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Abstract
High-order accurate weighted essentially non-oscillatory (WENO) schemes are a class of 
broadly applied numerical methods for solving hyperbolic partial differential equations 
(PDEs). Due to highly nonlinear property of the WENO algorithm, large amount of com-
putational costs are required for solving multidimensional problems. In our previous work 
(Lu et  al. in Pure Appl Math Q 14: 57–86, 2018; Zhu and Zhang in J Sci Comput 87: 
44, 2021), sparse-grid techniques were applied to the classical finite difference WENO 
schemes in solving multidimensional hyperbolic equations, and it was shown that sig-
nificant CPU times were saved, while both accuracy and stability of the classical WENO 
schemes were maintained for computations on sparse grids. In this technical note, we apply 
the approach to recently developed finite difference multi-resolution WENO scheme spe-
cifically the fifth-order scheme, which has very interesting properties such as its simplicity 
in linear weights’ construction over a classical WENO scheme. Numerical experiments on 
solving high dimensional hyperbolic equations including Vlasov based kinetic problems 
are performed to demonstrate that the sparse-grid computations achieve large savings of 
CPU times, and at the same time preserve comparable accuracy and resolution with those 
on corresponding regular single grids.
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1 Introduction

High-order accurate weighted essentially non-oscillatory (WENO) schemes are a class of 
broadly applied numerical methods for solving hyperbolic partial differential equations 
(PDEs) arising in science and engineering problems. This class of schemes is especially 
effective for problems whose solutions have both singularities (e.g., shock waves) and 
complicated smooth structures, e.g., see [29, 32]. High-order WENO schemes were first 
designed in [13, 19], then have been developed and studied extensively on both structured 
and unstructured meshes (e.g., [5, 7, 12, 17, 21, 27, 30, 31, 33, 35]). Due to highly non-
linear property of the high-order accurate WENO algorithm, large amount of operations 
and computational costs are required in the simulations, especially for multidimensional 
problems with three or even higher spatial dimension. It is an important topic to develop 
efficient approach in implementing high-order WENO methods for solving high spatial 
dimensional problems.

Sparse-grid techniques are a class of efficient approximation tools used for solving high-
dimensional problems in many scientific and engineering applications [2]. The main idea 
of sparse-grid methods is to reduce the number of degrees of freedom in regular single-
grid computations, which was introduced in finite element simulations by Zenger [28]. For 
a d dimensional problem with N grid points in one coordinate direction, sparse-grid meth-
ods only involve O(N ⋅ (logN)d−1) degrees of freedom, rather than O(Nd) degrees of free-
dom in regular single-grid methods. In 1992, Griebel et al. [9] developed the sparse-grid 
combination technique, which provided an efficient way to implement sparse-grid methods. 
The key point of the sparse-grid combination technique is to design a linear combination 
of solutions on semi-coarsened sparse grids such that the resulted final solution can keep 
comparable accuracy order as that on a single full grid. This is achieved by choosing the 
combination coefficients to cancel certain leading-order error terms in sparse-grid solu-
tions [9, 15, 16]. In our previous work [22, 23, 37], the sparse-grid combination technique 
was applied to the classical high-order WENO schemes [13, 25] in solving hyperbolic 
equations and convection-diffusion equations on high spatial dimensional domains, and it 
was shown that significant computational times were saved, while both the accuracy and 
stability of the classical high-order WENO schemes were maintained for simulations on 
sparse grids.

Recently in [34] a new type of WENO schemes, called multi-resolution WENO 
schemes, was developed to solve hyperbolic PDEs. Different from the classical WENO 
schemes [13, 25], this type of WENO schemes constructed WENO approximations on 
unequal-sized substencils. The multi-resolution WENO schemes exhibit many interesting 
properties such as their simplicity in constructing linear weights, which in general can be 
taken as arbitrary positive numbers with the only requirement that their sum equals 1. The 
multi-resolution WENO schemes simplify the classical WENO schemes on unstructured 
meshes [35], and improve the convergence of classical WENO schemes to steady state 
solutions [18, 36].

In this technical note, we extend our previous sparse-grid approach to the newly devel-
oped multi-resolution WENO schemes specifically the fifth-order finite difference multi-
resolution WENO scheme in [34]. The goal is to obtain much more efficient computations 
of the fifth-order multi-resolution WENO (MRWENO5) scheme on sparse grids than that 
in their regular performance on a single full grid, for solving multidimensional hyperbolic 
PDEs. At the same time, comparable high-order accuracy of the multi-resolution WENO 
scheme in smooth regions and nonlinear stability in non-smooth regions of the solutions 
in sparse-grid simulations need to be preserved as that for simulations on regular single 
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grids. We would like to point out that this problem is not trivial, because the theoretical 
error analysis of nonlinear schemes such as these highly nonlinear WENO schemes on 
sparse grids is difficult and still an open problem, and the numerical experiment is the 
principal way to study these schemes. Here we use the sparse-grid combination technique 
to implement the MRWENO5 scheme on sparse grids. To improve the robustness of the 
algorithm, the MRWENO5 interpolation is applied for the prolongation step of sparse-grid 
combination. The rest of the paper is presented as following. In Sect. 2, we describe the 
numerical method and the procedure to adopt the sparse-grid combination technique to the 
MRWENO5 scheme, with a novel MRWENO5 prolongation. In Sect. 3, numerical experi-
ments including solving three-dimensional (3D) and four-dimensional (4D) Vlasov based 
PDEs are performed to test the sparse-grid MRWENO5 method and verify significant CPU 
time savings by comparisons with single-grid simulations. Conclusions and discussions are 
provided in Sect. 4.

2  A Fifth‑Order Sparse‑Grid Multi‑resolution WENO Finite Difference 
Method

We study efficient numerical methods for solving multidimensional hyperbolic PDEs,

where u(x, t) is the unknown function, and f = (f1,⋯ , fd)
T is the vector of flux functions 

defined on a spatial domain with the dimension d. We apply the method of lines (MOL) to 
solve Eq. (1). For spatial discretization, the recently developed fifth-order finite difference 
multi-resolution WENO scheme [34] is used. The goal of this technical note is to develop 
an effective way using sparse grids to achieve very efficient multi-resolution WENO sim-
ulations. We proceed by first describing the fifth-order finite difference multi-resolution 
WENO spatial discretization, then detailing the approach about its sparse-grid implemen-
tation by the sparse-grid combination technique with an MRWENO5 prolongation. Finally, 
the algorithm is summarized and given in its complete form.

2.1  The Fifth‑Order Multi‑resolution WENO Scheme (MRWENO5)

In discretizing Eq. (1), a conservative finite difference scheme is used. This scheme 
approximates the point values of unknown functions in the PDEs at a uniform (or smoothly 
varying) grid. Here the description for the discretization of derivatives will be given in one 
spatial direction, since the finite difference multi-resolution WENO schemes approximate 
multidimensional derivatives in a dimension by dimension way. Without loss of generality 
the x-direction derivative f (u)x is considered, and discretizations in other directions follow 
a similar fashion. A conservative difference scheme is used to approximate the value of 
f (u)x at a grid point with the x-coordinate xi,

where f̂i+1∕2 is the numerical flux at the point xi+1∕2 = (xi + xi+1)∕2 and the uniform grid 
has the grid size Δx = (xi+1 − xi) in the x-direction. To ensure correct upwind biasing and 
linear stability, the flux f(u) is split into a positive wind part f +(u) (i.e., df

+(u)

du
⩾ 0 for the 

scalar case, or the corresponding eigenvalue is positive for the system case with a local 

(1)ut + ∇ ⋅ f (u) = 0,

(2)f (u)x|x=xi ≈
1

Δx
(f̂i+1∕2 − f̂i−1∕2),
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characteristic decomposition) and a negative wind part f −(u) (i.e., df
−(u)

du
< 0 or the corre-

sponding eigenvalue is negative). As in [25], the popular “Lax-Friedrichs flux splitting” is 
employed as such

where � = maxu |f �(u)| over the range of u. Then using different stencils, the positive and 
negative numerical fluxes f̂ +

i+1∕2
 and f̂ −

i+1∕2
 are approximated by the MRWENO5 scheme 

separately. The final numerical flux in (2) is formed as f̂i+1∕2 = f̂ +
i+1∕2

+ f̂ −
i−1∕2

 . The 
MRWENO5 approximations to numerical fluxes in [34] are summarized as the following.

