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Abstract. The reaction-diffusion system modeling the dorsal-ventral pattern-

ing during the zebrafish embryo development, developed in [Y.-T. Zhang, A.D.
Lander, Q. Nie, Journal of Theoretical Biology, 248 (2007), 579–589] has mul-

tiple steady state solutions. In this paper, we describe the computation of

seven steady state solutions found by discretizing the boundary value problem
using a finite difference scheme and solving the resulting polynomial system

using algorithms from numerical algebraic geometry. The stability of each of

these steady state solutions is studied by mathematical analysis and numeri-
cal simulations via a time marching approach. The results of this paper show

that three of the seven steady state solutions are stable and the location of the

organizer of a zebrafish embryo determines which stable steady state pattern
the multi-stability system converges to. Numerical simulations also show that

the system is robust with respect to the change of the organizer size.

1. Introduction. The proper functioning of tissues and organs requires that each
cell differentiates appropriately for its position. In many cases, the positional infor-
mation that instructs cells about their prospective fates is conveyed by concentra-
tion gradients of morphogens bound to cellular receptors. Morphogens are signaling
molecules that, when bound to receptors, assign different cell fates at different con-
centrations [10, 12]. Morphogen action is of special importance in understanding
development, as it is a highly efficient way for a population of uncommitted cells in
an embryo to create complex patterns of gene expression in space [6].

In [13], a nonlinear reaction-diffusion model on both three-dimensional and a sim-
plified one-dimensional spatial domains was developed for computational analysis
of BMP morphogen gradient formation in dorsal-ventral patterning of the zebrafish
embryo. The model predicts that the dorsal organizer of the zebrafish embryo plays
a key role in forming a stable non-homogeneous morphogen gradient, and the pre-
diction agrees well with the existing biological experiments [7]. We briefly describe
the model in the following paragraphs.
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Consider the dorsal-ventral axis of the zebrafish embryo. The model simplifies it
to a one-dimensional segment 0 ≤ x ≤ xmax with the dorsal organizer being located
at the corner of the dorsal region, as shown in Figure 1.

Ventral Dorsal
0 xmax

1/8 xmax

Figure 1. The simplified one dimensional geometry of wild type zebrafish
embryo. The dorsal organizer is located at the end with the size 1

8 of the
whole embryo.

Let [L] and [LR] denote the concentration of the morphogen BMP and the con-
centration of BMP-receptor complexes (to which BMP signaling is assumed to be
proportional), respectively. The concentration of the free molecule Chordin (an in-
hibitor of BMP) and the concentration of BMP-Chordin complex are denoted by [C]
and [LC], respectively. Let R0 denote the total receptor concentration and let DL,
DC , and DLS represent the three diffusion coefficients for BMP, Chordin, BMP-
Chordin complexes, respectively. The values kon, koff , kdeg, jon, joff , and τ are
the binding and degradation rates for BMP, Chordin, and their complexes. With
this notation, the reaction-diffusion model that is formulated in [13] is as follows:

∂[L]

∂t
= DL

∂2[L]

∂x2
− kon[L](R0 − [LR]) + koff [LR] − jon[L][C] + (joff + τ)[LC] + VL;

∂[LR]

∂t
= kon[L](R0 − [LR]) − (koff + kdeg)[LR];

∂[LC]

∂t
= DLS

∂2[LC]

∂x2
+ jon[L][C] − (joff + τ)[LC];

∂[C]

∂t
= DC

∂2[C]

∂x2
− jon[L][C] + joff [LC] + VC ,

(1.1)

where VC and VL are the production rates of molecules Chordin and BMP, respec-
tively, defined by

VC = VCmin +
VCmax − VCmin

1 + γC [LR]
+

{
VCorge

−at, if x ∈ ΩO;

0, otherwise.
(1.2)

VL = VLmin +
VLmax − VLmin
1 + γL[LR]−1

+ VLmate
−bt. (1.3)

The terms VCorge
−at and VLmate

−bt represent the maternal production rates of
Chordin and BMP [13]. ΩO represents the organizer region which is a subset of the
whole domain [0, xmax]. For the wild type zebrafish embryo, ΩO is approximated
by the interval [ 78xmax, xmax] as shown in Figure 1.

