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Abstract

Integration factor methods are a class of “exactly linear part” time discretization
methods. In [Q. Nie, Y.-T. Zhang, and R. Zhao, Efficient semi-implicit schemes for
stiff systems. Journal of Computational Physics, 2006. v214: 521-537], a class of effi-
cient implicit integration factor (IIF) methods are developed for solving systems with
both stiff linear and nonlinear terms, arising from numerical spatial discretization of
time-dependent partial differential equations (PDEs) with linear high order terms and
stiff lower order nonlinear terms. A novel property of the scheme is that the exact
evaluation of the linear part is decoupled from the implicit treatment of the nonlinear
part. As a result, the size of the nonlinear system arising from the implicit treat-
ment is independent of the number of spatial grid points, when the scheme is used for
solving reaction-diffusion PDEs. The tremendous challenge in applying IIF temporal
discretization for time-dependent PDEs on high spatial dimensions is how to evaluate
the matrix exponential operator efficiently. On rectangular meshes, the compact IIF
methods [Q. Nie, F. Wan, Y.-T. Zhang, and X.-F. Liu, Compact integration factor
methods in high spatial dimensions. Journal of Computational Physics, 2008. v227:
5238-5255] were developed to deal with this issue. For spatial discretization on un-
structured meshes to solve PDEs on complex geometrical domains, how to efficiently
apply the IIF temporal discretization was open. In this paper, we solved this problem
by applying the Krylov subspace approximations to the matrix exponential opera-
tor. Then we apply this novel time discretization technique to discontinuous Galerkin
(DG) methods on unstructured meshes for solving reaction-diffusion equations. Nu-
merical examples are shown to demonstrate the accuracy, efficiency and robustness of
the method in resolving the stiffness of the DG spatial operator for reaction-diffusion
PDEs. Application of the method to a mathematical model in pattern formation during
zebrafish embryo development shall be shown.
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1 Introduction

High order accuracy numerical methods (e.g. weighted essentially non-oscillatory
(WENO) methods, discontinuous Galerkin (DG) methods, spectral methods, etc) are
especially efficient for numerically solving problems which contain complex solution
structures, and have been applied extensively in computational fluid dynamics. Effi-
cient and high order temporal numerical schemes are important for the performance of
high accuracy numerical simulations. A lot of state-of-the-art high order time-stepping
methods were developed. Here we just give a few examples and it is not a complete
list. For example, the total variation diminishing (TVD) Runge-Kutta (RK) schemes
[76, 77, 40, 41]; high order implicit-explicit (IMEX) multistep / Runge-Kutta methods
and their applications [4, 5, 48, 51, 64, 84, 73, 93]; spectral deferred correction (SDC)
methods [14, 34, 47, 56, 57, 61]; hybrid methods of SDC and high order RK schemes
[19]; etc.

Integration factor (IF) methods are a broad class of time discretization methods
which have been combined with spatial discretization methods especially spectral meth-
ods [35, 13, 16, 80] for solving various partial differential equations (PDEs). Especially
many important mathematical models in fluid dynamics or biological problems involve
nonlinear PDEs with the linear highest spatial derivatives. The method of lines gener-
ates stiff systems of ordinary differential equations (ODEs) with the stiff linear terms
(nonlinear terms could also be stiff, depending on different problems). Integration fac-
tor methods are a class of “exactly linear part” time discretization methods for the
solution of this type of stiff systems. This class of methods perform the time evolution
of the stiff linear operator via evaluation of an exponential function of the correspond-
ing matrix. Hence for PDEs with linear high order derivatives, the integration factor
type time discretization can remove both the stability constrain and numerical errors
from the high order derivatives.

Traditional integration factor methods have a disadvantage that large error coeffi-
cients are produced when the linear term has large norm [13]. Recently S. Krogstad
developed a method which can improve the accuracy of the traditional integration fac-
tor methods significantly [53]. Another class of “integration factor” type methods, the
exponential time differencing (ETD) methods [10, 11, 29, 50], can also obtain a better
accuracy than the traditional integration factor methods. For ETD methods, extra
treatments are needed for consistent order of accuracy [50, 30].

The explicit integration factor methods use explicit linear multi-step methods or
explicit Runge-Kutta methods to treat the nonlinear terms in the system (e.g. the ex-
plicit ETD-RK schemes [29]), which are very efficient for systems with stiff linear part
but nonstiff or mildly stiff nonlinear part. In [45], explicit exponential Runge-Kutta
methods for the time integration of semilinear parabolic problems were analyzed. For
systems with both stiff linear and nonlinear terms, an implicit treatment of nonlinear
terms is desirable. In [66], we developed a class of efficient implicit integration factor
(IIF) methods for solving systems with both stiff linear and nonlinear terms. A novel
property of the methods is that the implicit terms are free of the exponential operation
of the linear terms. Hence when the methods are applied to PDEs with stiff nonlin-
ear reactions (e.g. the reaction-diffusion systems arising from mathematical models in
computational developmental biology), the exact evaluation of the linear part is de-
coupled from the implicit treatment of the nonlinear reaction terms. As a result, the
size of the nonlinear system arising from the implicit treatment is independent of the
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number of spatial grid points; it only depends on the number of the original equations.
This distinguishes our IIF methods [66] from implicit ETD methods in [11]. Another
efficient approach to decouple the stiff nonlinear terms from the linear terms is to use
operator splitting integration factor methods (e.g. [60]). We would like to point out
that our approach is different from the operator splitting methods, hence is free of
operator splitting errors.

The tremendous difficulty in implementing integration factor type method for high
dimensional problems is how to efficiently evaluate the product of the matrix exponen-
tial with a vector. The differential matrix from the high dimensional spatial discretiza-
tion is usually very large and sparse, but its exponential matrix will be dense. CPU
cost and storage of such exponential matrix are prohibitive for high dimensional prob-
lems, although it can be handled well for 1D problems [66]. On rectangular meshes,
the compact integration factor methods [67] can be used to deal with this issue. By
introducing a compact representation for the matrix approximating the differential op-
erator, the compact IIF methods apply matrix exponential operations sequentially in
every spatial direction. As the results, exponential matrices which are calculated and
stored have small sizes, as those in the 1D problem. For example for a 3D problem, if
we have N grid points in every direction of the x, y and z directions, then we do not
need to work on the full N3 × N3 matrix and its exponential as in the original non-
compact IIF methods [66], but just need to consider several N ×N matrices and their
exponentials. The storage and CPU time required for compact IIF schemes are smaller
by orders of magnitude than the non-compact ones. The operation count of compact
integration factor schemes is O(N4) vs. O(N6) for non-compact ones. See more details
in [67]. But how to apply this approach to spatial discretization on high dimensional
unstructured meshes for dealing with complex domain geometry is still unclear. In this
paper, we address this problem by using the Krylov subspace approximations to the
matrix exponential operator and develop the Krylov implicit integration factor (Krylov
IIF) methods for spatial discretization on triangular meshes.

The Krylov subspace methods were used and analyzed by Gallopoulos and Saad [36],
Saad [74] for the approximation of a product of a exponential matrix of a large sparse
differential matrix and a given vector, in the finite difference discretization of a time-
dependent diffusion equation. Since in many applications including the integration
factor methods, one does not need the full exponential matrix, but only the matrix-
vector product. Such Krylov approximations were first used in chemical physics [65, 69],
and are also related to early work e.g. [15, 31, 38, 79]. The methods were studied
further by Hochbruck and Lubich [43], Hochbruck, Lubich, and Selhofer [44], van Den
Eshof and Hochbruck [82], Druskin and Knizhnerman [32], Druskin, Greenbaum, and
Knizhnerman [33], Stewart and Leyk [78], Moret and Novati [63]. See also the review
paper of Moler and Van Loan [62]. As discovered in [43], the convergence to eA∆tv
is substantially faster than that of corresponding Krylov methods for the solution of
linear system (I − ∆tA)x = v, which arises in the implicit treatment of diffusion or
other high order derivative terms, at least unless a good preconditional is available.

