order two-dimensional cIIF scheme:

un+1 = eA∆tuneB∆t+∆t

(
5
12
F(un+1) +

2
3
eA∆tF(un)eB∆t − 1

12
e2A∆tF(un−1)e2B∆t

)
.

(38)
we can perform a similar analysis for the stability to obtain λ

λ =
eiθ − e−(q1+q2)∆t

5
12eiθ + 2

3e−(q1+q2)∆t − 1
12e−2(q1+q2)∆t−iθ

. (39)

As seen in Fig. (2) for (q1 + q2)∆t = 0, 0.45, 0.5, 0.6, 1.0, the third order scheme is
not A-stable. Similar to the one-dimensional case, the stability region sensitively
depends on the value of (q1 +q2)∆t. The size of the region is an increasing function
of (q1 + q2)∆t. For (q1 + q2)∆t < 0.54, the stability region is in the left half of the
complex plan λ bounded by a closed curve. For (q1 + q2)∆t > 0.55, the stability
region contains the entire left half plane and most of the right half plane. When
q1 + q2 →∞, the stability region becomes the entire complex plane excluding one
point on the real axis.

The stability analysis for cETD schemes is similar to the stability analysis of
ETD [2, 14, 6, 7, 9], and the stability analysis of cIIF presented above.

2.3. Three dimensions
The compact representation of the Laplacian operator like (10) for two-dimensional

systems can be extended to higher dimensional systems. In this section, we present
a derivation for a three-dimensional reaction-diffusion equation in a cube with no-
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flux boundary conditions:
{

∂u
∂t = D∆u + F(u), (x, y, z) ∈ Ω = {al < x < au, bl < y < bu, cl < z < cu};
n · ∇u = 0, (x, y, z) ∈ ∂Ω

(40)
where n is the unit outward normal direction of ∂Ω.

Let Nx, Ny, Nz denote the number of spatial grid points in x, y, z direction re-
spectively, hx, hy, hz be the grid size, and ui,j,k represents the approximate solution
at the the grid (xi, yj , zk). A second order central difference discretization on the
Laplacian operator yields

dui,j,k

dt
= D(ui+1,j,k − 2ui,j,k + ui−1,j,k

h2
x

+ ui,j−1,k − 2ui,j,k + ui,j+1,k

h2
y

+ui,j,k−1 − 2ui,j,k + ui,j,k+1

h2
z

) + F(ui,j,k). (41)

Define Ax = D
h2

x
ANx×Nx

, Ay = D
h2

y
ANy×Ny

, and Az = D
h2

z
ANz×Nz

, where

AP×P =




−2 2 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

...
...

...
...

...
...

0 0 0 0 · · · 2 −2




P×P

. (42)

Then (41) has the following compact representation

Ut =




Nx∑

l=1

(Ax)i,lul,j,k +
Ny∑

l=1

(Ay)j,lui,l,k +
Nz∑

l=1

(Az)k,lui,j,l


 + F(U) (43)

where U = (ui,j,k) and F(U) = (F(ui,j,k)) The three summation terms in (43)
are similar to the two vector-matrix multiplications in the two dimensional case in
(10). In addition to a left multiplication and a right multiplication in (10), there is
a ’middle’ multiplication in (43).

Define an operator L(t) by

L(t)U =




Nz∑
n=1

Ny∑
m=1

Nx∑

l=1

(e−Azt)k,n(e−Ayt)j,m(e−Axt)i,lul,m,n


 . (44)

Taking derivatives of (44) yields

d(L(t)U)
dt

= L(t)


Ut −




Nx∑

l=1

(Ax)i,lul,j,k +
Ny∑

l=1

(Ay)j,lui,l,k +
Nz∑

l=1

(Az)k,lui,j,l)





 .