The system (1.1) is subjected to the no-flux boundary conditions

∂[L]

∂x
=
∂[LC]

∂x
=
∂[C]

∂x
= 0 for x = 0, xmax. (1.4)
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Although no boundary condition is assumed for [LR], the initial data for [LR] does
satisfy the no-flux boundary condition. Thus, by using the system (1.1), we also
have

∂[LR]

∂x
= 0 for x = 0, xmax. (1.5)

Parameter studies were performed in [13] with the following biological reasonable
parameters

xmax = 0.088cm,

DL = DLS = DC = 8.5× 10−7cm2s−1, kon = 0.4µM−1s−1,

R0 = 3.0µM, koff = 4× 10−6s−1,

jon = 10µM−1s−1, joff = 1.0× 10−5s−1,

τ = 0.01s−1, kdeg = 5.0× 10−4s−1,

VCmin = 8.0× 10−4µMs−1, VCmax = 8.0× 10−2µMs−1,

VCorg = 6.68× 10−1µMs−1, γC = 10µM−1,

a = 0.0167s−1, VLmin = 1.0× 10−5µMs−1,

VLmax = 6.0× 10−3µMs−1, γL = 10µM,

VLmat = 5.01× 10−2µMs−1, b = 0.0167s−1,

(1.6)

a non-homogeneous spatial BMP morphogen gradient is formed. The high concen-
tration region of BMP-receptor complex will develop into the ventral tissue of the
zebrafish, and the low concentration region will become the dorsal part of the fish.

In this paper, we study multiple steady state solutions of the reaction-diffusion
system (1.1). We obtain seven steady state solutions by numerically solving the
corresponding boundary value problem using a combination of a finite difference
discretization of the partial differential equations and numerical algebraic geomet-
ric methods for solving the resulting nonlinear algebraic system. The stability of
each steady state solution is studied using mathematical analysis and numerical
simulations via a time marching approach. We show that three of the seven steady
state solutions are stable and the organizer of the zebrafish embryo plays an impor-
tant role in the selection of the steady state pattern in this multi-stability system.
These seven solutions were found by solving the nonlinear discretized system with
nine spatial grid points. It is very possible that more solutions will appear with
larger spatial grids.

To solve the time dependent system (1.1) numerically, we use a finite difference
scheme [5]. The diffusion terms are approximated by the second order central differ-
ence. The adaptive Runge-Kutta-Fehlberg-2-3 method [9] is used for the temporal
discretization. For the time-marching results presented in this paper, 321 spatial
grid points 0 = x0, x1, · · · , xN = xmax and N = 320 are used. Convergence of the
calculations is observed when the spatial meshes are refined. The overall accuracy
of the time-marching computation is second order in space and third order in time.
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2. Multiple steady state solutions. The steady state solutions of the system
(1.1) satisfy the following boundary value problem:

0 = DL
∂2[L]

∂x2
− kon[L](R0 − [LR]) + koff [LR]− jon[L][C] + (joff + τ)[LC] + VL;

0 = kon[L](R0 − [LR])− (koff + kdeg)[LR];

0 = DLS
∂2[LC]

∂x2
+ jon[L][C]− (joff + τ)[LC];

0 = DC
∂2[C]

∂x2
− jon[L][C] + joff [LC] + VC ,

(2.1)

where
0 = xmin ≤ x ≤ xmax = 0.088cm, (2.2)

VC = VCmin +
VCmax − VCmin

1 + γC [LR]
, (2.3)

and

VL = VLmin +
VLmax − VLmin
1 + γL[LR]−1

, (2.4)

subjected to the no-flux boundary conditions

∂[L]

∂x
=
∂[LC]

∂x
=
∂[C]

∂x
= 0. (2.5)

The following section describes the computation of the seven steady state solu-
tions we obtained for system (2.1).

2.1. Computing multiple steady state solutions. Steady state solutions to
the boundary value problem (2.1) were found by discretizing and computing all
solutions of the resulting system of equations using the software package Bertini
[1, 2].