On the discretization methods for the spatial directions, discontinuous Galerkin
(DG) finite element methods are a class of popular high order accuracy spatial dis-
cretization methods for numerically solving various partial differential equations (PDEs)
arising from computational fluid dynamics and other computational physics problems.
DG methods confer several advantages that make them attractive for applications.
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These include common advantages shared by all finite element methods such as their
ability for easy handling of complicated geometry and boundary conditions. Since DG
methods use completely discontinuous piecewise polynomial space for the numerical
solution and the test functions, this property makes DG methods have lots of flexibil-
ity which is not shared by continuous Galerkin finite element methods, such as their
flexibility for easy h-p adaptivity including changes of approximation orders between
neighboring elements and allowing general meshes with hanging nodes, their compact-
ness hence efficient parallel implementation [12], and their easy coordination with finite
volume techniques for computing problems with discontinuous or sharp gradient solu-
tions. The first DG method was introduced by Reed and Hill [70], in the framework
of neutron transport. A major development of the DG method was carried out by
Cockburn et al. in a series of papers [23, 24, 21, 25, 26], in which they established a
framework to easily solve nonlinear time dependent hyperbolic conservation laws.

The DG method has found rapid applications in many diverse areas. Good refer-
ences for the DG method and its recent development include the survey paper [22],
other papers in that Springer volume, and the review papers [20, 27]. In recent years,
DG methods have been generalized to solve time dependent PDEs containing higher
spatial derivatives. It was designed to solve a convection diffusion equation (con-
taining second derivatives) by Cockburn and Shu [28], motivated by the successful
numerical experiments of Bassi and Rebay [8] for the compressible Navier-Stokes equa-
tions. This method is termed local discontinuous Galerkin (LDG) method because
the auxiliary variables introduced to approximate spatial derivatives can be eliminated
locally. For more references on DG methods for diffusion problems, see for example
[2, 3, 6, 7, 9, 17, 39, 46, 49, 52, 59, 68, 71, 72]. Later, LDG methods were devel-
oped to solve various nonlinear time dependent PDEs with higher order derivatives in
[58, 86, 87, 88, 89, 90, 91]. In a recent paper [18], Cheng and Shu developed a new
DG method for solving time dependent PDEs with higher order spatial derivatives,
based on [1, 37, 83]. The scheme is formulated by repeated integration by parts of the
original equation and then replacing the interface values of the solution by carefully
chosen numerical fluxes. Compared to the LDG method, this new DG method can be
applied without introducing any auxiliary variables or rewriting the original equation
into a larger system, hence it is easier to formulate and implement, has a smaller ef-
fective stencil, and may save storage and computational cost. On the other hand, the
disadvantages of this new DG method against the LDG method include the fact that
the new DG method is in general inconsistent for lower order P k elements when k + 1
is smaller than the highest order of the spatial derivative in the PDE; and the fact that
extra penalty terms must be added to the numerical flux to ensure stability for even
order derivative terms [18].

When DG methods are applied to discretize the spatial variables for convection-
diffusion problems or other PDEs which have high order derivatives, a large coupled
stiff ordinary differential equations (ODEs) system is generated. An explicit time
discretization for the resulting stiff ODE system will suffer from extremely small time
step restriction for stability. In [85], time discretization techniques including semi-
implicit spectral deferred correction method, the additive Runge-Kutta method and
the exponential time differencing (ETD) method for solving the stiff ODEs resulting
from a LDG spatial discretization to PDEs with high order spatial derivatives on 1D
spatial domain were compared and studied.
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To test our new Krylov IIF schemes in this paper, we apply them to solve the stiff
ODE system resulting from a DG spatial discretization for reaction-diffusion problems
on 2D triangular meshes. This DG spatial discretization is based on the DG methods
for PDEs with high order derivatives by Cheng and Shu [18]. In [94], we extended the
methods in [18] to solve reaction-diffusion problems on 2D triangular meshes. Due to
the stiffness of the spatial operators, the implicit discretization was formulated for the
P 1 case in [94] and an operator-splitting approach was used to enhance the computation
efficiency. In this apepr, we will formulate the implicit DG discretization for both P 1

and P 2 cases, and apply the new Krylov IIF schemes for the time-marching. Numerical
examples are shown to demonstrate the accuracy, efficiency and robustness of the
method in resolving the stiffness of the DG spatial operator for reaction-diffusion PDEs
which have higher than first order spatial derivatives. Application of the method to a
mathematical model in spatial pattern formation during zebrafish embryo development
shall be shown.

The rest of the paper is organized as following. In Section 2, we derive and formulate
the Krylov IIF methods. In Section 3, we describe in detail the P 1 and P 2 DG spatial
discretization for reaction-diffusion equations on 2D triangular meshes; then apply the
new Krylov IIF methods to resulting stiff ODE system. Numerical experiments to test
the algorithms are presented in Section 4. Discussions and conclusions are given in
Section 5.

2 Implicit integration factor methods based on

Krylov subspace approximation

We first review the original IIF methods developed in [66]. Then we propose the
new IIF methods based on Krylov subspace approximations to the Matrix exponential
operator.

2.1 Review of the original IIF methods

Assume that we need to solve a system of ODEs which arises after a spatial discretiza-
tion of a PDE system whose highest order term is linear and has higher than first order
derivative (e.g. a reaction-diffusion equation):

dU(t)

dt
= AU(t) + F(U(t)), (1)

where U(t) ∈ RN , A ∈ RN×N is the constant approximation matrix for the linear
differential operator of the highest order derivative, F(U(t)) ∈ RN is the nonlinear
term. The matrix A is usually a sparse matrix when a finite difference or finite element
method is used for the spatial discretization.

To construct the IIF methods for (1), we multiply it by the integration factor e−At

and integrate over one time step from tn to tn+1 ≡ tn + ∆t to obtain

U(tn+1) = eA∆tU(tn) + eA∆t

∫ ∆t

0
e−AτF(U(tn + τ))dτ. (2)

5



Then we approximate the integrand in (2) using an r−1th order Lagrange interpolation
polynomial with interpolation points at tn+1, tn, · · · , tn+2−r, and obtain the rth order
IIF scheme

Un+1 = eA∆tUn + ∆t

(
α1F(Un+1) +

r−2∑

i=0

α−ie
(i+1)A∆tF(Un−i)

)
, (3)

where

α−i =
1

∆t

∫ ∆t

0

r−2∏

k=−1

k 6=i

τ + k∆t

(k − i)∆t
dτ, −1 ≤ i ≤ r − 2. (4)

See [66, 67] for the values of coefficients αj for the schemes with different orders. For
example, the second order scheme is of the following form

Un+1 = eA∆t

(
Un +

∆t

2
F(Un)

)
+

∆t

2
F(Un+1), (5)

and the third order scheme is

Un+1 = eA∆tUn + ∆t

(
5

12
F(Un+1) +

2

3
eA∆tF(Un) −

1

12
e2A∆tF(Un−1)

)
. (6)

The distinct feature of the scheme (3) is that the nonlinear implicit term F(Un+1) does
not involve the matrix exponential operator, unlike the implicit ETD schemes [11].
Hence if the nonlinear operator F itself does not involve the coupling of the numerical
values at the spatial grid points (e.g. the nonlinear reactions), the size of nonlinear
system resulted from the implicit treatment is independent of the number of the spatial
grid points, and it only depends on the number of the original PDEs.

Remark: we consider the time step size ∆t to be uniform in the time evolution
in this paper. The methods to efficiently deal with non-uniform time step sizes (e.g.,
adaptive time step computation; solving PDEs which involves hyperbolic terms and
needs the CFL condition constraint) will be reported in the future.