The MRWENO5 approximation of the numerical flux f̂ +
i+1∕2

 is based on the stencils com-
prised of cells Ij =

[
xj−1∕2, xj+1∕2

]
 with j = i − 2,⋯ , i + 2 , and numerical values f +(uj) at 

these grid points xj . Note that for the simplicity of notations, here uj denotes the numerical 
value of u at the grid point x = xj along the grid lines of other spatial directions, with the 
understanding that the value at xj may be different for different grid lines of other spatial direc-
tions. The procedure consists of the following five steps [34].

Step 1 The MRWENO5 approximation has three substencils Tk =
{
Ii+1−k,⋯ , Ii−1+k

}
 , 

k = 1, 2, 3 . Based on them, we reconstruct 2k − 2 degree polynomials qk(x) which satisfy

  Step 2 Obtain equivalent expressions for these reconstruction polynomials of different 
degrees, which are denoted by p3(x) , p2(x), and p1(x) , and defined as follows:

Similar ideas to construct these expressions can also be found in the central WENO 
schemes [3, 17]. In principle, the linear weights � ’s can be any positive numbers on the 
only condition that �1,2 + �2,2 = 1 with �2,2 ≠ 0 , and �1,3 + �2,3 + �3,3 = 1 with �3,3 ≠ 0 . 
In [34], a balance between the sharp and essentially non-oscillatory shock transitions in 
nonsmooth regions and accuracy in smooth regions is considered, and the values of these 
linear weights are taken as �1,2 = 1∕11 , �2,2 = 10∕11 , �1,3 = 1∕111 , �2,3 = 10∕111 , and 
�3,3 = 100∕111

Step 3 Calculate the smoothness indicators �l2 , which measure how smooth the func-
tions pl2 (x) for l2 = 2, 3 are in the interval [xi−1∕2, xi+1∕2] . The same approach as in [13] is 
used:

The only exception is �1 , which is magnified from zero to a tiny value. See [34] for details.

(3)f +(u) =
1

2
(f (u) + �u), f −(u) =

1

2
(f (u) − �u),

1

Δx ∫
xl+1∕2

xl−1∕2

qk(x)dx = f +(ul), l = i − k + 1,⋯ , i − 1 + k; k = 1, 2, 3.

(4)p3(x) =
1

�3,3
q3(x) −

�1,3

�3,3
p1(x) −

�2,3

�3,3
p2(x),

(5)p2(x) =
1

�2,2
q2(x) −

�1,2

�2,2
p1(x),

(6)p1(x) = q1(x).

(7)�l2 =

2(l2−1)∑
�=1

∫
xi+Δx∕2

xi−Δx∕2

Δx2�−1
(d�pl2 (x)

dx�

)2

dx, l2 = 2, 3.
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Step 4 Calculate the nonlinear weights based on the linear weights and the smoothness 
indicators. Here the WENO-Z type nonlinear weights [5] are applied, i.e., first we compute 
a quantity � which is based on the absolute differences of the smoothness indicators: 

� =

�∑2

l=1
��3−�l�
2

�2

 , then the nonlinear weights are

 where 𝜖 > 0 which is a small number preventing the denominator from becoming 0.
Step 5 The final MRWENO5 reconstruction of f̂ +

i+1∕2
 is obtained by

The procedure for the reconstruction of the numerical flux f̂ −
i+1∕2

 follows similarly in that it 
is mirror-symmetric with respect to xi+1∕2.

2.2  The Sparse‑Grid MRWENO5 Scheme

In this section, we study how to implement the MRWENO5 scheme on sparse grids by 
incorporating a sparse-grid combination technique. The goal is to save the computational 
costs, and at the same time keep the accuracy and stability of the MRWENO5 scheme. The 
essential idea of the sparse-grid combination technique is to solve the PDE on several semi-
coarsened grids (sparse grids) and combine the solutions from these semi-coarsened grids 
to get a solution on the most refined grid, which is corresponding to the usual single full 
grid in regular single-grid computations. The advantage of this technique is that the PDE is 
solved on a fewer number of grid points than the single full grid; therefore, computational 
costs are saved. The cost saving becomes more significant the higher the dimension of the 
problem. A good sparse-grid combination technique is expected to provide a final solution 
with comparable accuracy when compared to the solution obtained on a single full grid. 
Some previous work can be found in, e.g., [9, 15, 16, 22, 23, 37].

Without the loss of generality, the algorithm for two-dimensional (2D) cases is pre-
sented here, as procedures for higher dimensional cases are performed in a similar fashion. 
We consider a 2D domain [a, b]2 and define notations as follows. Begin by partitioning the 
domain into the coarsest mesh called a root grid �0,0 . The root grid �0,0 has the mesh size 
H =

b−a

Nr

 , where Nr is the number of cells in each spatial direction. Next several refinements 
are performed in the x and y directions on the root grid to obtain a family of semi-coars-
ened sparse grids {�l1,l2} . l1 and l2 denote the levels of refinement in relation to the root 
grid in the x and y directions, respectively, where l1 = 0, 1,⋯ ,NL and l2 = 0, 1,⋯ ,NL , NL 
denoting the finest level of refinement. Thus, on each grid of semi-coarsened grids {�l1,l2} , 
in the x direction the mesh size is hl1 = 2−l1H and similarly for the y direction hl2 = 2−l2H . 
The finest grid is �NL ,NL and has the grid size h = 2−NLH in both x and y directions. Note 
that a square domain is used here for the simplicity of the presentation; however, the algo-
rithm here can be applied to any rectangular domain straightforwardly.

The MRWENO5 scheme described in the last section is used for spatial discretization of 
Eq. (1), and the popular third-order total variation diminishing Runge-Kutta (TVD-RK3) 
scheme [8, 25] is adopted for time discretization. Instead of solving the PDE (1) on a single 
full grid, we apply the sparse-grid combination technique to solve it on (2NL + 1) sparse grids 

(8)𝜔l1
=

�̄�l1∑3

l=1
�̄�l

, �̄�l1
= 𝛾l1,3

�
1 +

𝜏

𝜖 + 𝛽l1

�
, l1 = 1, 2, 3,

(9)f̂ +
i+1∕2

=

3∑
l=1

𝜔lpl(xi+1∕2).



 Communications on Applied Mathematics and Computation

1 3

{�l1,l2}I , where the index set I =
{
(l1, l2)|l1 + l2 = NL or l1 + l2 = NL − 1

}
 . More spe-

cifically, time marching of numerical solutions of the PDE (1) is carried out on these sparse 
grids:

and we obtain (2NL + 1) sets of numerical solutions 
{
Ul1,l2

}
I
 . Then the next step is to com-

bine solutions on these sparse grids to obtain the final solution on the finest grid �NL ,NL , 
since the key point in sparse-grid computations to reduce computational cost is that the 
PDE is never solved directly on the full grid �NL ,NL , but only on 

{
�l1,l2

}
I
 which in total 

contains fewer grid points. In this step, a prolongation operator PNL ,NL is first applied on 
each sparse-grid solution of 

{
Ul1,l2

}
I
 to obtain (2NL + 1) solutions on the finest grid �NL ,NL , 

then a combination of all of these solutions is performed to form the final solution ÛNL ,NL on 
�NL ,NL . The details of the prolongation operator PNL ,NL and the combination are described in 
the following.