Observe that system (2.1) can be simplified by replacing the first equation with
the sum of the first three equations and by replacing the last equation with the sum
of the last two equations. Upon clearing denominators, we obtain the boundary
value system

0 = ([LR] + γL)

(
DL

∂2[L]

∂x2
− kdeg[LR] +DLS

∂2[LC]

∂x2
+ VLmin

)
+ (VLmax − VLmin)[LR];

0 = kon[L](R0 − [LR]) − (koff + kdeg)[LR];

0 = DLS
∂2[LC]

∂x2
+ jon[L][C] − (joff + τ)[LC];

0 = (1 + γC [LR])

(
DC

∂2[C]

∂x2
− τ [LC] + VCmin

)
+ VCmax − VCmin.

(2.6)
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where 0 = xmin ≤ x ≤ xmax = 0.088cm with boundary conditions (2.5). This
system is discretized using the second order central difference scheme for the interior
conditions and left- and right-sided second order difference schemes for the boundary

conditions with ∆x =
xmax − xmin

N
, where N ≥ 3. The boundary conditions for

[L] become

3[L]0 = 4[L]1 − [L]2,

3[L]N = 4[L]N−1 − [L]N−2,

with similar conditions for [LC] and [C].
Using the system (2.6), the boundary conditions for [LR] are

kon[L]0(R0 − [LR]0) = (koff + kdeg)[LR]0,

kon[L]N (R0 − [LR]N ) = (koff + kdeg)[LR]N .

As suggested by (1.5), we could also utilize the no-flux boundary condition

3[LR]0 = 4[LR]1 − [LR]2,

3[LR]N = 4[LR]N−1 − [LR]N−2.

Either way, since (2.6) does not depend upon
∂2[LR]

∂x2
, [LR]0 and [LR]N only appear

in the boundary conditions for [LR] in the discretized system. This means that they
can be computed after the other values are known.

With these simplifications, the discretized polynomial system that we solved
consisted of 4(N − 1) quadratic polynomials in 4(N − 1) variables. For 3 ≤ N ≤ 9,
we computed all solutions of this polynomial system using Bertini [1, 2]. Bertini
is a software package in the field of numerical algebraic geometry that implements
homotopy continuation based algorithms to numerically compute all solutions of
polynomial systems over C. For more information on homotopy continuation and
the field of numerical algebraic geometry, see [8].

As suggested by (2.6), this polynomial system has an obvious linear product
structure [11], one such linear decomposition, for i = 1, . . . , N , is

{1, [LR]i} × {1, [LR]i, [L]i−1, [L]i, [L]i+1, [LC]i−1, [LC]i, [LC]i+1}
{1, [LR]i} × {1, [L]i}
{1, [L]i} × {1, [C]i, [LC]i−1, [LC]i, [LC]i+1}
{1, [LR]i} × {1, [LC]i, [C]i−1, [C]i, [C]i+1}.

This linear product structure reduces the bound on the number of isolated solutions
over C for the discretized system from its total degree bound of 24(N−1) = 16N−1

to 5N−1. This bound is nearly sharp with our computations revealing that there
are actually 5N−1 − 3N−1 solutions over C.

For 3 ≤ N ≤ 9, we used Bertini v1.1.1 with adaptive precision tracking [3, 4] to
solve the discretized polynomial system. We ran Bertini on a cluster consisting of a
manager that uses one core of a Xeon 5410 processor and up to 25 computing nodes,
each containing two Xeon 5410 processors running 64-bit Linux, i.e., each node
consists of 8 processing cores. Table 2.1 lists the linear product bound, the number
of solutions over C, the number of solutions over R, the number of computing nodes
utilized, and the time needed to compute all solutions of the discretized polynomial
system.
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N lin. prod. bound sol. over C sol. over R nodes time
3 25 16 6 serial 2.7s
4 125 98 16 serial 14.4s
5 625 544 28 1 21.1s
6 3,125 2,882 184 5 51.6s
7 15,625 14,896 930 25 2m43s
8 78,125 75,938 3,720 25 35m2s
9 390,625 384,064 17,974 25 11h3m

Table 2.1. Summary of solving the discretized system for 3 ≤ N ≤ 9

Using the real solutions, we constructed an approximate solution of the dis-
cretized system with 80 grid points by using a cubic spline. Each of these approxi-
mate solutions was refined and the resulting solutions that contained negative real
values were discarded. This process yielded seven positive real solutions.