2.2 IIF methods based on Krylov Subspace Approxima-
tion

The efficiency of the IIF schemes (3) largely depends on the methods to evaluate the
product of the matrix exponential with a vector, for example eA∆tUn. For PDEs defined
on high spatial dimensions (two spatial dimensions (2D) and above), the method of
lines (MOL) with a specific spatial discretization will generate a large and sparse matrix
A in (1). For example if a finite difference method is used on a 2D rectangular mesh
with N grid points in both x and y directions, then the matrix A has size N2 × N2.
And the exponential matrix eA∆t is dense. In [66], for a given spatial and temporal
numerical resolution, the exponential matrices such as eA∆t are pre-computed and
stored for later use at every time step. For one-dimensional problems, this works very
well since the size of the matrix A is manageable. For 2D and 3D problems, direct
computation and storage of such exponential matrix are prohibitive in terms of both
CPU cost and computer memory.
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On rectangular meshes, the compact IIF methods [67] can be used to deal with
this issue for some differential operators (e.g. the Laplacian operator). The compact
IIF methods introduce a compact representation for the matrix approximating the
differential operator. The compact form involves storage only proportional to the
number of unknowns, i.e. the size of U , unlike the non-compact approach, which is
proportional to the square of the unknowns. As the results, exponential matrices which
are calculated and stored have small sizes, as those in the 1D problem. For example,
for a 3D problem if we have Nx, Ny and Nz grid points in x, y and z directions, then
instead of considering the full (NxNyNz) × (NxNyNz) matrix and its exponential,
we just consider Nx × Nx, Ny × Ny and Nz × Nz matrices and their exponentials.
The storage and CPU time required for compact IIF schemes are smaller by orders of
magnitude than the original non-compact ones in [66]. The operation count of compact
IIF schemes is O(N2

xNyNz + NxN2
y Nz + NxNyN

2
x) vs. O(N2

xN2
y N2

z ) for non-compact
IIF schemes.

For spatial discretization on high dimensional unstructured meshes (e.g. triangular
meshes), how to formulate a compact matrix representation of the spatial operations
and apply this approach is still unclear. Moreover, application of compact IIF methods
to more general spatial operators (e.g. the general diffusion operators involving mixed
derivatives) is not straightforward. So we re-consider the non-compact IIF methods
(3) and look for another way to efficiently compute the matrix exponential operations.

Although the matrix A is sparse for many spatial discretizations, the exponential
matrix eA∆t is dense. Directly computing and storing eA∆t for spatial discretization
on high dimensional unstructured meshes is not practical for a typical machine. Fortu-
nately we do not need the full exponential matrix eA∆t itself, but only the products of
the exponential matrix with some vectors in (3). The Krylov subspace approximations
to the matrix exponential operator is an excellent choice in terms of both accuracy and
efficiency. For example, in [36, 74], the Krylov subspace methods were used for the
approximation of eA∆tv where A is a large sparse matrix and v is a given vector, in the
finite difference discretization of a time-dependent diffusion equation. In the following
we apply the Krylov subspace method to approximate the products of the exponential
matrix with vectors in our IIF schemes (3) and derive the new Krylov IIF methods.
First we describe the Krylov subspace methods to approximate eA∆tv, following the
literature (e.g. [36, 62]).

The large sparse matrix A is projected to the Krylov subspace

KM = span{v,Av,A2v, · · · ,AM−1v}. (7)

The dimension M of the Krylov subspace is much smaller than the dimension N
of the large sparse matrix A. In all numerical computations of this paper, we take
M = 25 for different N , and accurate results are obtained as shown in Section 4. An
orthonormal basis VM = [v1, v2, v3, · · · , vM ] of the Krylov subspace KM is generated
by the well-known Arnoldi algorithm [81] as the following.

1. Compute the initial vector: v1 = v/‖v‖2.
2. Perform iterations: Do j = 1, 2, · · · , M :

1) Compute the vector w = Avj .
2) Do i = 1, 2, · · · , j:

(a) Compute the inner product hi,j = (w, vi).
(b) Compute the vector w = w − hi,jvi.
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3) Compute hj+1,j = ‖w‖2.
4) If hj+1,j ≡ 0, then

stop the iteration;
else

compute the next basis vector vj+1 = w/hj+1,j .

In the Arnoldi algorithm, if hj+1,j ≡ 0 for some j < M , it means that the convergence
has occured and the Krylov subspace KM = span{v1, v2, · · · , vj}, so the iteration can
be stopped at this step j, and we assign the value of this j to M . This algorithm will
produce an orthonormal basis VM of the Krylov subspace KM . Denote the M × M
upper Hessenberg matrix consisting of the coefficients hi,j by HM . Since the columns
of VM are orthogonal, we have

HM = V T
MAVM . (8)

This means that the very small Hessenberg matrix HM represents the projection of
the large sparse matrix A to the Krylov subspace KM , with respect to the basis VM .
Also since VM is orthonormal, the vector VMV T

MeA∆tv is the orthogonal projection of
eA∆tv on the Krylov subspace KM , namely, it is the closest approximation to eA∆tv
from KM . Therefore

eA∆tv ≃ VMV T
MeA∆tv = βVMV T

MeA∆tv1 = βVMV T
MeA∆tVMe1,

where β = ‖v‖2, and e1 denotes the first column of the M × M identity matrix IM .
Use the fact of (8), we have the approximation

eA∆tv ≃ βVMeHM∆te1. (9)

Thus the large eA∆t matrix exponential problem is replaced with a much smaller eHM∆t

problem. The small matrix exponential eHM∆t will be computed using a scaling and
squaring algorithm with a Padé approximation with only computational cost of O(M2),
see [42, 62, 36]. Applying the Krylov subspace approximation (9) to (3), we obtain the
Krylov IIF schemes

Un+1 = ∆tα1F(Un+1)+β0,nVM,0,neHM,0,n∆te1+∆t

(
r−2∑

i=1

α−iβi,nVM,i,ne(i+1)HM,i,n∆te1

)
,

(10)
where β0,n = ‖Un +α0∆tF(Un)‖2, βi,n = ‖F(Un−i)‖2, VM,0,n and HM,0,n are orthonor-
mal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the
initial vector Un+α0∆tF(Un). VM,i,n and HM,i,n are orthonormal basis and upper Hes-
senberg matrix generated by the Arnoldi algorithm with the initial vectors F(Un−i), for
i = 1, 2, · · · , r−2. We would like to point out that VM,0,n and VM,i,n, i = 1, 2, · · · , r−2
are orthonormal bases of different Krylov subspaces for the same matrix A, which are
generated with different initial vectors in the Arnoldi algorithm. The value of M is
taken to be large enough such that the error of Krylov subspace approximations is
much less than the truncation errors of the numerical schemes (3). From our numeri-
cal experiments in this paper (Section 4), we can see that our numerical schemes have
already given a clear accuracy order with a very small size M = 25, and M does not
need to be increased when the spatial-temporal resolution is refined. Specifically the
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second order Krylov IIF scheme has the form

Un+1 =
1

2
∆tF(Un+1) + βnVM,neHM,n∆te1, (11)

where βn = ‖Un + 1
2∆tF(Un)‖2, VM,n and HM,n are orthonormal basis and upper

Hessenberg matrix generated by the Arnoldi algorithm with the initial vector Un +
1
2∆tF(Un). And the third order Krylov IIF scheme has the form

Un+1 =
5

12
∆tF(Un+1) + β0,nVM,0,neHM,0,n∆te1 −

1

12
∆tβ1,nVM,1,ne2HM,1,n∆te1, (12)

where β0,n = ‖Un + 2
3∆tF(Un)‖2, β1,n = ‖F(Un−1)‖2, VM,0,n and HM,0,n are orthonor-

mal basis and upper Hessenberg matrix generated by the Arnoldi algorithm with the
initial vector Un + 2

3∆tF(Un). VM,1,n and HM,1,n are orthonormal basis and upper Hes-
senberg matrix generated by the Arnoldi algorithm with the initial vector F(Un−1).