(45)
Letting L(t) act on both sides of (43), and using (45), we obtain

d(L(t)U)
dt

= L(t)F(U). (46)
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Integrating (46) over one time step from tn to tn+1, and using a transformation
s = tn + τ for the integration, we obtain

L(tn+1)Un+1 = L(tn)Un + L(tn)
∫ ∆t

0

L(τ)F(U(tn + τ))dτ. (47)

Applying L(−tn+1) on both sides of (47) yields

Un+1 = L(−∆t)Un + L(−∆t)

(∫ ∆t

0

G(τ)dτ

)
(48)

where

G(τ) = L(τ)F(U(tn + τ)). (49)

To derive (48), we’ve used two identities:

L(−rt)L(rt)U = U (50)

and

L(−rt)L(st)U = L ((s− r)t)U (51)

for any two scalars r and s. Both (50) and (51) can be easily proved based on the
definition of L.

Similar to the construction for the two-dimensional system, the approximation of
G(τ) using a r−1th order Lagrange polynomial results in a scheme with truncation
error of rth order. Specifically, a second order approximation,

∫ ∆t

0

G(τ)dτ ≈ F(Un) + L(∆t)F(Un+1))
2

∆t,

leads to the second order IIF (cIIF2) method for a three dimensional system:

Un+1 = L(−∆t)
(
Un +

∆t

2
F(Un)

)
+

∆t

2
F(Un+1). (52)

The scheme (52) has a form similar to the one- and two-dimensional case. The
evaluation of the nonlinear term F at tn+1 is still local and decoupled from the
global diffusion term such that a nonlinear system of the size of F needs to be
solved at each spatial grid point.

To evaluate L(−∆t) in (52), three square matrices eAx∆t, eAy∆t, and eAz∆t have
to be pre-calculated and stored. The size of the three matrices is N2

x , N2
y , and N2

z

respectively. The size of U is of order NxNyNz. In a non-compact representation,
the matrix which needs to be stored has a size of the order of N2

xN2
y N2

z . Clearly,
the storage requirement for the new approach is smaller by orders of magnitude.
Even for moderate Nx, Ny and Nz, the storage requirement for the non-compact
representation usually becomes prohibitive even for computers with large memory,
as seen in the numerical examples in Section 3. In contrast, the new approach can
easily handle the same system with even higher spatial resolutions.
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In addition, the new approach takes considerably fewer CPU operations. The
operation count for evaluating L(−∆t)U is of the order of N2

xNyNz + NxN2
y Nz +

NxNyN2
z . This is much smaller than N2

xN2
y N2

z , the operation count for the corre-
sponding matrix-vector multiplication in a non-compact representation. The sav-
ings in CPU and memory for the new approach are more significant as Nx, Ny, Nz

becomes larger.
Remark (43) can be re-written in the following form

Ut = Ax ©x U + Ay ©y U + Az ©z U + F(U) (53)

by defining three operators,

(Ax ©x U)i,j,k =
Nx∑

l=1

(Ax)i,lul,j,k, (54)

(Ay ©y U)i,j,k =
Ny∑

l=1

(Ay)j,lui,l,k, (55)

and

(Az ©z U)i,j,k =
Nz∑

l=1

(Az)k,lui,j,l. (56)

As a result, the equation (44) for L(t) becomes

L(t)U = eAz∆t ©z eAy∆t ©y eAx∆t ©x U, (57)

and cIIF2 (52) becomes

Un+1 = eAz∆t ©z eAy∆t ©y eAx∆t ©x
(
Un +

∆t

2
F(Un)

)
+

∆t

2
F(Un+1) (58)

which has a form similar to its two-dimensional counterpart (20).
One can also easily obtain other types of cIF and cETD schemes similar to the

two dimensional case. For example, the second order implicit cETD takes the form:

Un+1 = L(−∆t)Un +
1

∆t

{[
A−2

x (I − eAx∆t) + ∆tA−1
x eAx∆t

]©x eAy∆t ©y
eAz∆t ©z F(Un) +

[
A−2

x (eAx∆t − I)−∆tA−1
x

]©x F(Un+1)
}

, (59)

and the second order explicit cETD takes the form:

Un+1 = L(−∆t)Un +
1

∆t

{[
A−2

x

(
(I + ∆tAx)eAx∆t − I − 2∆tAx

)]©x
eAy∆t ©y eAz∆t ©z F(Un)− [

A−2
x (eAx∆t − I −∆tAx)

]©x
e2Ay∆t ©y e2Az∆t ©z F(Un−1)

}
. (60)

3. NUMERICAL SIMULATIONS
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TABLE III

Error, order of accuracy, and CPU time for cIIF2, IIF2, and RK2

for a two-dimensional case.

cIIF2, ∆t = hx/2 IIF2, ∆t = hx/2 RK2, ∆t = h2
x

N ×N L∞ error order CPU (sec.) L∞ error order CPU(sec.) L∞ error order CPU (sec.)

40× 40 5.65× 10−4 — 0.08 5.65× 10−4 — 142.47 5.65× 10−4 — 0.03

80× 80 1.56× 10−4 1.86 0.15 out of memory — — 1.55× 10−4 1.86 0.27

160× 160 4.16× 10−5 1.91 1.02 out of memory — — 4.16× 10−5 1.91 7.43

320× 320 1.09× 10−5 1.93 33.54 out of memory — — 1.09× 10−5 1.93 210.62

To study the efficiency and accuracy of the new approach for the IF methods,
we will implement and test the second order implicit integration factor method
using the new approach (cIIF2). We will compare it with IIF2 [8] and with a
regular second order Runge-Kutta method (RK2). In addition to testing them on
linear systems in two and three dimensions, we will also demonstrate the efficiency
of cIIF2 by applying it to two reaction-diffusion systems arising from models in
developmental and cell biology.

In the calculation, the exponential of the square matrix is computed using a scal-
ing and squaring algorithm with a Pade approximation as implemented in “expm”
of Matlab similar to the one dimensional case [8].

Because the matrix exponentials depend only on the spatial grid size, the time
step, and diffusion coefficients, during the entire temporal updating they only need
to be calculated once initially for a fixed numerical resolution. The local nonlin-
ear systems resulting from IIF2 and cIIF2 are solved using a fixed point iteration
procedure similar to that used in the one-dimensional case [8].

3.1. Tests on simple systems
3.1.1. A linear problem in two dimensions
We consider a linear reaction-diffusion equation





∂u
∂t = 0.2

(
∂2u
∂x2 + ∂2u

∂y2

)
+ 0.1u, (x, y) ∈ Ω = {0 < x < 2π, 0 < y < 2π};

∂u
∂x (0, y, t) = ∂u

∂x (2π, y, t) = 0;

u(x, 0, t) = u(x, 2π, t) = 0;

u(x, y, 0) = cos(x) + sin(y).
(61)

The exact solution of the system is

u(x, y, t) = e−0.1t(cos(x) + sin(y)). (62)

Because of the simple structure of the cIIF2 scheme, it can be easily implemented
using MATLAB. The simulation is carried up to t = 1 at which the L∞ difference
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TABLE IV

Error, order of accuracy, and CPU time for cIIF2 and RK2 for

a three-dimensional case.

cIIF2, ∆t = hx/3 RK2, ∆t = hx/3 RK2, ∆t = h2
x/3

N ×N ×N L∞ error order CPU (sec.) L∞ error order CPU (sec.) L∞ error order CPU (sec.)

10× 10× 10 8.07× 10−3 – 0.0 8.07× 10−3 – 0.0 8.07× 10−3 – 0.0

20× 20× 20 2.02× 10−3 2.0 0.08 NC – – 2.02× 10−3 2.0 0.18

40× 40× 40 5.05× 10−4 2.0 2.18 NC – – 5.05× 10−4 2.0 6.85

80× 80× 80 1.26× 10−4 2.0 126.56 NC – – 1.26× 10−4 2.0 293.4

between the numerical solution and the exact solution is measured. For the conve-
nience of comparison between IIF2 and cIIF3, we also set hx = hy for this case.