It is very possible that more than ten spatial grid points will lead to further
solutions. At the rate of increase, eleven grid points (N = 10) would utilize upwards
of ten days of computer time using the same computing resources used for ten grid
points (N = 9). We did compute the symmetric solutions for the polynomial
systems on spatial grids with 15 and 16 points, but found no additional solutions.

3. Stability of the steady state solutions. The analysis of the steady state so-
lutions utilized eigenvalue computations and numerical simulations via time march-
ing. The eigenvalue analysis was computed using the non-dimensionalized system
described in the next section.

3.1. The non-dimensionalized system. To non-dimensionalize system (1.1), we
introduced the following normalized quantities:

T =
D

x2max
t, X =

x

xmax
, (3.1)

{fL, gL, hL, fS , hS , τS} =
x2max
D
{koff , kdeg, konR0, joff , jonR0, τ}, (3.2)

{A,B,C, S} =
1

R0
{[L], [LR], [LC], [C]}, (3.3)

{WCmin,WCmax,WCorg,WLmin,WLmax,WLmat}

=
x2max
DR0

{VCmin, VCmax, VCorg, VLmin, VLmax, VLmat},
(3.4)

{dL, dLS , dC} =
1

D
{DL, DLS , DC}, γC = γCR0, γL =

γL
R0

, (3.5)

where D is the maximum of DL, DLS and DC in (1.6), namely

D = 8.5× 10−7cm2s−1.

With these normalized quantities, we rewrote the system (1.1) in the following
dimensionless form:
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∂A

∂T
= dL

∂2A

∂X2
− hLA(1−B) + fLB − hSAS + (fS + τS)C +WL;

∂B

∂T
= hLA(1−B)− (fL + gL)B;

∂C

∂T
= dLS

∂2C

∂X2
+ hSAS − (fS + τS)C;

∂S

∂T
= dC

∂2S

∂X2
− hSAS + fSC +WC ,

(3.6)

where

0 ≤ X ≤ 1

and

WC = WCmin +
WCmax −WCmin

1 + γCB
+

{
WCorge

−PT , if X ≥ 7
8 ;

0, otherwise.
(3.7)

with

P =
x2max
D

a, (3.8)

and

WL = WLmin +
WLmax −WLmin

1 + γLB−1
+WLmate

−QT , (3.9)

with

Q =
x2max
D

b. (3.10)

The non-dimensionalized parameters corresponding to those in (1.6) are:

dL = dLS = dC = 1, hL = 1.0924× 104,

fL = 0.0364, hS = 2.7310× 105,

fS = 0.0910, τS = 91.0326,

gL = 4.5516, WCmin = 2.4275,

WCmax = 242.7536, WCorg = 2.0270× 103,

γC = 30, P = 152.0244,

WLmin = 0.0303, WLmax = 18.2065,

γL = 3.3333, WLmat = 152.0244, Q = 152.0244.

(3.11)

3.2. Eigenvalue analysis of the steady state solutions. The exponential terms
in (3.7) and (3.9) correspond to the maternal production terms for the original
system (1.1). These terms decay exponentially with Q = P = 152.0244, as shown
in (3.11). Since we are considering the local stability of the steady state solutions,
we drop the maternal production terms in the analysis of (3.6).

Assuming that 
A
B
C
S

 =


A0

B0

C0

S0

 + ε


A1

B1

C1

S1

 +O(ε2),
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the linearized system is

A1T = A1XX − hLA1(1 −B0) + hLA0B1 + fLB1 − hSA1S0 − hSA0S1 + (fS + τS)C1

+B1
(WLmax −WLmin)γL

(γL +B0)2
;

B1T = hLA1(1 −B0) − hLA0B1 − (fL + gL)B1;

C1T = C1XX + hSA1S0 + hSA0S1 − (fS + τS)C1;

S1T = S1XX − hSA1S0 − hSA0S1 + fSC1 −B1
(WCmax −WCmin)γC

(1 + γCB0)2
.