3 Implicit DG formulations and application of

Krylov IIF methods

To test our Krylov IIF methods, we apply them to solve the stiff ODE system arising
from a DG discretization of reaction-diffusion equations on 2D triangular meshes. Let
Ω be an open, bounded domain on which the reaction-diffusion system

∂u

∂t
= D∆u + F (u) (13)

is defined, where u often represents concentrations of a group of chemical molecules, D
is the constant diffusion matrix, ∆u is the Laplacian associated with the diffusion of the
molecules u, and F (u) describes the nonlinear chemical reactions. For the simplicity
of the description, we consider the scalar case of (13). The numerical formulae for the
scalar case can be straightforwardly extended to solve the system case component by
component. We consider a triangulation Ωh of Ω which consists of nonoverlapping tri-
angles {△m}N

m=1. Let hmin = min1≤m≤N ρm, where ρm is the diameter of the inscribed
circle of the triangle △m.

Define the finite element space V k
h = {v : v|△m

∈ P k(△m), m = 1, · · · , N}, where
P k(△m) denotes the set of all polynomials of degree at most k on △m.

We apply the DG formulation [18] to discretize the reaction-diffusion equations
(13) in the spatial direction, but keep the time variable continuous. The semi-discrete
scheme is: find u ∈ V k

h , such that

∫

△m

utvdx − D

∫

△m

u∇2vdx + D

∫

∂△m

û∇v · ~n∂△m
dS − D

∫

∂△m

v∇̃u · ~n∂△m
dS

=

∫

△m

F (u)vdx

(14)

holds true for any v ∈ V k
h and m = 1, · · · , N . The numerical fluxes on the element

edges ∂△m are chosen as

û =
uin + uext

2
, (15)
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∇̃u =
(∇u)in + (∇u)ext

2
+ β[u], (16)

where the jump term
[u] = (uext − uin)|∂△m

· ~n∂△m
, (17)

uin and uext are the limits of u at x ∈ ∂△m taken from the interior and the exterior
of △m respectively, ~n∂△m

is the outward unit normal to the element △m at x ∈ ∂△m,
and β is a positive constant that is of the order O(h−1

min). In all of computations of
this paper, we take β = 10/hmin. The choice of numerical fluxes (15)-(17) is crucial for
the stability and convergence of the DG scheme (14). See [27, 18] for more discussions
about the choice of numerical fluxes.

To apply the Krylov IIF schemes (10) to the DG spatial discretization (14), we
will need the matrix expression (i.e., the implicit DG formulae) as (1). This is a
different step from the explicit DG methods for hyperbolic conservation laws. The
implicit DG formulae for the P 1 case has been given in [94]. In this paper, we will
present the implicit DG formulae for both the P 1 and P 2 cases. For each element △m,
denote its three neighboring elements by im, jm, and km. To simlify notations in the
following presentation, we will omit the subscript m and just use i, j, k to represent
the neighboring cells of △m.

The implicit DG formulae for the P 1 case has been derived in [94]. But to make
the paper self-contained, we will re-present the P 1 case in the section 3.1. The new
formulae for the P 2 case will be given in the section 3.2.

3.1 The P
1 case

The linear polynomial on △m is represented by

u(x, y, t) = am(t) + bm(t)ξm + cm(t)ηm (18)

where

ξm =
x − xm

hm
, (19)

ηm =
y − ym

hm
, (20)

and (xm, ym) is the barycenter of the element △m, hm =
√
|∆m| with |∆m| denoting

the area of the triangle △m. By taking v = 1, ξm, ηm on △m and v = 0 elsewhere,
the DG formulation (14) can be converted from the integral form to the following

10



semi-discretized ODE system, for m = 1, · · · , N :

q11a
′
m(t) + q12b

′
m(t) + q13c

′
m(t) = D

∑

l=m,i,j,k

[wal1al(t) + wbl1bl(t) + wcl1cl(t)]

+(q11/3)
∑

l=i,j,k

F (u(xm,l, ym,l)), (21)

q21a
′
m(t) + q22b

′
m(t) + q23c

′
m(t) = D

∑

l=m,i,j,k

[wal2al(t) + wbl2bl(t) + wcl2cl(t)]

+(q11/3)
∑

l=i,j,k

F (u(xm,l, ym,l))ξm(xm,l, ym,l), (22)

q31a
′
m(t) + q32b

′
m(t) + q33c

′
m(t) = D

∑

l=m,i,j,k

[wal3al(t) + wbl3bl(t) + wcl3cl(t)]

+(q11/3)
∑

l=i,j,k

F (u(xm,l, ym,l))ηm(xm,l, ym,l), (23)

where the coefficients {qrs}
3
r,s=1, {{walr}

3
r=1, {wblr}

3
r=1, {wclr}

3
r=1}l=m,i,j,k are constants

which depend on the local geometry of the mesh (i.e., triangle △m and its neighboring
cells i, j, k and ~n∂△m

), the local basis functions 1, {ξl, ηl}l=m,i,j,k, and the constant β.
{(xm,l, ym,l)}l=i,j,k are the mid-points of the three edges {el}l=i,j,k of △m which serve
as Gaussian quadrature points for the P 1 case in the integral involving the nonlinear
reaction terms in (14). The detailed formulae for computing these constants are pre-
sented in the Appendix. In our implementation, these mesh-dependent constants are
pre-calculated and stored before the time evolution since they don’t depend on the
numerical solution u. Rewrite equations (21)-(23) to the matrix-vector form

Qm
~V ′

m(t) = D
∑

l=m,i,j,k

Wl
~Vl(t) + ~Fm(~Vm) m = 1, · · · , N, (24)

where Qm =




q11 q12 q13

q21 q22 q23

q31 q32 q33


, Wl =




wal1 wbl1 wcl1

wal2 wbl2 wcl2

wal3 wbl3 wcl3


, ~Vm =




am(t)
bm(t)
cm(t)


,

~Vl =




al(t)
bl(t)
cl(t)


, and ~Fm(~Vm) =




(q11/3)
∑

l=i,j,k F (u(xm,l, ym,l))

(q11/3)
∑

l=i,j,k F (u(xm,l, ym,l))ξm(xm,l, ym,l)

(q11/3)
∑

l=i,j,k F (u(xm,l, ym,l))ηm(xm,l, ym,l)


.

3.2 The P
2 case

The procedure to construct the P 2 implicit DG spatial discretizations with third order
accuracy will follow that of the P 1 case, with a larger semi-discretized system. The
number of local equations on each triangle depends on the degree of freedoms of the
approximation polynomial. On each triangle △m, a quadratic polynomial

u(x, y, t) = am(t) + bm(t)ξm + cm(t)ηm + dm(t)ξmηm + em(t)ξ2
m + fm(t)η2

m (25)

will be constructed. In (14), we take v = 1, ξm, ηm, ξmηm, ξ2
m, η2

m on △m and v = 0
elsewhere and convert the integral formulation to the semi-discretized ODE system

Qm
~V ′

m(t) = D
∑

l=m,i,j,k

Wl
~Vl(t) + ~Fm(~Vm) m = 1, · · · , N, (26)

11



where Qm =




q11 q12 q13 q14 q15 q16

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

q61 q62 q63 q64 q65 q66




, Wl =




wal1 wbl1 wcl1 wdl1 wel1 wfl1

wal2 wbl2 wcl2 wdl2 wel2 wfl2

wal3 wbl3 wcl3 wdl3 wel3 wfl3

wal4 wbl4 wcl4 wdl4 wel4 wfl4

wal5 wbl5 wcl5 wdl5 wel5 wfl5

wal6 wbl6 wcl6 wdl6 wel6 wfl6




,

~Vm =




am(t)
bm(t)
cm(t)
dm(t),
em(t),
fm(t)




, ~Vl =




al(t)
bl(t)
cl(t)
dl(t),
el(t),
fl(t)




, and

~Fm(~Vm) =




q11
∑7

ν=1 ωνF (u(xmν , ymν ))

q11
∑7

ν=1 ωνF (u(xmν , ymν ))ξm(xmν , ymν )

q11
∑7

ν=1 ωνF (u(xmν , ymν ))ηm(xmν , ymν )

q11
∑7

ν=1 ωνF (u(xmν , ymν ))ξm(xmν , ymν )ηm(xmν , ymν )

q11
∑7

ν=1 ωνF (u(xmν , ymν ))ξ2
m(xmν , ymν )

q11
∑7

ν=1 ωνF (u(xmν , ymν ))η2
m(xmν , ymν )




.