2.2.1  MRWENO5 Prolongation PNL ,NL

We define a prolongation operator PNL ,NL such that PNL ,NL maps numerical solutions 
{
Ul1,l2

}
I
 

on sparse grids onto the finest grid �NL ,NL . For example, given a numerical solution Ul1,l2 on 
�l1,l2 , then PNL ,NLUl1,l2 provides numerical values on all of the grid points of �NL ,NL . Imple-
mentation of prolongation operators is usually accomplished by interpolation procedure. 
Regular Lagrange interpolations can be used directly for a smooth solution, but in the case 
of solutions with discontinuities such as those we encounter with solving hyperbolic PDEs, 
more robust interpolations are required. Based on results in [9, 15, 16] for linear schemes and 
in [22, 23, 37] for nonlinear schemes, it is concluded that the final sparse-grid solution ÛNL ,NL 
has similar accuracy orders as the corresponding single-grid one, as long as the interpolation 
accuracy order in prolongation is not less than the accuracy order of the numerical scheme 
itself used to solve PDEs. Therefore, here, we use the MRWENO5 interpolation in prolonga-
tion. The interpolations are implemented dimension by dimension, and the MRWENO5 inter-
polation procedure for the one-dimensional (1D) case is presented as the following.

Given values ui−2, ui−1, ui, ui+1, ui+2 at the grid points xi−2, xi−1, xi, xi+1, xi+2 , respectively, 
we find an MRWENO5 interpolation uMRI(x) for any point x ∈ [x

i−
1

2

, x
i+

1

2

) . Denote the uni-
form grid size by h, and x

i−
1

2

= (xi−1 + xi)∕2 , x
i+

1

2

= (xi + xi+1)∕2 . The MRWENO5 interpo-
lation procedure is similar as the MRWENO5 approximation described in Sect. 2.1, except 
that here the Lagrange interpolation is used rather than the reconstruction to form the approxi-
mation polynomials. More specifically, first we form the approximation polynomials

where q1(x) = ui , the degree 0 polynomial which interpolates u on the point xi ; q2(x) is 
the degree two polynomial which interpolates u on the points xi−1, xi, xi+1 ; q3(x) is the 

{
�0,NL ,�1,NL−1,⋯ ,�NL−1,1,�NL ,0

}
and

{
�0,NL−1,�1,NL−2,⋯ ,�NL−2,1,�NL−1,0

}
,

(10)p1(x) = q1(x),

(11)p2(x) =
1

�2,2
q2(x) −

�1,2

�2,2
p1(x),

(12)p3(x) =
1

�3,3
q3(x) −

�1,3

�3,3
p1(x) −

�2,3

�3,3
p2(x),
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degree four polynomial which interpolates u on the points xi−2, xi−1, xi, xi+1, xi+2 . These lin-
ear weights � ’s are same as those defined in Sect.  2.1, where �1,2 = 1∕11 , �2,2 = 10∕11 , 
�1,3 = 1∕111 , �2,3 = 10∕111 , and �3,3 = 100∕111.

Then, Eq. (7) is used to calculate smoothness indicators �2 and �3 for these approxima-
tion polynomials p2(x) and p3(x):

Similarly as in Sect. 2.1, the smoothness indicator �1 associated with the constant polyno-
mial p1(x) is magnified from zero to a tiny value as in [34]. The corresponding nonlinear 
weights �1,�2,�3 are computed using the formula (8). The final MRWENO5 interpolation 
is then given by

The dimension by dimension approach is implemented for multidimensional interpolations 
to obtain the MRWENO5 prolongation on the finest grid, for example the PNL ,NLUl1,l2 on 
�NL ,NL in a 2D case.

2.2.2  Algorithm Summary

The algorithm of the sparse-grid MRWENO5 scheme is summarized here.

Algorithm: Sparse‑Grid MRWENO5 Scheme 

• Step 1 Restrict the initial condition of the PDE (1) to (2NL + 1) sparse grids 
{
�l1,l2

}
I
 

defined above. Namely, the initial condition functions are evaluated at grid points of 
sparse grids 

{
�l1,l2

}
I
.

• Step 2 On each sparse grid �l1,l2 in {�l1,l2}I , solve the PDE (1) by the MRWENO5 
scheme with the TVD-RK3 time stepping and march to the final time T. Then (2NL + 1) 
sets of numerical solutions 

{
Ul1,l2

}
I
 are obtained.

• Step 3 At the final time T,

– on each sparse grid �l1,l2 in {�l1,l2}I , apply the MRWENO5 prolongation operator 
PNL ,NL on the numerical solution Ul1,l2 , and obtain PNL ,NLUl1,l2 on the most refined 
grid �NL ,NL;

– perform the combination to compute the final solution: 

(13)�2 =
121

300

(
4u2

i−1
+
(
5ui+1 − 13ui

)
ui−1 + 13u2

i
+ 4u2

i+1
− 13uiui+1

)
,

(14)

�3 =
1

67 200 000

(
112 756 316u2

i−2
− 37(22 231 031ui−1 − 29 557 877ui + 17 054 405ui+1

− 3 632 623ui+2)ui−2 + 1 657 473 113u2
i−1

+ 3 613 771 547u2
i
+ 1 657 473 113u2

i+1

+ 112 756 316u2
i+2

− 4 707 412 996uiui+1 + ui−1(−4 707 412 996ui + 2 846 027 902ui+1

− 631 012 985ui+2) + 1 093 641 449uiui+2 − 822 548 147ui+1ui+2

)
.

(15)uMRI(x) = �1p1(x) + �2p2(x) + �3p3(x).

(16)ÛNL ,NL =
∑

l1+l2=NL

PNL ,NLUl1,l2 −
∑

l1+l2=NL−1

PNL ,NLUl1,l2 .
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The algorithm is similar for higher dimensional problems with performing the prolonga-
tion operations to additional spatial directions. The sparse-grid combination formula for a 
general d dimensional problem is ([9])

Here NL is the finest level of the sparse grids used in the simulation. Id = (l1, l2,⋯ , ld) 
denotes the index of the levels of a sparse grid �l1,l2,⋯,ld , and |Id| = l1 + l2 +⋯ + ld . Ul1,⋯,ld 
is the numerical solution by solving the PDEs on the sparse grid �l1,⋯,ld , and PNL ,⋯,NL is 
the prolongation operator onto the finest grid �NL ,⋯,NL . ÛNL ,⋯,NL is the final solution of the 
sparse-grid combination on �NL ,⋯,NL . In the numerical experiments of the next section, the 
2D, 3D, and 4D formulas corresponding to d = 2, 3, 4 in (17) are used.

Remark 1 From the description of the sparse-grid MRWENO5 scheme of Sect. 2, we 
can see that the computational advantages of finite difference MRWENO methods on sin-
gle grids [34] are preserved in this sparse-grid scheme. In the sparse-grid combination 
technique used here, PDEs are solved independently by the finite difference MRWENO5 
scheme on selected semi-coarsened grids, and good properties of finite difference 
MRWENO methods (e.g., their simplicity in constructing linear weights) do not change on 
these grids. Furthermore, in the prolongation step, the MRWENO5 interpolation procedure 
is also simpler in the step of constructing linear weights, than the sparse-grid WENO5 
method in [37] which uses the classical fifth-order WENO interpolation. For finite volume 
MRWENO methods on unstructured meshes [35], how their computational advantages are 
preserved is a very interesting topic. It depends on how to construct finite volume sparse-
grid WENO schemes on unstructured meshes (e.g., unstructured triangular meshes), which 
is still an open problem as far as we know.