As seen in Table III, the IIF2 method on a workstation with 1GB-RMB runs
out of memory when N = 80 because IIF2 needs to store matrices with a size
of N2 × N2. In contrast, cIIF2 implemented on the same machine can handle
much larger N . For smaller N such as N = 40, although the machine has enough
memory for IIF2, it needs almost 2000 times more CPU time to achieve the same
accuracy as cIIF2. On the other hand, RK2 can run because of its small memory
requirement, but its stability constraint (∆t must be proportional to h2

x) demands
a much smaller time step, and consequently results in more CPU time than cIIF2
for the same accuracy. Overall, cIIF2 is more efficient than both IIF2 and RK2.

3.1.2. A linear problem in three dimensions
In three dimensions, we consider a similar system

{
∂u
∂t = d∆u + au, (x, y, z) ∈ Ω,

n · ∇u = 0 (x, y, z) ∈ ∂Ω
(63)

where Ω = {0 < x < π, 0 < y < π, 0 < z < π}, n is outward normal of ∂Ω, and
d = 0.2, a = 0.1. The exact solution of (63) has a form similar to (62). The initial
condition in the simulations is taken from the exact solution of (63) at t = 0. The
computation is carried up to t = 2 at which the error is measured. We also chose
hx = hy = hz for convenience of comparisons with other methods.

Similar to the two-dimensional case, the machine quickly runs out of memory for
the IIF2 in three dimensions when N > 15. For three dimensional systems, the
required memory for IIF2 is so large that IIF2 is practically impossible to handle
any moderate spatial resolutions.

When cIIF2 is compared to RK2 which needs much less memory, cIIF2 shows
superiority in CPU times as seen in Table IV. As expected, RK2 does not converge
if ∆t is set to the same value as used in cIIF2 for most values of N ′. Because of
the sever stability constraint on ∆t, RK2 requires a much smaller time-step and
becomes more expensive. As shown in Table IV, cIIF2 requires less CPU time than
RK2 but achieves the same accuracy.
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3.2. Applications to two models in biology
Many models in developmental and cell biology take the form of reaction-diffusion

equations (1). In such systems, the rate constants in biochemical reactions in F
usually vary by more than five orders of magnitude. As demonstrated in one-
dimensional systems [8], a standard IF, ETD or RK method is not efficient, and the
implicit integration factor method (IIF) is much more desirable for such applications
with stiff reactions. In this section, we apply cIIF2 to two different models for the
study of embryonic patterning and cell signaling, one in two dimensions and one in
three dimensions.

3.2.1. A two-dimensional model for dorsal-ventral patterning
For proper functioning of tissues, organs and embryos, each cell is required

to differentiate appropriately for its position. Positional information that instructs
cells about their prospective fate is often conveyed by concentration gradients of
morphogens bound to cell signaling receptors. Morphogens are signaling molecules
that, when bound to cell receptors, assign different cell fates at different concen-
trations [15, 16]. This role of morphogens has been the prevailing thought in tissue
patterning for over half a century; but only recently have there been sufficient ex-
perimental data and adequate modeling for us to begin to understand how various
morphogens interact and patterns emerge [17, 18, 19].

One example is the dorsal-ventral patterning in Drosophila embryos, a well-known
regulatory system involving several zygotic genes. Among them, decapentaplegic
(Dpp) promotes dorsal cell fates such as amnioserosa and inhibits development of
the ventral central nervous system; and another gene Sog promotes central nervous
system development. In this system, Dpp is produced only in the dorsal region
while Sog is produced only in the ventral region. For the wild-type, the Dpp
activity has a sharp peak around the mid-line of the dorsal with the presence of its
”inhibitor” Sog. Intriguingly, mutation of Sog results in a loss of ventral structure
as expected, but, in addition, the amnioserosa is reduced as well. It appears that
the Dpp antagonist, Sog, is required for maximal Dpp signaling [20, 21, 22, 23].
In [24, 25, 26], simulations and analysis for a simplified one-dimensional dynamic
Dpp-Sog model were carried out along with experimental studies. The robustness
and temporal dynamics of the morphogens were investigated under various genetic
mutations [24, 25, 26].