(3.12)

For

Y (X,T ) =


A1(X,T )
B1(X,T )
C1(X,T )
S1(X,T )

 ,

the system (3.12) can be written as

∂Y

∂T
=


1

0
1

1

YXX +M · Y, (3.13)

where

M =


−hL(1 −B0) − hSS0 hLA0 + fL +

(WLmax −WLmin)γL

(γL +B0)2
fS + τS −hSA0

hL(1 −B0) −hLA0 − (fL + gL) 0 0

hSS0 0 −(fS + τS) hSA0

−hSS0 −
(WCmax −WCmin)γC

(1 + γCB0)2
fS −hSA0

 .

The seven steady state solutions consist of a constant solution and six non-
constant solutions. The following establishes that the constant solution is unstable
and three of the six non-constant solutions are also unstable.
I) Constant solution analysis.

For the constant solution, the vector (A0, B0, C0, S0) is constant as well as the
matrix M . With the no-flux boundary conditions and separation of variables, we
can always write

Y (X,T ) =

∞∑
n=0

−→
bn(T ) cos(nπX), 0 ≤ X ≤ 1.

The system (3.13) yields

∂

∂T

−→
bn(T ) =



−(nπ)2

0
−(nπ)2

−(nπ)2

 +M

−→bn(T ), n = 0, 1, 2 · · ·

(3.14)
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Since {cos(nπX)} forms an orthogonal basis, the system (3.12) is asymptotically
stable at the constant solution if and only if each system (3.14) is asymptotically
stable for all n = 0, 1, 2, · · · .

For each n, let

An =


−(nπ)2

0
−(nπ)2

−(nπ)2

 +M.

The ODE theory implies that the system (3.14) is stable if and only if each of the
four eigenvalues for each An have negative real part. Evaluating M at the non-
dimensionalized constant solution, both A1 and A2 have a real positive eigenvalue,
namely, 0.3373 and 0.3634, respectively, yielding that the constant solution is not
stable. 2

II) General solution analysis
By separation of variables, we can write

Y (X,T ) = eλTJ(X). (3.15)

The system (3.13) yields that

BJ=


1

0
1

1

 JXX +M · J = λJ

with the boundary conditions

(Jj)X(0) = (Jj)X(1) = 0 for j = 1, 3, 4.

Although the boundary condition is not assumed for j = 2, the discussion earlier
(see (1.5)) indicates that the no-flux boundary condition is also satisfied for j = 2.

It is clear from the explicit solution (3.15) that if the above eigenvalue problem
admits an eigenvalue with positive real part, then the system is unstable.

Our expectation is that if µ is large enough, then the operator −B + µI is in-
vertible and (−B+µI)−1 is a Fredholm operator. It follows that the only spectrum
of this operator are eigenvalues. Note that (−B + µI)−1h = λh, h 6= 0 if and only
if λ 6= 0, Bh = (µ − λ−1)h, h 6= 0. It follows that the only spectrum for B are
the eigenvalues, and the stability depends on the real part of all eigenvalues being
negative.

Let

J(X) =


J1(X)
J2(X)
J3(X)
J4(X)


and

M(X) = (mij(X))1≤i,j≤4 ,

we calculate the numerical solutions of the eigenvalue problem. With grid points
0 = X0, X1, ..., XN−1, XN = 1, here, N = 320 in our computation, the boundary
conditions yield
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J(X0) =
4J(X1)− J(X2)

3
,

J(XN ) =
4J(XN−1)− J(XN−2)

3
.

(3.16)

Then the eigenvalue problem is discretized as
N2

0
N2

N2

 (J(Xk+1)−2J(Xk)+J(Xk−1))+M(Xk)·J(Xk) = λJ(Xk),

(3.17)
or, more specifically,

N2(J1(Xk+1) − 2J1(Xk) + J1(Xk−1)) +

4∑
j=1

m1j(Xk)Jj(Xk) = λJ1(Xk), 1 ≤ k ≤ N − 1;

4∑
j=1

m2j(Xk)Jj(Xk) = λJ2(Xk), 0 ≤ k ≤ N ;

N2(J3(Xk+1) − 2J3(Xk) + J3(Xk−1)) +

4∑
j=1

m3j(Xk)Jj(Xk) = λJ3(Xk), 1 ≤ k ≤ N − 1;

N2(J4(Xk+1) − 2J4(Xk) + J4(Xk−1)) +

4∑
j=1

m4j(Xk)Jj(Xk) = λJ4(Xk), 1 ≤ k ≤ N − 1.