3  Numerical Experiments

In this section, numerical experiments on solving multidimensional problems including 3D 
and 4D Vlasov based PDEs are performed to test the sparse-grid MRWENO5 method and 
show a large amount of CPU time savings by comparisons with corresponding single-grid 
simulations. Error analysis on linear schemes for linear PDEs [9, 16] shows that the sparse-
grid combination leads to a canceling in leading-order errors of numerical solutions on semi-
coarsened grids, hence the accuracy order of the final solution of a sparse-grid simulation is 
maintained to be almost the same as that on a corresponding single full grid simulation. How-
ever, such sparse-grid error analysis is very difficult to carry out for the MRWENO5 method 
due to its high nonlinearity. Following our previous studies [22, 23, 37], instead of theoretical 
analysis, numerical simulations are used to show the fifth-order accuracy for the sparse-grid 
MRWENO5 scheme. Specifically, mesh refinement studies are performed to compute numeri-
cal convergence rates on successively refined grids. In [37], two different approaches, “refine 
root grid” and “refine levels”, are tested and compared for mesh refinement of sparse-grid 
simulations. For example, for 3D sparse grids with a 10 × 10 × 10 root grid and NL = 3 , the 
finest grid is 80 × 80 × 80 . The “refine root grid” approach is to refine the root grid, while the 
total number of semi-coarsened sparse-grid levels NL + 1 is kept unchanged. Therefore, if the 

(17)ÛNL ,⋯,NL =

NL+d−1∑
m=NL

(−1)d+NL−(m+1)

(
d − 1

m − NL

) ∑
|Id|=m−(d−1)

PNL ,⋯,NLUl1,⋯,ld .
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root grid is refined once to be 20 × 20 × 20 , we obtain the finest grid 160 × 160 × 160 . The 
“refine levels” approach refines the sparse-grid levels while keeping the root grid fixed. There-
fore, if NL = 3 is refined once to be NL = 4 with the fixed 10 × 10 × 10 root grid, the fin-
est grid 160 × 160 × 160 is also obtained. It is found in [37] that although the “refine levels” 
approach is more efficient and saves more CPU time costs than the “refine root grid” approach, 
it has obvious accuracy-order reductions for the fifth-order sparse-grid WENO scheme. The 
“refine root grid” approach can always achieve the desired fifth-order accuracy of the sparse-
grid WENO scheme. Hence in this technical note, we use the “refine root grid” approach in 
numerical experiments. In addition, as discovered in [22, 37], to achieve the desired numerical 
accuracy, time step sizes used to march the PDEs on all semi-coarsened sparse grids have to 
be determined by the spatial grid size of the most refined grid, i.e., �NL ,NL in the 2D cases, or 
�NL ,NL ,NL in the 3D cases, etc. This way to choose time step sizes is also followed here. All of 
the numerical simulations in this technical note are performed on a 2.3 GHz, 16 GB RAM 
Linux workstation.

We first test the sparse-grid MRWENO5 method on nonlinear Burgers’ equations to study 
its numerical accuracy orders for smooth solution cases, and properties for the cases after 
shock waves form. Then the method is applied to 3D and 4D Vlasov based PDEs in kinetic 
simulations, to show its high efficiency and potential in solving high dimensional application 
problems. In this section, we use Nh to denote the number of computational cells in one spatial 
direction of the most refined grid in sparse grids or the corresponding single grid.

Example 1 (A 2D Burgers’ equation). 
Consider the 2D Burgers’ equation

with periodic boundary conditions. At first, the problem is solved till the final time 
T = 0.5∕π2 when the solution is still smooth, to test numerical accuracy orders of schemes. 
In this example, we also compare the accuracy difference of the sparse-grid WENO5 
method in [37] which uses the classical fifth-order WENO scheme [13], and the sparse-
grid MRWENO5 method in this paper. So both the classical fifth-order WENO scheme and 
the multi-resolution fifth-order WENO scheme on sparse grids and corresponding single 
grids are used to solve the problem and compare the results. For the sparse-grid WENO5 
scheme, the classical fifth-order WENO prolongation is used in sparse-grid combination, 
while the MRWENO5 prolongation is used for the sparse-grid MRWENO5 scheme. The 
TVD-RK3 scheme is used for the time evolution, so to test numerical accuracy orders of 
the fifth-order WENO schemes, we follow the common practice in the literature and take 
the time step size Δtn as Δtn = min(Δt1,Δt2) , where Δt1 =

CFL

�x∕Δx+�y∕Δy
 and 

Δt2 = (min(Δx,Δy))5∕3 . Note that CFL is the CFL number and taken as 0.5; Δx and Δy are 
grid sizes in the x, y directions, respectively, of the finest grid �NL ,NL and here Δx = Δy = h ; 
�x = maxu|f �(u)| and �y = maxu|g�(u)| with f (u) = g(u) =

u2

2
 in this case. For smooth solu-

tions, we follow the suggestion in [6] and choose the values of � in both the MRWENO5 
and the classical WENO5 schemes as a function of spatial grid sizes, instead of a fixed 
constant, for better accuracy errors and convergence orders. Specifically, � = h2 for single-
grid computations; for sparse-grid computations, since spatial grid sizes are different on 
different directions of the spare grids, we take � = h2

l1
 in the WENO approximations of the 

x direction and similarly � = h2
l2
 in the WENO approximations of the y direction for WENO 
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schemes on each grid of semi-coarsened sparse grids {�l1,l2}I . Similarly for both the 
MRWENO5 and the classical WENO5 prolongations, � is chosen in the same manner.

The L∞ errors, L1 errors, and their numerical accuracy orders and CPU times are 
reported in Table 1 for the classical WENO5 scheme and Table 2 for the MRWENO5 
scheme. We observe that the fifth-order accuracy is obtained for all schemes along with 
the mesh refinement. On the relatively coarse grids, the numerical errors of sparse-
grid computations are greater than those on the corresponding single grids. With more 

Table 1  Example 1, 2D Burgers’ equation

Classical WENO5 scheme, comparison of numerical errors and CPU times for computations on single-grid 
and sparse-grid. Classical WENO5 interpolation for prolongation is employed in sparse-grid computations. 
Final time T = 0.5∕π2 . N

r
 : number of cells in each spatial direction of a root grid. N

L
 : the finest level in a 

sparse-grid computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

Single-grid

N
h
× N

h
L
∞ error Order L

1 error Order CPU/s

80 × 80 2.20 × 10−7 5.41 × 10−8 0.02
160 × 160 7.22 × 10−9 4.93 1.77 × 10−9 4.93 0.20
320 × 320 2.30 × 10−10 4.97 5.66 × 10−11 4.97 2.37
640 × 640 7.25 × 10−12 4.99 1.78 × 10−12 4.99 34.38

Sparse-grid
N
r

N
L

N
h
× N

h
L
∞ error Order L

1 error Order CPU/s
10 3 80 × 80 9.97 × 10−6 2.09 × 10−6 0.05
20 3 160 × 160 2.92 × 10−8 8.41 6.71 × 10−9 8.28 0.24
40 3 320 × 320 2.58 × 10−10 6.83 6.95 × 10−11 6.59 1.81
80 3 640 × 640 7.26 × 10−12 5.15 1.86 × 10−12 5.23 20.48