Recently, motivated by experimental study of over-expression of the receptors
along the anterior-posterior axis of the embryo [26] , a two-dimensional model was
developed [27] to examine the Dpp activities outside the area of elevated receptors
in a Drosophila embryo. In this paper, we apply the cIIF2 to obtain accurate
numerical solutions for this two-dimensional system [27].

Let [L], [S], [LS], [LR] denote the concentration of Dpp, Sog, Dpp-Sog complexes,
and Dpp-receptor complex, respectively. In the model formulated in [25] [27], the
dynamics of the Dpp-Sog system is governed by the following reaction diffusion
equations:
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TABLE V

Error, order of accuracy, and CPU time for cIIF2 applied to a

two-dimensional system.

∆t E∆t order CPU (sec.)

1.375× 10−3 1.76× 10−8 — 7.54

6.875× 10−4 4.40× 10−9 2.00 15.08

3.438× 10−4 1.10× 10−9 2.00 30.20

∂[L]
∂T

= DL

(
∂2[L]
∂X2

+
∂2[L]
∂Y 2

)
− kon[L] (R(X, Y )− [LR]) + koff [LR]

−jon[L][S] + (joff + τjdeg)[LS] + VL(X, Y )
∂[LR]
∂T

= kon[L] (R(X, Y )− [LR])− (koff + kdeg)[LR]

∂[LS]
∂T

= DLS

(
∂2[LS]
∂X2

+
∂2[LS]
∂Y 2

)
+ jon[L][S]− (joff + jdeg)[LS]

∂[S]
∂T

= DS

(
∂2[S]
∂X2

+
∂2[S]
∂Y 2

)
− jon[L][S] + joff [LS] + VS(X, Y ) (64)

in the domain 0 < X < Xmax, 0 < Y < Ymax, where

R(X, Y ) =

{
Rh, X ≤ Xh,

R0, X > Xh.
(65)

VL(X, Y ) =

{
vL, Y < 1

2Ymax,

0, Y ≥ 1
2Ymax.

(66)

VS(X, Y ) =

{
0, Y < 1

2Ymax,

vS , Y ≥ 1
2Ymax.

(67)

The boundary conditions for [L], [LS], and [S] are no-flux at X = 0 and X = Xmax,
and periodic at Y = 0 and Y = Ymax. R(X, Y ) is the concentration of the initially
available receptor in space; X = Xh is the boundary between the two regions with
different level of receptors; VL(X, Y ) and VS(X, Y ) are the production rates for
Dpp and Sog, respectively; DL, DLS , DS are diffusion coefficients; τ is the cleavage
rate for Sog; and other coefficients are on, off and degradation rate constants for
the corresponding bio-chemical reactions.

The initial concentrations of all morphogen molecules are zeros. Both Xmax

and Ymax are taken to be 0.055cm, based on the Drosophila embryo size at its
appropriate developmental stage [26].
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To study the performance and convergence of cIIF2, we list in Table V the error,
order of accuracy and CPU time for simulations using cIIF2 to solve (64) for the
set of parameters presented in Fig. 3 without the receptor over-expression. In this
case, the spatial resolution is fixed as N = 40 in both directions. The error at ∆t is
measured as a difference between this solution, u∆t, and the solution u2∆t for time
step size 2∆t at T = 10, i.e.

E∆t = ||u∆t − u2∆t||L∞ . (68)

The cIIF2 clearly shows a second order of accuracy in time as expected. As demon-
strated in Table III, the IIF2 for this case will be much slower than cIIF2 for small
N , and it runs out of memory for N > 40.

Next we study the over-expression experiments in [26] by setting Rh = 9µM in
the region 0 < X < Xh = 0.02cm [26]. The concentrations of Dpp, Dpp-receptor,
Dpp-Sog and Sog are plotted in Fig. 3. It is worth of noting that in the simulations
the over-expression of receptor induces a local boost of Dpp-receptor activities
near the boundary of two different concentration regions of receptors, similar to
the experimental observations [26]. This two-dimensional spatial effect was not
modeled in the previous study [26]. A more systematic study on the receptor over-
expression will be reported in [27].