(3.18)

Letting

V =



J2(X0)
J1(X1)
J2(X1)
J3(X1)
J4(X1)
...

J1(XN−1)
J2(XN−1)
J3(XN−1)
J4(XN−1)
J2(XN )


,

and denoting the coefficients matrix of (3.18) by G, we can rewrite (3.18) in the
matrix form

G · V = λ · V. (3.19)

So finally, the eigenvalue problem reduces to calculating the eigenvalues of the
matrix G.

For each of the seven steady state solutions on 320 grid points, we computed the
matrix G and its eigenvalues, and obtained the following results:

Solutions 1 and 2: These two solutions have the same eigenvalues. All the
eigenvalues have negative real parts as shown in Figure 2. The eigenvalue of
each solution with maximum real part is −0.1455± 1.47146i.
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Figure 2. The distribution of the eigenvalues on the complex plane for
solutions 1 and 2

Solution 3 (constant solution): To verify our computations, we recomputed
the eigenvalues for the constant solution using this discretization and verified
the two positive eigenvalues of 0.3373 and 0.3634.

Solution 4: All the eigenvalues have negative real parts and are displayed in
Figure 3. The eigenvalue with maximum real part is −0.2826.

−30 −25 −20 −15 −10 −5 0 5
−30

−20

−10

0

10

20

30

Figure 3. The distribution of the eigenvalues on the complex plane for solution 4

Solution 5: This solution has a positive eigenvalue, namely 1.2812.
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Solutions 6 and 7: These solutions have a positive eigenvalue, namely 0.4351.
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Figure 4. The steady state solutions by time-marching the system (1.1)
without the maternal production terms. The unit for x of the horizontal
axis: cm; the unit for [LR] of the vertical axis: µM . Initial conditions are
the boundary value problem solutions by the numerical algebraic geometry
method, with random perturbations. The perturbation size is [−0.05, 0.05].
Green oscillatory lines: the initial conditions. Red lines: the steady states
by time-marching, at time t = 100 hours. Top three pictures from the left
to the right are for: the solution 1, the solution 2 and the solution 3; middle
three pictures from the left to the right are for: the solution 4, the solution
5 and the solution 6; bottom picture is for: the solution 7.

In summary, the solutions, denoted as solutions 1, 2, and 4, have eigenvalues
which have negative real parts yielding that they are stable. 2

3.3. Numerical verification. By time marching the system (1.1) without the
maternal production terms, we numerically verified the local stability of the seven
steady state solutions. This was accomplished by using a random perturbation of
a solution of the boundary value problem as the initial condition as computing the
steady state solution.

We first perturbed each steady state solution of size [−0.05, 0.05]. The results,
summarized in Figure 4, demonstrate that the four solutions which have an eigen-
value with positive real part, as computed in Section 3.2, do not converge back to



STEADY STATES ON ZEBRAFISH PATTERNING 1425

the un-perturbed steady state solution. They converge to one of the stable steady
state solutions.

The three solutions which only have eigenvalues with negative real parts con-
verge back to the un-perturbed steady state solution. By changing the size of the
perturbation, we computed a local stability region for the three stable steady state
solutions. In our tests, both solutions 1 and 2 converged to itself if the pertur-
bation size was [−0.23, 0.23] and solution 4 converged to itself if the perturbation
size was [−1.52, 1.52].

Hence we numerically verified that 3 of these 7 steady state solutions are locally
stable, while the other 4 are unstable.