Table 2  Example 1, 2D Burgers’ equation

MRWENO5 scheme, comparison of numerical errors and CPU times for computations on single-grid and 
sparse-grid. MRWENO5 interpolation for prolongation is employed in sparse-grid computations. Final time 
T = 0.5∕π2 . N

r
 : number of cells in each spatial direction of a root grid. N

L
 : the finest level in a sparse-grid 

computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

Single-grid

N
h
× N

h
L
∞ error Order L

1 error Order CPU/s

80 × 80 2.19 × 10−7 4.96 × 10−8 0.04
160 × 160 7.21 × 10−9 4.93 1.61 × 10−9 4.95 0.62
320 × 320 2.31 × 10−10 4.97 5.10 × 10−11 4.98 6.85
640 × 640 7.25 × 10−12 4.99 1.59 × 10−12 5.00 73.46

Sparse-grid
N
r

N
L

N
h
× N

h
L
∞ error Order L

1 error Order CPU/s
10 3 80 × 80 1.82 × 10−6 2.85 × 10−7 0.07
20 3 160 × 160 8.30 × 10−9 7.78 2.18 × 10−9 7.03 0.44
40 3 320 × 320 2.34 × 10−10 5.15 5.32 × 10−11 5.36 4.04
80 3 640 × 640 7.26 × 10−12 5.01 1.60 × 10−12 5.05 52.96
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refined grids, the numerical errors become comparable to each other as the sparse-grid 
computation errors catch up to those on single-grid computations. A behavior of super-
convergence is observed in sparse-grid computations. From the CPU time costs, on 
refined meshes we see around 30% − 40% computational time saved for simulations on 
sparse grids vs. single grids, for this 2D problem. In addition, due to the aforementioned 
time step size choice, for a relatively refined spatial grid, the total number of time steps 
to reach the final time T increases by a factor of about 25∕3 if the spatial mesh Nh × Nh 
is refined once. Therefore, with one spatial mesh refinement (the number of spatial grid 
points increases by a factor of about 4), the CPU time cost of the time evolution part in 
the simulation, which is the major computational cost part of the whole simulation, is 
expected to increase by a factor of about 12.7. In the mesh refinement study cases for 
sparse-grid computations here, the CPU time cost of the time evolution part also fol-
lows this way, i.e., it is expected to increase by a factor of about 12.7 with one spatial 
mesh Nh × Nh refinement, when the spatial mesh is relatively refined. In Tables 1 and 2, 
we see a factor of about 11.3 and 13.1 increase of CPU times for the refined meshes of 
the sparse-grid computations, which is approximately the expected rate, with the differ-
ences coming from CPU time costs of the other procedures besides the time evolution 
part in the simulation and possible perturbations to CPU time measurements by other 
background programs of the computer system, etc. Comparing the results of the classi-
cal WENO5 and the MRWENO5 schemes, it is interesting to find that their numerical 
errors in single-grid computations are similar. However, on the relatively coarse grids 
of sparse-grid computations, the sparse-grid MRWENO5 scheme has much smaller 
numerical errors than the classical sparse-grid WENO5 scheme, although it needs more 
CPU time costs.

Next, we solve the problem till later time when shock waves appear in the solution. 
The numerical solutions of the MRWENO5 scheme by sparse-grid and the correspond-
ing single-grid simulations, at the time T = 5∕π2 when large gradients start to form and 
at T = 2 when the discontinuities and shock profile become sharper are presented in 
Fig. 1. The sparse-grid root grid Nr = 80 , and the finest level NL = 3 . Hence the most 
refined mesh in the sparse grids or the corresponding single grid has 640 × 640 compu-
tational cells. The pictures of results by the classical WENO5 scheme are similar, hence 
are omitted here to save space. For discontinuous solutions, our numerical experiments 
suggest that smaller � values in sparse-grid WENO schemes give more stable results and 
better resolution, as that in regular high-order WENO schemes on single grids. Hence 
we take � = 10−10 as in [34]. From Fig. 1, we observe that the numerical solutions by 
the sparse-grid MRWENO5 scheme and its corresponding single-grid simulation are 
comparable. The nonlinear stability and high resolution properties of the MRWENO5 
scheme for resolving shock waves are preserved well in the sparse-grid simulation. In 
terms of computational efficiency, it takes 547.95 s and 2 003.13 s of CPU time to com-
plete the simulation at T = 5∕π2 and T = 2 , respectively, in the sparse-grid computation, 
while 706.46 s and 2 660.58 s of the CPU time are needed for finishing the simulation at 
T = 5∕π2 and T = 2 , respectively, in the corresponding single-grid computation. About 
25% CPU time is saved by performing the MRWENO5 simulation on the sparse grids 
here. In the next 3D and 4D examples, we will observe much more significant CPU time 
saving by sparse-grid simulations.

Example 2 (A 3D Burgers’ equation).
Consider the 3D Burgers’ equation
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with periodic boundary conditions. The MRWENO5 scheme on sparse grids and the cor-
responding single grids is used to solve the problem. The values of � in the MRWENO5 
scheme and the MRWENO5 prolongation, and the time step size Δtn are chosen in the 
similar way as Example 1. The CFL number is taken as 0.5. First we take the final time 
T = 0.5∕π2 when the solution is still smooth. The L∞ errors, L1 errors, and their numeri-
cal accuracy orders and CPU times are reported in Table  3. Again, we observe that the 
fifth-order accuracy is obtained along with the mesh refinement, for both the sparse-grid 
MRWENO5 scheme and the corresponding single-grid computations. Comparing the 
numerical errors of sparse-grid computations and the corresponding single-grid ones, it is 
found that on a relatively coarse grid, sparse-grid computation errors are greater than those 
on the corresponding single-grid, but with more refined meshes, the numerical errors are 
comparable to each other as the sparse-grid computation errors catch up to those of single-
grid computations. For this 3D problem, the sparse-grid computations are much more effi-
cient than the corresponding single-grid ones. From the CPU times reported in Table 3, it 
is observed that around 70% − 85% computational time is saved for simulations on sparse 
grids to reach a similar level of numerical errors to that on the corresponding single grids.

Next, we solve the problem till later time when shock waves appear in the solution. As 
the last example, the numerical solutions of the MRWENO5 scheme by sparse-grid and the 
corresponding single-grid simulations, at the time T = 5∕π2 when large gradients start to 
form and at T = 2 when the discontinuities and shock profile become sharper are presented 
in Fig. 2. Both 2D and 1D cutting plots of the numerical solutions on the plane z = 0 are 
shown. The sparse-grid root grid Nr = 80 , and the finest level NL = 3 . Hence the most 
refined mesh in the sparse grids or the corresponding single grid has 640 × 640 × 640 com-
putational cells. From Fig. 2, we observe that the numerical solutions by the sparse-grid 
MRWENO5 scheme and its corresponding single-grid simulation are comparable, except 
that at T = 2 when the shock profiles are sharp, the numerical solution by the sparse-grid 
MRWENO5 scheme has some overshoots at the shock locations. This phenomenon has 
also been observed in the classical sparse-grid WENO5 scheme in [37]. As discussed in 
[37], the overshoots are due to the final linear combination in the last step of the sparse-
grid combination. Note that the numerical solutions by the MRWENO5 scheme on all 
sparse grids and the MRWENO5 prolongations are free of oscillations, and the oscilla-
tions appeared here just come from the final linear combination step which happens after 
the time evolutions are finished and is independent of the time evolution procedure. This 
linear combination is performed only once for a specific final time T. Hence the stability of 
the whole sparse-grid computations is not affected. How to resolve this issue in high-order 
sparse-grid WENO schemes is still an open problem and under investigation. In terms of 
computational efficiency, it takes 111 058.53 s and 434 827.47 s of CPU time to complete 
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Fig. 1  Example 1, solution of 2D Burgers’ equation by the MRWENO5 scheme on sparse grids ( Nr = 80 
for root grid, finest level NL = 3 in the sparse-grid computation) and the corresponding 640 × 640 single 
grid, using the MRWENO5 interpolation for prolongation in the sparse-grid combination. (a)–(d): solution 
at T = 5∕π2 ; (e)–(h): solution at T = 2 ; (a), (c), (e), (g): sparse-grid results; (b), (d), (f), (h): single-grid 
results; (a), (b), (e), (f): contour plots; (c), (d), (g), (h): 1D cutting-plots along x = y . Circles: numerical 
solutions; lines: exact solution
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the simulation at T = 5∕π2 and T = 2 , respectively, in the sparse-grid computation, while 
602 550.54 s and 2 545 996.15 s of CPU time are needed for finishing the simulation at 
T = 5∕π2 and T = 2 , respectively, in the corresponding single-grid computation. More than 
80% CPU time is saved by performing the MRWENO5 simulation on the sparse grids here.