3.2.2. A three-dimensional model for intra-cellular signaling
When a hormone or growth factor binds to a cell-surface receptor, a cascade of

proteins inside the cell relays the signal to specific intra-cellular targets. A class
of proteins referred to as scaffolds are thought to play many important roles dur-
ing this process [28, 29, 30]. Scaffold usually binds dynamically to two or more
consecutively-acting components of a signaling cascade. Experimental work sug-
gests that scaffolds may promote signal transmission by tethering consecutively
acting kinases near each other [31, 32]. However, it has also been experimentally
observed that some scaffold inhibit signaling when over-expressed [33, 34, 35]. In
support of these observations, computations of non-spatial models have demon-
strated that scaffold proteins may either enhance or suppress signaling, depending
on the concentration of scaffold. In [36], a model of generic, spatially localized
scaffold protein was developed for one and two spatial dimensions, and the model
indicated that a scaffold protein could boost signaling locally (in and near the region
where it was localized) while simultaneously suppressing signaling at a distance.

In this paper, we present simulations for the set of reaction-diffusion equations
formulated in [36] that describes a spatially localized scaffold and freely diffusing
products and reactants in three dimensions. The model contains a scaffold protein
(S), which can bind to two other proteins (A and B). In the absence of the scaffold
protein, A and B can bind directly to each other. In the presence of the scaffold
protein S, first A binds to S, forming AS. Next B binds to AS forming ASB.
Finally, A and B bind to each other on the scaffold and an AB complex is released.
The symmetrical path, where B binds to the scaffold before A, is also available.
Denote [ ] as the concentration of the proteins, the mass reaction equations with
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FIG. 3. Concentrations of [L], [LR], [LS], [S] at T = 7200 seconds for the two-dimensional
Dpp-Sog system (64) when receptors are over-expressed. ∆t = hx = hy = 0.001375 in the
simulation. Parameters are DL = DLS = DS = 85µm2s−1; vL = 1nMs−1; vS = 80nMs−1;
kon = 0.4µM−1s−1; koff = 4 × 10−6s−1; kdeg = 5 × 10−4s−1; jon = 95µM−1s−1; joff =
4× 10−6s−1; jdeg = 0.54s−1; τ = 1; R0 = 3µM .

TABLE VI

Error, order of accuracy, and CPU time for cIIF2 applied to a

three-dimensional system.

∆t E∆t order CPU (sec.)

2.5× 10−2 2.09× 10−4 – 18.91

1.25× 10−2 5.24× 10−5 2.0 37.64

6.25× 10−3 1.32× 10−5 1.99 75.37
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diffusion take the form,

d[S]
dt

= −jon([A][S] + [B][S]) + joff([AS] + [BS]) + jcon[ABS],
d[AS]

dt
= jon([A][S]− [AS][B])− joff([AS]− [ABS]),

d[BS]
dt

= jon([B][S]− [BS][A])− joff([BS]− [ABS]),
d[ABS]

dt
= jon([AS][B] + [BS][A])− (2joff + jcon)[ABS],

d[A]
dt

= D∆[A]− kon[A][B] + koff [AB]− jon([A][S] + [BS][A]) + joff([AS] + [ABS]),
d[B]
dt

= D∆[B]− kon[A][B] + koff [AB]− jon([B][S] + [AS][B]) + joff([BS] + [ABS]),
d[AB]

dt
= D∆[AB] + kon[A][B]− koff [AB] + jcon[ABS].

(69)
In the system (69), D is the diffusion constant; kon, koff are the on and off rates
for the off-scaffold reactions, jon, joff , jcon are the rate constants for the on-scaffold
reactions. The system (69) holds in the cell: Ω = {0 ≤ x ≤ 10µm, 0 ≤ y ≤
10µm, 0 ≤ z ≤ 10µm}, with no-flux boundary conditions for A,B, AB.

