Math 60790 (Numerical PDEs), Spring 2008

Homework 1 (Due Feb 18, 2008)

1. Let f be a real function with the Fourier series $f(x)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x}$. Prove that $S_{N}=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-N}^{N} \hat{f}(\omega) e^{i \omega x}$ is real for all N.
2. Consider the saw-tooth function $v(x)=\frac{1}{2}(\pi-x)$ for $0<x \leq 2 \pi, v(x)=v(x+2 \pi)$, and the partial Fourier sums $v_{N}(x)=\sum_{\omega=1}^{N} \frac{\sin \omega x}{\omega}$. Write a program to compute $v(x)-v_{N}(x)$ and plot $v_{N}(x)$ and $v(x)-v_{N}(x)$ on $0 \leq x \leq 2 \pi$, for $N=10,100,1000,10000$. Analytically one can show that $v(x)-v_{N}(x)=R((N+1 / 2) x)+O\left(\frac{|x|+1 / N}{N}\right)$, where $R(y)=\frac{\pi}{2}-\int_{0}^{y} \frac{\sin t}{t} d t$. Verify this theoretical error estimate numerically for some x values chosen by yourself.
3. Derive estimates for $\left|\left(D-\frac{\partial^{3}}{\partial x^{3}}\right) e^{i \omega x}\right|$ where $D=D_{+}^{3}, D_{0} D_{+} D_{-}$.
4. Compute $\left\|D_{+} D_{-}\right\|_{h}$.
