Math 60790 (Numerical PDEs), Spring 2008

Homework 3 (Due May 7, 2008)

Consider the initial boundary value problem

$$
\begin{cases}u_{t}(x, t)=u_{x x}(x, t), & \text { for }-1<x<1, \quad 0<t \leq T ; \\ u(x, 0)=\cos (\pi x), & -1<x<1 ; \\ u(-1, t)=-e^{-\pi^{2} t}, & 0<t \leq T ; \\ u(1, t)=-e^{-\pi^{2} t}, & 0<t \leq T .\end{cases}
$$

This problem has the exact solution $u(x, t)=e^{-\pi^{2} t} \cos (\pi x)$.

Solve this problem by the $\mathbf{c G}(1) \mathrm{dG}(1)$ method. Use a uniform spatial mesh with $h=\frac{1}{10}, \frac{1}{20}, \frac{1}{40}, \frac{1}{80}, \frac{1}{160}$ and $\frac{1}{320}$, respectively. Choose a uniform time step k such that $k=h^{2}$. Compute the L^{∞} error at $T=1$, which is $\|e(x, T)\|_{L^{\infty}}=\max _{1 \leq i \leq M}\left|u\left(x_{i}, T\right)-U\left(x_{i}, T\right)\right|$. Make a table for the errors. Compute the numerical orders of accuracy during mesh refinement and include them in the table.

Use double precision for your codes. Attach a print-out of your codes.