Example 3 (A 3D viscous Burgers’ equation).
In Example 2, it is shown that there are some overshoots in the numerical solution of 

the sparse-grid MRWENO5 scheme for a sharp shock profile. In this example we add some 
small viscosity into the 3D Burgers’ equation and solve the convection-dominated diffu-
sion problem. It is interesting to observe the performance of the sparse-grid MRWENO5 
scheme for such convection-dominated diffusion PDE. Consider the 3D viscous Burgers’ 
equation:

with periodic boundary conditions. The viscosity constant � = 0.01 which gives a convec-
tion-dominated problem. The MRWENO5 discretization is applied to the hyperbolic terms. 
For the diffusion terms uxx + uyy + uzz , we use a fourth-order central difference scheme, 
which has the following formulation, for example along a grid line of the x-direction:

Simulations are performed on both sparse grids and the corresponding single grids to 
compare their results. MRWENO5 interpolation is used for sparse-grid prolongation. We 
solve the problem till the final time T = 2 to compare with results of Example 2, and take 
� = 10−10 in MRWENO5 discretization and MRWENO5 prolongation as in Example 2. 
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Table 3  Example 2, 3D Burgers’ equation

MRWENO5 scheme, comparison of numerical errors and CPU times for computations on single-grid and 
sparse-grid. MRWENO5 interpolation for prolongation is employed in sparse-grid computations. Final time 
T = 0.5∕π2 . N

r
 : number of cells in each spatial direction of a root grid. N

L
 : the finest level in a sparse-grid 

computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

Single-grid

N
h
× N

h
× N

h
L
∞ error Order L

1 error Order CPU/s

80 × 80 × 80 1.44 × 10−6 3.22 × 10−7 3.62
160 × 160 × 160 5.56 × 10−8 4.70 1.24 × 10−8 4.70 83.36
320 × 320 × 320 1.74 × 10−9 5.00 3.87 × 10−10 5.00 2 630.67
640 × 640 × 640 5.45 × 10−11 4.99 1.21 × 10−11 4.99 55 508.71

Sparse-grid
N
r

N
L

N
h
× N

h
× N

h
L
∞ error Order L

1 error Order CPU/s
10 3 80 × 80 × 80 1.78 × 10−5 2.24 × 10−6 1.71
20 3 160 × 160 × 160 5.92 × 10−8 8.23 1.32 × 10−8 7.40 22.48
40 3 320 × 320 × 320 1.74 × 10−9 5.09 3.85 × 10−10 5.10 429.81
80 3 640 × 640 × 640 5.46 × 10−11 5.00 1.21 × 10−11 4.99 10 606.14
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The CFL number is taken as 0.4. In Fig. 3, both 2D and 1D cutting plots of the numerical 
solutions on the planes z = −3 and z = 0 are shown, for sparse-grid computation ( Nr = 80 , 
NL = 3 ) and the corresponding 640 × 640 × 640 single-grid computation. We observe that 
the sparse-grid simulation results are similar to those on the single grid. Furthermore, the 
overshoots in the sparse-grid MRWENO5 results of Example 2 do not appear here any 

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

-0.2

0

0.2

0.4

0.6

0.8

(a)

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

-0.2

0

0.2

0.4

0.6

0.8

(b)

-6 -4 -2 0 2 4 6 8
X+Y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

U

Numerical sol.
Exact sol.

(c)

-6 -4 -2 0 2 4 6 8
X+Y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

U

Numerical sol.
Exact sol.

(d)

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(e)

-3 -2 -1 0 1 2 3
x

-3

-2

-1

0

1

2

3

y

0

0.1

0.2

0.3

0.4

0.5

0.6

(f)

-6 -4 -2 0 2 4 6 8
X+Y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

U

Numerical sol.
Exact sol.

(g)

-6 -4 -2 0 2 4 6 8
X+Y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

U

Numerical sol.
Exact sol.

(h)

Fig. 2  Example 2, solution of 3D Burgers’ equation by the MRWENO5 scheme on sparse grids ( Nr = 80 
for root grid, finest level NL = 3 in the sparse-grid computation) and the corresponding 640 × 64 × 640 sin-
gle grid, using the MRWENO5 interpolation for prolongation in the sparse-grid combination. (a)–(d): solu-
tion at T = 5∕π2 ; (e)–(h): solution at T = 2 ; (a), (c), (e), (g): sparse-grid results; (b), (d), (f), (h): single-grid 
results; (a), (b), (e), (f): 2D contour plots of the x-y plane cutting at z = 0 ; (c), (d), (g), (h): 1D cutting plot 
along x = y on the plane z = 0 ; Circles: numerical solutions; lines: exact solution
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more. Hence for this convection-dominated diffusion problem, the final linear combination 
in the last step of the sparse-grid combination does not cause any oscillations at the shock 
wave locations. In terms of computational efficiency, we observe 76%–89% CPU time sav-
ings when using sparse-grid computations vs. single-grid ones, as shown in Table  4 for 
different grids.

Example 4 (A 4D Vlasov-Boltzmann transport equation).
The related PDE systems in deterministic kinetic simulations can have up to six dimen-

sions in spatial directions including both space and velocity variables. Hence they provide 
ideal benchmark problems to test numerical methods for solving high dimensional prob-
lems. WENO methods have been successfully applied to this class of PDEs, in, e.g., [4, 
24]. Here we test the efficiency of the sparse-grid MRWENO5 scheme for simulating such 
problems. First, we solve a 4D Vlasov-Boltzmann transport equation in [10]:

Here the unknown function f = f (t, �, �) denotes the distribution of electrons which 
depends on space variables � = (x1, x2) , velocity variables � = (v1, v2) , and the time vari-
able t. �(�) is the external electric field which is given by a known electrostatic potential:

L(f) is the linear relaxation operator defined as

where �∞(�) is the absolute Maxwellian distribution defined as

and the macroscopic density �(t, �) is defined as

For the 4D case here the space dimension d = 2 . The parameter � is the kinetic tempera-
ture and � = 1∕k with k being the constant transition probability of scatters passing from 
one state into another one. They are taken as � = � = 1 in this example. The domain is 
� = [−5, 5] × [−5, 5] × [−5, 5] × [−5, 5] . The problem has the initial condition

where s is the normalization constant such that ∫
�
f (0, x1, x2, v1, v2)dx1dx2dv1dv2 = 1 . Zero 

boundary conditions are prescribed on the domain boundaries.
The sparse-grid MRWENO5 method is applied to this problem, and results are com-

pared with the corresponding single-grid computation. As in Example 1, we choose the 
values of � in both the MRWENO5 scheme and the MRWENO5 prolongation as a function 
of spatial grid sizes. The CFL number is taken to be 0.4 in the simulations. This 4D PDE is 

(21)ft + � ⋅ �
�
f + �(�) ⋅ �

�
f = L(f ).