4. Role of the organizer. The non-homogeneous [LR] concentration of a stable
steady state solution of the system will determine the dorsal-ventral regions of a
zebrafish embryo. Since this system has multiple stable steady state solutions as
what we have found and analyzed in the previous sections, an interesting question
will be “what will the dorsal-ventral regions be for a specific zebrafish embryo?” or
“which stable steady state will the system converge to for a specific development
process?”. In this section, we numerically solved the full time-dependent system
(1.1) with the maternal production terms, and we vary the size and location of
the organizer (i.e., vary ΩO to be different intervals) to study the effects of the
organizer. Via numerical simulations, we find that the location of the organizer
plays an important role in the selection of the steady state pattern in this multi-
stability system.

All molecules have zero initial concentrations in the simulations. We used 321
spatial grid points and the grid size is ∆x = xmax/320.

4.1. Organizer location. The numerical simulation results shown in Figure 5
demonstrate that the location of the organizer determines which stable steady state
the system will converge to. When the organizer is located close to the right end
of the interval, the time-marching solution converges to the stable steady state
solution 1, and, if the organizer is located close to the left end of the interval, the
time-marching solution converges to the stable steady state solution 2. The time-
marching solution converges to the stable steady state solution 4 if the organizer
location is close to the middle of the interval.

4.2. Organizer size. The system is robust with respect to the change of the orga-
nizer size, which is consistent with the biological experiments [7]. In our simulations,
we assume that the organizer is located at the right end, just as the wild type case
[13]. We vary the organizer size from 1

2 of the whole domain to only 1
320 of the

domain, and study the effect on the steady state pattern. The results of these
simulations are summarized in Figure 6 and show that the steady state solution is
independent of the organizer size.

5. Conclusion. In this paper, we study the multiple stable steady states for a
reaction-diffusion system modeling the dorsal-ventral patterning during zebrafish
embryo development. First, we combine a finite difference discretization of the dif-
ferential equations and numerical algebraic geometric methods to solve the bound-
ary value problem at the steady state of the system, and obtain seven steady state
solutions. Then we analyze the stability of these seven solutions using both the
eigenvalue analysis and numerical time marching approach, and find that three of
these seven steady state solutions are stable. Since this system has multiple stable
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Figure 5. The evolution process of [LR] to steady states, with different
organizer locations. The organizer region ΩO is presented right below each
graph. The size of the organizer is fixed as 1

8xmax here. The spatial grid size
∆x = xmax/320. The unit for x of the horizontal axis: cm; the unit for [LR]
of the vertical axis: µM . In each graph, Green dashed: the concentration
of [LR] when t = 3.5 hours; Red dashed: the concentration of [LR] when
t = 50 hours; Black solid: the concentration of [LR] when t = 100 hours.

steady state solutions which are biological meaningful, we investigate the question
“which stable steady state will the system converge to for a specific development
process?” and find that the location of the organizer determines which stable steady
state the system will converge to.

The polynomial numerical algebraic geometric method is a powerful approach
which enables us to find as many steady state solutions as we can, and gives guid-
ance on finding multiple stable and biological meaningful steady state solutions.
Time-marching approach is a powerful tool but (a) since starting from a specific
initial state, each time-marching approach may reach at most one stable steady
state solution, and (b) unstable steady solution cannot be found by time-marching
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Figure 6. The evolution process of [LR] to a steady state, with different
organizer sizes. The organizer region is located at the right end, with
different sizes. The sizes of the organizer are listed right below each figure.
The spatial grid size ∆x = xmax/320. The unit for x of the horizontal
axis: cm; the unit for [LR] of the vertical axis: µM . In each graph, Green
dashed: the concentration of [LR] when t = 3.5 hours; Red dashed: the
concentration of [LR] when t = 50 hours; Black solid: the concentration of
[LR] when t = 100 hours.

approach. Polynomial treatment provides the steady state solutions directly and
then the stability can be verified by either time-marching or eigenvalue method.

In this model (1.1), the effects of organizer decay exponentially to zero along
with time evolution. Hence the shapes of these three steady state solutions are
independent of the organizer. But as what we show in the section 4, the organizer
which generates a non-homogeneous production rate for Chordin can provide a non-
homogeneous initial state for the system, and determines which stable steady state
the system converges to for this multiple steady states system.
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