Again the detailed formulae for elements of matrices Qm, Wm and Wl, l = i, j, k are
given in the Appendix. These mesh-dependent constants don’t depend on the numerical
solution u and are pre-calculated and stored before the time evolution. (xmν , ymν ), ν =
1, · · · , 7 are the Gaussian quadrature points in the triangle △m for computing the
integral involving the nonlinear reaction terms for the P 2 case. Their values are also
given in the Appendix.

3.3 Application of Krylov IIF schemes

Finally we have the ODE system resulting from the P 1 (24) or P 2 (26) DG spatial
discretization:

~V ′
m(t) = D

∑

l=m,i,j,k

W̃l
~Vl(t) +

~̃
Fm(~Vm), m = 1, · · · , N, (27)

where W̃l = Q−1
m Wl,

~̃
Fm = Q−1

m
~Fm. Q−1

m and W̃l are mesh-dependent data and they
don’t depend on the numerical solution u. So we pre-calculate and store these data
before the time evolution. Note that in this paper we consider that the nonlinear term
~̃
Fm(~Vm) arises from the nonlinear reaction or source terms and no spatial derivative

is involved in it, so the nonlinear operator
~̃
Fm is local, namely it only depends on the

unknowns ~Vm on the element △m.
Assembling the local systems (27), we get the global ODE system arising from the

implicit DG spatial discretization for a reaction-diffusion equation on a triangular mesh

U ′(t) = AU + F(U) (28)

where U = (V T
1 , V T

2 , · · · , V T
N )T , A is a p ·N ×p ·N sparse matrix with block structures,

where p is the degrees of freedom on each triangular element. The nonzero elements

12
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Figure 1: (a): A coarse mesh with 56 triangles in the convergence studies in Section 4.1;
(b): a coarse mesh with 2415 triangles in the numerical simulations for the zebrafish model
in Section 4.2.

in A are p × p sub-matrices DW̃l distributed on corresponding locations, and

F(U) = (
~̃
F 1(~V1)

T ,
~̃
F 2(~V2)

T , · · · ,
~̃
FN (~VN )T )T .

Remark: The sparse matrix A is the P 1 or P 2 DG discretization (14) of the Laplacian
operator D∇2. For the sparse matrix A we only store the nonzero elements (those

DW̃l blocks) and their locations in the matrix [75]. In our implementation we avoid
the operations involving zero elements in the sparse matrix A.

Now for the ODE system (28), we can directly apply the Krylov IIF methods (10)
for the time evolution. In our numerical experiments, we apply the second order Krylov
IIF method (11) for the P 1 DG spatial discretization, and the third order Krylov IIF
method (12) for the P 2 DG spatial discretization to achieve consistent spatial-temporal
accuracy orders. As the original IIF methods, the Krylov IIF methods will result in a
local nonlinear algebraic system on every triangular element. The number of algebraic
equations of the local system is the product of the degrees of freedom p and the number
of equations in the PDEs system. We use the Newton method to solve the small
nonlinear algebraic system on every triangular element. In the Newton iterations to
compute Un+1, we use the numerical values Un at time step tn as the initial guess. And
the threshold value for judging Newton iteration convergence is set to be 10−15.

4 Numerical Experiments

In this section we present numerical examples to show the stability, accuracy and effi-
ciency of the Krylov IIF methods in resolving the stiffness of the DG spatial operator for
reaction-diffusion PDEs on 2D triangular meshes. The methods are firstly tested on a
set of problems with exact solutions. Then application of the method to long-time sim-
ulation of a mathematical model which describes the dorsal-ventral pattern formation
during the zebrafish embryo development will be shown. From numerical experiments
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we can observe that large time step sizes are achieved in numerical computations of
these parabolic PDEs by the DG method.

In this paper, all of the reaction-diffusion systems we considered are subject to
no-flux boundary conditions. If the element edge el of △m is aligned with the domain
boundary ∂Ω, we take uin|el

= uext|el
, and (∇u)in|el

· ~nel
= (∇u)ext|el

· ~nel
= 0 in the

numerical fluxes (15)-(17). Hence we have

û|el
= uin|el

, ∇̃u|el
· ~nel

= 0

in the scheme (14).
All computations in this paper are performed on a 2.39GHz, 8GB RAM Linux

computer.

4.1 Numerical examples with exact solutions

In this subsection, we perform convergence studies for the second and third order
Krylov IIF methods which are applied to P 1 and P 2 DG spatial discretizations re-
spectively on triangular meshes, as shown in Fig. 1(a) which is a coarse one with 56
elements. The refinement of the triangular meshes is done in a uniform way, namely
by cutting each triangle into four smaller similar ones.

To show the stiffness of the DG spatial discretization matrix A for the diffusion
operator ∇2, we study the eigenvalues and condition numbers related to A. In Table 1,
we list the negative largest eigenvalue λ0(A) of P 1 or P 2 DG discretization matrices A
for the diffusion operator ∇2 on the domain [0, 1]2 with no-flux boundary conditions,
on successively refined meshes. The matrices A have the 0 eigenvalue due to the no-
flux boundary condition. We can see that the matrices A have quite large magnitude
eigenvalues for not so refined meshes. If an regular implicit method is used for the time
discretization (e.g. the backward Euler method), a linear system with the coefficient
matrix I − ∆tA needs to be solved. In Table 1, we also list the condition numbers of
the matrices I−∆tA for successively refined spatial-temporal meshes, with ∆t = hmin.
These condition numbers are quite large for not so refined 2D meshes. Next we will
show that the Krylov IIF methods developed in this paper work quite well for this DG
spatial discretization.

Example 1: consider the two-dimensional diffusion problem

{
ut = uxx + uyy, (x, y) ∈ (0, 1) × (0, 1)
u(x, y, 0) = cos(πx) cos(πy),

(29)

with the no-flux boundary conditions. The exact solution is u(x, y, t) = e−2π2t cos(πx) cos(πy).
The computation is carried up to T = 0.6 with M = 25 at which the L1, L2 and L∞

errors are measured. The time step size ∆t = hmin. CPU time, errors and order of
accuracy for the second order Krylov IIF method with P 1 DG spatial discretization
are reported in Table 2, and for the third order Krylov IIF method with P 2 DG spatial
discretization are reported in Table 3. We can observe that we obtained desired accu-
racy orders for both cases. In the Tables, Nee is the number of triangular elements
of the computational meshes, and N = 3 · Nee (P 1 case) or N = 6 · Nee (P 2 case) is
the number of unknown degrees of freedom in the spatial direction. If the original IIF
schemes are used, it is computationally prohibitive to compute the matrix exponential

14



Table 1: Eigenvalue and condition number study. λ0(A) is the negative largest eigenvalue of P 1 or
P 2 DG discretization matrices A for the diffusion operator ∇2 on the domain [0, 1]2 with no-flux
boundary conditions, on successively refined meshes. cond(I − ∆tA) are condition numbers for
the linear operator I −∆tA, which will arise if an implicit treatment of the diffusion term is used.
Time step size ∆t = hmin is used. Nee is the number of triangular elements of the computational
meshes.