�(�) = −∇
�
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solved till the final time T = 3 . The plots of numerical solutions of f in different 2D planes 
with fixed third and fourth direction coordinates at different time t are shown in Figs. 4 and 
5, on 160 × 160 × 160 × 160 grid ( Nr = 20 for the root grid, the finest level NL = 3 in the 
sparse-grid computation). It is clearly observed that the sparse-grid MRWENO5 scheme 
and its corresponding single-grid computation generate similar results. On the other hand, 
the sparse-grid simulations are significantly more efficient than the corresponding single-
grid simulations. Table 5 reports the simulation CPU times on two different meshes. 95% 
CPU time is saved by carrying out sparse-grid computations rather than single-grid simula-
tions in this example.

Example 5 (A 3D Vlasov-Maxwell system).
As the second example to test the efficiency of the sparse-grid MRWENO5 scheme for 

simulating kinetic problems, we solve a 3D example of the Vlasov-Maxwell system from 
[26], which is a simplified single species Vlasov-Maxwell system. It has one spatial vari-
able and two velocity variables, by assuming that the system is uniform in other variable 
directions of the whole six-dimensional (6D) domain. The system is

Here the system has one physical space variable x2 and two velocity variables �1, �2 , and 
the domain is �x ×�� with �x the physical space and �� the velocity space. x2 ∈ �x 
and (�1, �2) ∈ �� . f = f (x2, �1, �2, t) is the distribution of electrons. E1 = E1(x2, t) and 
E2 = E2(x2, t) are the electric field components. B3 = B3(x2, t) is the magnetic field com-
ponent. Hence, the system has a 2D electric field � = (E1(x2, t),E2(x2, t), 0) and a 1D 
magnetic field � = (0, 0,B3(x2, t)) in the physical space. The current densities j1(x2, t) and 
j2(x2, t) are given by

The system is initialized by

Here the computational domain is taken as �x = [0, 2π∕k0] and �� = [−1.2, 1.2]2 , subject 
to periodic boundary conditions. The parameters in the system are the same as in [26]: 
� = 0.5 , b = 0.001 , � = 0.01 , �0,1 = �0,2 = 0.3 , and k0 = 0.2 . In this technical note, we 
focus on testing the efficiency of the designed sparse-grid MRWENO5 scheme in solv-
ing this 3D kinetic problem, and refer to [26] about the introduction of the physical back-
ground of the system and these parameters.

The sparse-grid MRWENO5 scheme is applied to this 3D problem, and we com-
pare the sparse-grid simulation results with the corresponding single-grid computation 
results. The system is solved till the final time T = 50 . The values of � are chosen to be 
� = 10−10 as in [34], for both the MRWENO5 scheme and the MRWENO5 prolonga-
tion. The CFL number is taken to be 0.4 in the simulations. To preserve the positivity 
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⎧⎪⎨⎪⎩
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=
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.
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��
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��

f (x2, �1, �2, t)�2d�1d�2.
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1
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e−�

2
2
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2∕�],

E1(x2, 0) = E2(x2, 0) = 0, B3(x2, 0) = b sin(k0x2).
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property of the numerical solutions f, we apply a conservative bound-preserving sweep-
ing technique in [20]. The bound-preserving technique in [20] is a simple sweep-
ing algorithm which acts as a postprocessing step and is independent of the underly-
ing numerical schemes. The algorithm first pre-sets an order for all grid points, then a 
“right” sweep is followed by a “left” sweep to correct any numerical values which are 
beyond the required bounds. In each sweeping, if the numerical value at a grid point 
is beyond the bound, then both that value and the next grid point’s value are corrected 
using the given positive weights and the bound values. It is shown in [20] that this sim-
ple algorithm can preserve the bounds of the numerical solution and keep the accuracy 
of the underlying numerical schemes. We adopt this algorithm here as a final step to 
postprocess the obtained solutions and preserve the lower bound of the numerical solu-
tions of f to be 0. The plots of numerical solutions of f in the 2D plane with a fixed x2 
coordinate at different time t are shown in Fig. 6, on a 160 × 160 × 160 grid ( Nr = 20 for 
the root grid, the finest level NL = 3 in the sparse-grid computation). Again, we observe 
that the sparse-grid MRWENO5 scheme and its corresponding single-grid computation 
generate similar results, and the sharp gradient of the solution is resolved very well and 
stably in the sparse-grid MRWENO5 scheme for this Vlasov-Maxwell system. However, 
in terms of computational efficiency, the sparse-grid computations are much more effi-
cient than the corresponding single-grid ones. Table 6 reports the CPU time costs on 
two different meshes. About 80% CPU time is saved by carrying out sparse-grid simula-
tions rather than single-grid simulations in this 3D example.

Here we have shown the efficiency and CPU time saving of performing the MRWENO5 
simulations on sparse grids by solving a simplified 3D Vlasov-Maxwell system. It indicates 
that the sparse-grid MRWENO5 scheme could be a promising method in simulating com-
plex kinetic systems. Next we carry out some preliminary studies about conservation prop-
erty of the sparse-grid MRWENO5 scheme on some macroscopic quantities of this system. 
As in [26], we define the scaled total mass as m =

1

Ly
∫
�
fd�1d�2dx2 , where � = �� ×�x 

and Ly = 2π∕k0 . Ly is the size of the physical domain �x . The scaled kinetic energy 
K = K1 + K2 , where K1 , K2 are the scaled kinetic energies in each direction and they are 
defined as K1 =

1

2Ly
∫
�
f �2

1
d�1d�2dx2,K2 =

1

2Ly
∫
�
f �2

2
d�1d�2dx2 . The scaled electric energy 

E = E1 + E2 , where E1 , E2 are the scaled electric energies in each direction and they are defined 
as E1 =

1

2Ly
∫
�x

E2
1
dx2, E2 =

1

2Ly
∫
�x

E2
2
dx2 . The scaled magnetic energy is B3 =

1

2Ly
∫
�x

B2
3
dx2 . 

Hence the scaled total energy is calculated as K + E + B3 . The scaled total momentum 

Table 4  Example 3, 3D viscous 
Burgers’equation

Comparison of CPU times for MRWENO5 computations on sparse 
grids and the corresponding single grids. Final time T = 2 . CFL num-
ber is 0.4. The finest level N

L
= 3 in sparse-grid computations. CPU 

time unit: seconds

N
h
× N

h
× N

h
CPU time on sparse-grid CPU time 

on single-
grid

80 × 80 × 80 33.33 140.63
160 × 160 × 160 523.39 2 975.09
320 × 320 × 320 7 918.83 69 204.82
640 × 640 × 640 179 061.77 796 560.45
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P = P1 + P2 , where the components P1 =
1