First, we test the convergence of cIIF2 when it is applied to the system (69). In
this simulation, the initial concentrations of A and B are set at 1 µM , and they are
uniformly distributed throughout the cell. And the scaffolds initially are localized
in part of the cell: 4µm ≤ x2+y2+z2 ≤ 9µm, with [S] = 50µM in this region. The
diffusion and rate constants are chosen to be D = 1µm2s−1, kon = 0.1(µMs)−1,
koff = 0.3s−1, jon = 1(µMs)−1, joff = 0.005s−1, and jcon = 0.1(µMs)−1. In Table
VI, the error and order of accuracy are estimated at T = 1 second using a spatial
resolution N = 40 in three directions. As expected, the cIIF2 converges in second
order in time, and it has excellent efficiency. And for the IIF, the machine runs out
of memory for this spatial resolution: N = 40.

Next, we present a case study on the effect of scaffolds in Fig. 4. Due to the
symmetry of chemical reaction pathways between A and B, we only need to show
four different products. In this simulation, the initial distribution of each protein
and the scaffold are the same as in Table VI. The concentration of each component
is represented using density of dots: more dots represent more proteins.

Compared to the case without scaffolds but with other reaction rates being the
same, the desired product AB, in the case of Fig. 4, is more concentrated in the
region where scaffolds are initially distributed, and it is suppressing away from the
scaffold region in the meantime. This unevenly distributed AB results from an inti-
mate interaction between reactions and diffusions. It is similar to the corresponding
one- or two-dimensional systems studied in [36], in which a detailed analysis has
been carried out on the condition under which the boost and the suppressing of AB

simultaneously occur. Although the qualitative features of the system remain the
same in different spatial dimensions, we have observed the expected quantitative
differences arising in these systems.

4. CONCLUSIONS AND DISCUSSIONS

In integration factor (IF) and exponential time differencing (ETD) methods, the
linear operator with the highest order spatial derivatives in the differential equa-
tion is treated exactly in time discretization. This temporal integration involving
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FIG. 4. Concentrations for A, B, AB and ABS at T = 10 seconds. The dot density
represents the level of concentrations. The parameters are D = 1µm2s−1, kon = 0.1(µMs)−1,
koff = 0.3s−1, jon = 100(µMs)−1, joff = 0.05s−1, jcon = 0.1s−1.



ACCEPTED MANUSCRIPT 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 QING NIE, FREDERIC Y.M. WAN, YONG-TAO ZHANG, XIN-FENG LIU

exponentials of the differential operator leads to unconditional stability associated
with that term; however, the computational cost resulting from the approximation
usually is very expensive for systems with general boundary conditions, and often
it becomes prohibitive in two or three dimensions.

In this paper, we introduced a compact representation of the linear differential
operator in two and three dimensions. Such a representation in IF and ETD meth-
ods reduces the computational cost significantly in both storage and CPUs, and it
makes IF and ETD in two and three dimensions efficient and attractive methods.
We analyzed and implemented such an approach for an implicit integration factor
(IIF) method for stiff reaction-diffusion equations. The new compact IIF (cIIF)
preserves the stability property of the IIF; and our direct simulations on linear
and nonlinear systems in both two and three dimensions demonstrated that cIIF is
much more efficient than the IIF.

Although we only implemented the new compact approach for reaction-diffusion
equations, this technique may be applied to other type of systems, such as equa-
tions involving higher order derivatives. Also, the tensor-like representation of the
linear differential operators presented in the remark of Section 2.3 can easily be
extended to systems in dimensions higher than three. In addition, its excellent
stability condition (assuring unconditional linear stability with respect to both dif-
fusions and reactions) along with its compact structure and CPU efficiency make
cIIF particularly suitable and useful for spatially adaptive methods. Currently, we
are incorporating cIIF with AMR (Adaptive Mesh Refinement) in two and three
dimensions, and good performance has been observed [37].
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