P
1

P
2

Nee ∆t cond(I − ∆tA) λ0(A) cond(I − ∆tA) λ0(A)
14 0.2079 2.7549E+03 -3.1490E+03 2.2734E+04 -4.2638E+03
56 0.1039 4.8715E+03 -1.3522E+04 3.6438E+04 -1.7467E+04

224 0.0520 9.0636E+03 -5.5484E+04 6.3633E+04 -7.0285E+04
896 0.0260 1.9658E+04 -2.2407E+05 1.3349E+05 -2.8164E+05

3584 0.0130 3.6801E+04 -8.9920E+05 2.4045E+05 -1.1277E+06

for such huge N × N matrices, especially when the spatial meshes are refined. The
Krylov subspace approximations we used in this paper only need to compute the ma-
trix exponentials of 25× 25 matrices, which are independent of the degrees of freedom
N . As shown in the CPU time of the numerical Tables, we can see that the compu-
tations are very efficient. When the spatial mesh is refined, the number of degrees of
freedom N increase 4 times and the total time steps double. From Tables 2 and 3,
we see that the CPU time approximately increases 8 times when the mesh is refined
once. So The CPU time approximately linearly depends on the number of degrees of
freedom. Also, we obtain a clean second and third order accuracy in the computations
for a fixed Krylov space dimension M = 25 for all meshes, and this indicates that the
errors generated by the Krylov subspace approximations are much smaller than the
truncation errors of the numerical schemes. This is also confirmed by the numerical
results in Table 4, in which we show numerical errors if different dimensions M of the
Krylov subspace are used in the second order Krylov IIF method with P 1 DG spatial
discretization, for a fixed spatial mesh. We can see that the numerical errors are com-
parable for both smaller M and larger ones. So the numerical errors shown in Table
4 are mainly due to the truncation errors of the DG spatial discretizations (14)(the
temporal truncation errors from the IIF part (5) are 0 since this problem only has the
linear diffusion part), and the numerical errors by the Krylov subspace approximations
are negligible in this example. We will further perform theoretical error analysis on
this in our future work. The numerical results also show that even for this parabolic
PDE, we can use a large time step size proportional to the spatial grid size for a stable
and accurate computation. Actually for this problem which only has linear diffusion
terms, in the time direction the Krylov IIF method can evolve the linear DG spatial
discretization operator almost “exactly” up to the numerical errors of the Krylov sub-
space approximations. This is shown in both Table 4 and Table 5. From these two
Tables, we can see that even if we use a very large time step size ∆t = 0.6, namely
we just use one time-step to reach the final time T , we can still obtain comparable
numerical errors as those in the computations by using ∆t = hmin and a clear second
order accuracy as shown in Table 5.
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Table 2: Example 1. CPU time, error, and order of accuracy of the second order Krylov IIF
method with P

1 DG spatial discretization. Final time T = 0.6.

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 42 0.00 2.60E-06 - 3.17E-06 - 6.47E-06 -
56 168 0.02 1.20E-06 1.12 1.48E-06 1.10 2.70E-06 1.26

224 672 0.12 3.70E-07 1.70 4.54E-07 1.70 9.00E-07 1.59
896 2688 0.69 9.86E-08 1.91 1.21E-07 1.91 2.41E-07 1.90

3584 10752 5.24 2.49E-08 1.98 3.06E-08 1.98 6.09E-08 1.98
14336 43008 40.23 6.24E-09 2.00 7.67E-09 2.00 1.52E-08 2.00
57344 172032 368.65 1.56E-09 2.00 1.92E-09 2.00 3.81E-09 2.00

Table 3: Example 1. CPU time, error, and order of accuracy of the third order Krylov IIF
method with P

2 DG spatial discretization. Final time T = 0.6.

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 84 0.01 3.46E-07 - 4.02E-07 - 6.02E-07 -
56 336 0.05 1.12E-08 4.95 1.47E-08 4.78 6.34E-08 3.25

224 1344 0.26 8.19E-10 3.78 1.06E-09 3.79 8.25E-09 2.94
896 5376 1.99 7.24E-11 3.50 9.38E-11 3.50 1.04E-09 2.99

3584 21504 16.05 8.11E-12 3.16 1.06E-11 3.14 1.30E-10 3.00
14336 86016 134.62 9.83E-13 3.04 1.30E-12 3.03 1.63E-11 3.00
57344 344064 994.91 1.25E-13 2.98 1.65E-13 2.98 2.06E-12 2.98

Example 2: consider the two-dimensional problem with a linear reaction term

{
ut = uxx + uyy − u + 2π2e−t cos(πx) cos(πy), (x, y) ∈ (0, 1) × (0, 1)
u(x, 0) = cos(πx) cos(πy),

(30)

with the no-flux boundary conditions. The exact solution is u(x, y, t) = e−t cos(πx) cos(πy).
The computation is carried up to T = 2.0 with M = 25 at which the L1, L2 and L∞

errors are measured. The time step size ∆t = hmin, and the larger ones ∆t = 2hmin,
∆t = 4hmin. CPU time, errors and order of accuracy for the second order Krylov IIF
method with P 1 DG spatial discretization are reported in Table 6, and for the third
order Krylov IIF method with P 2 DG spatial discretization are reported in Table 7. We
can observe that we obtained desired accuracy orders for all cases. In the Tables, Nee
is the number of triangular elements of the computational meshes, and N = 3 · Nee
(P 1 case) or N = 6 ·Nee (P 2 case) is the number of unknown degrees of freedom in the
spatial direction. As in the example 1, the Krylov IIF methods demonstrate excellent
efficiency, accuracy and stability properties in this example. The stable and accurate
computation results by using large time step sizes show that the methods have quite
large linear stability region.
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Table 4: Example 1. Numerical errors if different dimensions M of the Krylov subspace are
used in the second order Krylov IIF method with P

1 DG spatial discretization. Final time
T = 0.6. Two different time step sizes ∆t = 0.6 and ∆t = hmin are used. The spatial mesh
is the one which has Nee = 3584 triangles.

∆t = 0.6 ∆t = hmin

M L1 error L2 error L∞ error L1 error L2error L∞ error
10 3.06E-08 3.77E-08 7.74E-08 2.45E-08 3.02E-08 5.98E-08
25 2.69E-08 3.32E-08 6.78E-08 2.49E-08 3.06E-08 6.09E-08

100 2.44E-08 3.01E-08 5.99E-08 2.49E-08 3.06E-08 6.09E-08
250 2.48E-08 3.05E-08 6.03E-08 2.49E-08 3.06E-08 6.09E-08

Table 5: Example 1. Error, and order of accuracy of the second order Krylov IIF method
with P

1 DG spatial discretization. Final time T = 0.6. A large time step ∆t = 0.6 is used,
namely, only one step to the final time for this diffusion problem.

Nee N L1 error order L2 error order L∞ error order
14 42 2.60E-06 - 3.18E-06 - 6.50E-06 -
56 168 1.20E-06 1.12 1.48E-06 1.11 2.71E-06 1.26

224 672 3.69E-07 1.70 4.54E-07 1.70 8.99E-07 1.59
896 2688 1.11E-07 1.73 1.37E-07 1.73 2.74E-07 1.72

3584 10752 2.69E-08 2.04 3.32E-08 2.04 6.78E-08 2.01
14336 43008 6.64E-09 2.02 8.19E-09 2.02 1.69E-08 2.00
57344 172032 1.70E-09 1.96 2.10E-09 1.96 4.35E-09 1.96

Example 3: consider the two-dimensional problem with a nonlinear reaction term

{
ut = uxx + uyy − u2 + e−2t cos2 πx cos2 πy + (2π2 − 1)e−t cos πx cos πy, (x, y) ∈ (0, 1) × (0, 1)
u(x, 0) = cos(πx) cos(πy),

(31)
with the no-flux boundary conditions. The exact solution is u(x, y, t) = e−t cos(πx) cos(πy).
The computation is carried up to T = 2.0 with M = 25 at which the L1, L2 and L∞

errors are measured. The time step size ∆t = hmin. CPU time, errors and order of
accuracy for the second order Krylov IIF method with P 1 DG spatial discretization
are reported in Table 8, and for the third order Krylov IIF method with P 2 DG spatial
discretization are reported in Table 9. Again we obtained desired accuracy orders for
both cases. In the Tables, Nee is the number of triangular elements of the computa-
tional meshes, and N = 3 · Nee (P 1 case) or N = 6 · Nee (P 2 case) is the number of
unknown degrees of freedom in the spatial direction. For this example with a nonlinear
reaction term, we still draw the same conclusion as the last two examples, from the
numerical convergence study about the efficiency, accuracy and stability properties of
the Krylov IIF methods.
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Table 6: Example 2. CPU time, error, and order of accuracy of the second order Krylov IIF
method with P