Ly

(∫
�
�1fd�1d�2dx2 + ∫

�x
E2B3dx2

)
 and 

P2 =
1

Ly

(∫
�
�2fd�1d�2dx2 − ∫

�x
E1B3dx2

)
 . In Fig. 7, time evolutions of these scaled quan-
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Fig. 3  Example 3, solution of 3D viscous Burgers’ equation by the MRWENO5 scheme on sparse 
grids ( Nr = 80 for root grid, finest level NL = 3 in the sparse-grid computation) and the corresponding 
640 × 640 × 640 single grid, using the MRWENO5 interpolation for prolongation in the sparse-grid combi-
nation. Final time T = 2 . (a), (c): sparse-grid results; (b), (d): single-grid results. (a), (b): 2D contour plots 
of the x-y plane cutting at z = −3 ; (c), (d): 2D contour plots of the x-y plane cutting at z = 0 ; (e): 1D cutting 
plot along x = y on the plane z = −3 ; (f): 1D cutting plot along x = y on the plane z = 0 . Solid lines: single-
grid solution; circles: sparse-grid solution
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tities including the total mass, total energy, total momentum, and kinetic, magnetic, electric 
energies of the numerical solution by the sparse-grid MRWENO5 scheme with Nr = 20 for 
the root grid and the finest level NL = 3 are reported. For the time period considered here, 
we observe that the largest error for the total mass is less than 5 × 10−4 . The largest errors 
for the total energy and the total momentum are on the order of 10−4 . Here we would like to 
emphasize that the Vlasov-Maxwell system is a very complex problem and there are many 
challenging issues in the physics it models, its mathematical theory, and numerical method 
developments. Although beyond the scope of this technical note, more detailed and in-
depth studies on applications of the proposed sparse-grid MRWENO5 scheme to the 
Vlasov-Maxwell system in kinetic simulations, for example, studying the performance of 
the method in solving the system for a long time period, improving the method’s conserva-
tion errors for the physical invariants, comparing the method with other methods for solv-
ing the Vlasov-Maxwell system, etc., are important and will be carried out in our future 
research.

4  Conclusions

In this technical note, we extend our previous sparse-grid WENO approach in [22, 37] to 
the recently developed finite difference multi-resolution WENO scheme in [34] for effi-
ciently solving multidimensional problems. To obtain a robust algorithm, the MRWENO5 
interpolation is designed in the prolongation step of sparse-grid combination technique. 
Numerical experiments on 2D, 3D, and 4D problems are performed for the sparse-grid 
multi-resolution WENO method to show that a much more efficient algorithm than a regu-
lar method on single grids to solve the multidimensional equations is achieved. A large 
amount of CPU time costs are saved for higher dimensional problems. For example, the 
sparse-grid MRWENO5 scheme saves 95% CPU time for solving a 4D Vlasov equation, by 
comparing with the corresponding single-grid simulations.

As discussed in [37], there are still quite a few open problems to be investigated 
further for the method. For example, due to the high nonlinearity of the MRWENO5 
scheme, it is still unknown how to perform theoretical error analysis for the nonlinear 
sparse-grid scheme, which has been done for the linear schemes in solving linear PDEs 
in the literature. Another open question is that for some problems (e.g., the 3D inviscid 
Burgers’ equation in this technical note), some oscillations or noises may appear around 
the shock locations when the shock wave is strong or its profile is very sharp, due to the 
final linear combination formulas in the last step of the sparse-grid combination tech-
nique. Although this combination is done only once for a specific final time T and it will 

Table 5  Example 4, 4D Vlasov–
Boltzman equation

Comparison of CPU times for MRWENO5 computations on sparse 
grids and the corresponding single grids. Final time T = 3 . CFL num-
ber is 0.4. The finest level N

L
= 3 in sparse-grid computations. CPU 

time unit: seconds

N
h
× N

h
× N

h
× N

h
CPU time on 
sparse-grid

CPU time on single-grid

80 × 80 × 80 × 80 5 179.67 84 825.69
160 × 160 × 160 × 160 112 655.92 2 277 988.00
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not cause any stability issue in the whole simulations, it is crucial to resolve this issue 
in our next research. One possible way to tackle this problem is to develop sparse-grid 
WENO methods directly based on a set of nested grids and multiresolution analysis, and 
not to use the sparse-grid combination technique. This will be a very interesting topic. 
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Fig. 4  Example 4, solutions f of the 4D Vlasov-Boltzmann equation at different time T by the MRWENO5 
scheme on sparse grids ( Nr = 20 for root grid, finest level NL = 3 in the sparse-grid computation) and the 
corresponding 160 × 160 × 160 × 160 single grid, using the MRWENO5 interpolation for prolongation in 
the sparse-grid combination. 2D cuts of solutions in the x

1
-v

1
 plane at x

2
= v

2
= 0 . CFL = 0.4 . (a), (c), (e): 

sparse-grid results; (b), (d), (f): single-grid results. (a), (b): final time T = 0.5 ; (c), (d): final time T = 1 ; (e), 
(f): final time T = 3
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Multiresolution analysis has been successfully used to develop sparse-grid discontinu-
ous Galerkin methods in [10, 11, 26]. To develop sparse-grid MRWENO methods along 
this way, we will use the WENO reconstruction procedure based on the hierarchical 

-50

0.05

-5

0.10

0.15

X1

0

0.20

X2

0.25

0

0.30

55
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(a) T = 0.5

-5

0.05

-5

0.10

0.15

X1

0

0.20

X2

0.25

0

0.30

55

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(b) T = 0.5

-50

0.05

-5

0.10

0.15

X1

0

0.20

X2

0.25

0

0.30

55
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(c) T = 1

-5

0.05

-5

0.10

0.15

X1

0

0.20

X2

0.25

0

0.30

55

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(d) T = 1

-50

0.05

-5

0.10

0.15

X1

0

0.20

X2

0.25

0

0.30

55
0

0.02

0.04

0.06

0.08

0.10

0.12

(e) T = 3

-5

0.05

-5

0.10

0.15

X1

0

0.20

X2

0.25

0

0.30

55

0.02

0.04

0.06

0.08

0.10

0.12

(f) T = 3

Fig. 5  Example 4, solutions f of the 4D Vlasov-Boltzmann equation at different time T by the MRWENO5 
scheme on sparse grids ( Nr = 20 for root grid, finest level NL = 3 in the sparse-grid computation) and the 
corresponding 160 × 160 × 160 × 160 single grid, using the MRWENO5 interpolation for prolongation in 
sparse-grid combination. 2D cuts of solutions in the x

1
-x

2
 plane at v

1
= v

2
= 0 . CFL = 0.4 . (a), (c), (e): 

sparse-grid results; (b), (d), (f): single-grid results. (a), (b): final time T = 0.5 ; (c), (d): final time T = 1 ; (e), 
(f): final time T = 3
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basis in [14] and incorporate high-order MRWENO approximations in it. Due to the 
hierarchical structure of the reconstruction procedure in [14], it can be naturally applied 
to sparse grids, and a tensor product approach can be used for multidimensional prob-
lems. Furthermore, this kind of hierarchical basis WENO methods on sparse grids will 

Table 6  Example 5, 3D Vlasov-
Maxwell system

Comparison of CPU times for MRWENO5 computations on sparse 
grids and the corresponding single grids. Final time T = 50 . CFL 
number is 0.4. The finest level N

L
= 3 in sparse-grid computations. 

CPU time unit: seconds

N
h
× N

h
× N

h
CPU time on sparse-grid CPU time 

on single-
grid

80 × 80 × 80 196.43 890.55
160 × 160 × 160 2 764.62 13 347.87
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Fig. 6  Example 5, solution f of the 3D Vlasov-Maxwell system at different time T by the MRWENO5 
scheme on sparse grids ( Nr = 20 for root grid, finest level NL = 3 in the sparse-grid computation) and the 
corresponding 160 × 160 × 160 single grid, using the MRWENO5 interpolation for prolongation in the 
sparse-grid combination. CFL = 0.4 . 2D cuts of solutions in the �

1
 - �

2
 plane at x

2
= π∕k

0
 . (a), (c): sparse-

grid results; (b), (d): single-grid results. (a), (b): final time T = 25 ; (c), (d): final time T = 50
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be promising to be combined with adaptive approaches, since the hierarchical basis or 
the hierarchical structure in the schemes provide a convenient way to design error indi-
cators in adaptive methods, as in [1, 11]. Detailed development of this new method is 
our next work.
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