1 DG spatial discretization. Final time T = 2.

∆t = hmin

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 42 0.01 2.10E-02 - 2.59E-02 - 9.31E-02 -
56 168 0.10 7.60E-03 1.47 9.56E-03 1.44 3.33E-02 1.48

224 672 0.46 2.26E-03 1.75 2.80E-03 1.77 9.35E-03 1.83
896 2688 2.82 8.25E-04 1.45 1.02E-03 1.46 3.04E-03 1.62

3584 10752 21.95 2.07E-04 1.99 2.56E-04 1.99 7.80E-04 1.96
14336 43008 171.41 5.23E-05 1.99 6.45E-05 1.99 1.99E-04 1.97
57344 172032 1662.97 1.33E-05 1.98 1.64E-05 1.98 5.12E-05 1.96

∆t = 2hmin

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 42 0.00 1.00E-01 - 1.30E-01 - 3.40E-01 -
56 168 0.05 2.33E-02 2.14 2.87E-02 2.15 7.57E-02 2.18

224 672 0.27 9.22E-03 1.34 1.14E-02 1.34 2.70E-02 1.49
896 2688 1.58 2.68E-03 1.78 3.30E-03 1.78 7.63E-03 1.82

3584 10752 11.89 9.44E-04 1.50 1.17E-03 1.50 2.59E-03 1.56
14336 43008 89.35 2.37E-04 2.00 2.92E-04 2.00 6.52E-04 1.99
57344 172032 741.47 5.95E-05 1.99 7.34E-05 1.99 1.65E-04 1.98

∆t = 4hmin

Nee N CPU(s) L1 error order L2 error order L∞ error order
56 168 0.03 1.00E-01 - 1.30E-01 - 2.90E-01 -

224 672 0.16 2.44E-02 2.06 3.01E-02 2.06 6.53E-02 2.14
896 2688 0.95 9.61E-03 1.34 1.19E-02 1.34 2.48E-02 1.40

3584 10752 6.63 2.80E-03 1.78 3.45E-03 1.78 7.17E-03 1.79
14336 43008 48.03 9.74E-04 1.52 1.20E-03 1.52 2.47E-03 1.54
57344 172032 409.27 2.44E-04 2.00 3.01E-04 2.00 6.19E-04 2.00

4.2 Application to a morphogenesis system

Many mathematical models in developmental biology take the form of reaction-diffusion
equations (13). In such systems, both diffusion and reaction terms are often very stiff.
And long time numerical simulations are often needed for these systems. Hence robust
and accurate methods which permit large time step sizes are desired. As demonstrated
in one-dimensional systems [66], the IIF methods are quite efficient for such applica-
tions. In this section, We apply the second order Krylov IIF method with P 1 DG
spatial discretization on a triangular mesh to a model for the study of embryonic pat-
terning. The model is re-defined on a two dimensional domain which has a realistic
shape as part of the embryo during its development.

One of the central problems in developmental biology is how uniform fields of cells
are transformed into tissues with highly specialized cell types at distinct anatomical
positions. In this process, diffusible morphogens produced by certain cells pattern the
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Table 7: Example 2. CPU time, error, and order of accuracy of the third order Krylov IIF
method with P

2 DG spatial discretization. Final time T = 2.

∆t = hmin

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 84 0.07 1.49E-02 - 1.84E-02 - 4.54E-02 -
56 336 0.31 5.11E-03 1.55 6.29E-03 1.54 1.31E-02 1.80

224 1344 1.81 9.44E-04 2.44 1.16E-03 2.43 2.36E-03 2.47
896 5376 14.21 1.99E-04 2.25 2.45E-04 2.25 4.92E-04 2.26

3584 21504 115.10 2.71E-05 2.88 3.34E-05 2.88 6.70E-05 2.88
14336 86016 940.71 3.59E-06 2.91 4.43E-06 2.91 8.88E-06 2.91
57344 344064 7898.45 4.76E-07 2.92 5.87E-07 2.92 1.18E-06 2.92

∆t = 2hmin

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 84 0.03 7.87E-02 - 9.73E-02 - 0.21 -
56 336 0.16 1.51E-02 2.38 1.86E-02 2.39 3.78E-02 2.48

224 1344 0.97 5.11E-03 1.56 6.31E-03 1.56 1.27E-02 1.58
896 5376 7.55 9.44E-04 2.44 1.16E-03 2.44 2.33E-03 2.44

3584 21504 58.61 1.99E-04 2.25 2.45E-04 2.25 4.91E-04 2.25
14336 86016 500.34 2.71E-05 2.88 3.34E-05 2.88 6.69E-05 2.88
57344 344064 4288.04 3.59E-06 2.91 4.43E-06 2.91 8.86E-06 2.92

∆t = 4hmin

Nee N CPU(s) L1 error order L2 error order L∞ error order
56 336 0.09 7.89E-02 - 9.73E-02 - 2.00E-01 -

224 1344 0.54 1.51E-02 2.38 1.86E-02 2.38 3.73E-02 2.39
896 5376 4.03 5.12E-03 1.56 6.31E-03 1.56 1.26E-02 1.56

3584 21504 30.85 9.44E-04 2.44 1.16E-03 2.44 2.33E-03 2.44
14336 86016 249.01 1.99E-04 2.25 2.45E-04 2.25 4.91E-04 2.25
57344 344064 1971.68 2.71E-05 2.88 3.34E-05 2.88 6.69E-05 2.88

surrounding tissue through interactions with certain proteins on the cell membrane.
Morphogens are signaling molecules that, when bound to cell receptors, assign different
cell fates at different concentrations. This role of morphogens has been the prevailing
thought in tissue patterning for over half a century; but only recently have there been
sufficient experimental data for us to begin to understand how various morphogens in-
teract and patterns emerge. Now, mathematical modelling, analysis and computations
have been very helpful to understand and identify underline biological mechanisms in
morphogenesis systems [54, 55].

The example we are considering is a system of reaction-diffusion equations arising
from mathematical modeling of a morphogenesis problem during the dorsal-ventral
patterning of zebrafish embryo development [92]. The model predicts that the dorsal
organizer of the zebrafish embryo plays a key role in forming a stable non-homogeneous
morphogen gradient, and the prediction agrees well with the existing biological exper-
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Table 8: Example 3. CPU time, error, and order of accuracy of the second order Krylov IIF
method with P

1 DG spatial discretization. Final time T = 2.

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 42 0.06 0.55 - 0.55 - 0.67 -
56 168 0.11 1.45E-02 5.24 1.70E-02 5.01 4.87E-02 3.78

224 672 0.52 2.44E-03 2.58 3.02E-03 2.50 9.93E-03 2.29
896 2688 3.19 8.72E-04 1.48 1.08E-03 1.49 3.19E-03 1.64

3584 10752 24.60 2.19E-04 1.99 2.70E-04 1.99 8.18E-04 1.96
14336 43008 197.79 5.52E-05 1.99 6.80E-05 1.99 2.09E-04 1.97
57344 172032 1670.53 1.40E-05 1.98 1.72E-05 1.98 5.36E-05 1.96

Table 9: Example 3. CPU time, error, and order of accuracy of the third order Krylov IIF
method with P

2 DG spatial discretization. Final time T = 2.

Nee N CPU(s) L1 error order L2 error order L∞ error order
14 84 0.08 0.15 - 0.15 - 0.20 -
56 336 0.35 6.57E-03 4.49 7.98E-03 4.23 1.83E-02 3.46

224 1344 2.08 1.01E-03 2.69 1.25E-03 2.67 2.58E-03 2.83
896 5376 16.18 2.10E-04 2.27 2.59E-04 2.27 5.28E-04 2.29

3584 21504 127.09 2.86E-05 2.88 3.53E-05 2.88 7.17E-05 2.88
14336 86016 1139.88 3.77E-06 2.92 4.65E-06 2.92 9.44E-06 2.93
57344 344064 8864.08 4.91E-07 2.94 6.05E-07 2.94 1.22E-06 2.95

iments. First we briefly describe the reaction-diffusion model in the following.
Consider the zebrafish embryo from the end of blastula period to the middle of

gastrula period (approximately 4.5-7.5 hours after fertilization). We are interested in
the patterning of the dorsal-ventral tissues. On a two dimensional approximation, the
dorsal-ventral region has a shape as shown in Fig. 1(b), with the dorsal organizer being
located at the corner of the dorsal region. The whole domain Ω can be represented by

Ω = {(x, y)|r2
min ≤ x2 + y2 ≤ r2

max, cos 170◦ ≤
x√

x2 + y2
≤ cos 10◦},

and the dorsal organizer region ΩO is

ΩO = {(x, y)|r2
min ≤ x2 + y2 ≤ r2

max, cos 30◦ ≤
x√

x2 + y2
≤ cos 10◦},

where rmin and rmax are radii of the inner and outer boundaries.
Let [L] and [LR] denote the concentration of the morphogen BMP and the con-

centration of BMP-receptor complexes (to which BMP signaling is assumed to be
proportional), respectively. The concentration of the free molecule Chordin (an in-
hibitor of BMP) and the concentration of BMP-Chordin complex are denoted by [C]
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and [LC], respectively. Let R0 denote the total receptor concentration and let DL, DC ,
and DLC represent the three diffusion coefficients for BMP, Chordin, BMP-Chordin
complexes, respectively. The values kon, koff , kdeg, jon, joff , and τ are the binding
and degradation rates for BMP, Chordin, and their complexes. With this notation, the
reaction-diffusion model that is formulated in [92] is as follows:





∂[L]

∂t
= DL∇

2[L] − kon[L](R0 − [LR]) + koff [LR] − jon[L][C] + (joff + τ)[LC] + VL;

∂[LR]

∂t
= kon[L](R0 − [LR]) − (koff + kdeg)[LR];

∂[LC]

∂t
= DLC∇

2[LC] + jon[L][C] − (joff + τ)[LC];

∂[C]

∂t
= DC∇

2[C] − jon[L][C] + joff [LC] + VC ,

(32)

where VC and VL are the production rates of molecules Chordin and BMP, respectively,
defined by

VC = VCmin +
VCmax − VCmin

1 + γC [LR]
+

{
VCorge

−at, if (x, y) ∈ ΩO;

0, otherwise.
(33)

VL = VLmin +
VLmax − VLmin

1 + γL[LR]−1
+ VLmate

−bt. (34)

The terms VCorge
−at and VLmate

−bt represent the maternal production rates of Chordin
and BMP [92].

The system (32) is subjected to the no-flux boundary conditions

∂[L]

∂n
=

∂[LC]

∂n
=

∂[C]

∂n
= 0 for (x, y) ∈ ∂Ω. (35)

Parameters in the model are the following biological reasonable parameters [92]

rmin = 0.028cm, rmax = 0.088cm,

DL = DLC = DC = 8.5 × 10−7cm2s−1, kon = 0.4µM−1s−1,

R0 = 3.0µM, koff = 4 × 10−6s−1,

jon = 10µM−1s−1, joff = 1.0 × 10−5s−1,

τ = 0.01s−1, kdeg = 5.0 × 10−4s−1,

VCmin = 8.0 × 10−4µMs−1, VCmax = 8.0 × 10−2µMs−1,

VCorg = 6.68 × 10−1µMs−1, γC = 10µM−1,

a = 0.0167s−1, VLmin = 1.0 × 10−5µMs−1,

VLmax = 6.0 × 10−3µMs−1, γL = 10µM,

VLmat = 5.01 × 10−2µMs−1, b = 0.0167s−1,

(36)
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The system (32) can be non-dimensionalized with the following normalized quanti-
ties

T =
D

r2
min

t, X =
x

rmin
, Y =

y

rmin
, (37)

{fL, gL, hL, fS , hS , τS} =
r2
min

D
{koff , kdeg, konR0, joff , jonR0, τ}, (38)

{A, B, U, S} =
1

R0
{[L], [LR], [LC], [C]}, (39)

{WCmin, WCmax, WCorg, WLmin, WLmax, WLmat}

=
r2
min

DR0
{VCmin, VCmax, VCorg, VLmin, VLmax, VLmat},

(40)

{P, Q} =
r2
min

D
{a, b}, (41)

{dL, dLC , dC} =
1

D
{DL, DLC , DC}, γC = γCR0, γL =

γL

R0
, (42)

where D is the maximum of DL, DLC and DC in (36).
In terms of the normalized quantities, the system (32) becomes to the following

dimensionless form





∂A

∂T
= dL∇

2A − hLA(1 − B) + fLB − hSAS + (fS + τS)U + WL;

∂B

∂T
= hLA(1 − B) − (fL + gL)B;

∂U

∂T
= dLC∇

2U + hSAS − (fS + τS)U ;

∂S

∂T
= dC∇

2S − hSAS + fSU + WC ,

(43)

where

WC = WCmin +
WCmax − WCmin

1 + γCB
+

{
WCorge

−PT , if X ≥ 7
8 ;

0, otherwise.
(44)

WL = WLmin +
WLmax − WLmin

1 + γLB−1
+ WLmate

−QT . (45)

The non-dimensionalized parameters corresponding to those in (36) are:

dL = dLS = dC = 1, hL = 1.1068 × 103,

fL = 3.6894 × 10−3, hS = 2.7671 × 104,

fS = 9.2235 × 10−3, τS = 9.2235,

gL = 0.4612, WCmin = 0.24596,

WCmax = 24.596, WCorg = 2.0538 × 102,

γC = 30, P = 15.4032,

WLmin = 3.0745 × 10−3, WLmax = 1.8447,

γL = 3.3333, WLmat = 15.4032, Q = 15.4032.

(46)
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We use our new second order Krylov IIF method with P 1 DG spatial scheme to
simulate the system (43)-(46), to the normalized final time T = 10. The spatial
triangular mesh is a much more refined one based on the mesh shown in Figure 1(b). It
has 154560 triangular elements. The sparse matrix A has the huge size 463680×463680.
The original IIF methods can not be applied to such big size problem directly on a
regular computer. But our Krylov IIF method designed in this paper can simulate
the system stably and efficiently. The time step size is taken to be ∆t = 0.5hmin =
6.416 × 10−4 which is the advantage of the implicit methods for a parabolic problem.
The simulation results of the normalized concentrations of morphogen molecules are
shown in Figure 2. The Figure 2(b) shows a morphogen gradient of the BMP-receptor
complex which induces the cell differentiation and tissue patterns. In the zebrafish
dorsal-ventral patterning, the high concentration region of the BMP-receptor complex
will develop into the ventral tissue, and the low concentration region of the BMP-
receptor complex will develop into the dorsal tissue as shown in the Figure 2.

5 Discussions and Conclusions

In this paper, we contributed two aspects in high order numerical methods. One is the
development of a new Krylov subspace based implicit integration factor method for
solving large ODE systems with both stiff linear and nonlinear terms, arising from nu-
merical spatial discretization of time-dependent partial differential equations (PDEs)
with linear high order terms and stiff lower order nonlinear terms. The method can
preserve the nice property of the original IIF scheme [66] that the exact evaluation of
the linear part is decoupled from the implicit treatment of the nonlinear part. Further-
more, it can efficiently and accurately solve the large ODE systems arising from spatial
discretization (e.g. DG methods) on high dimensional unstructured meshes for PDEs
defined on complex geometrical domains. At the same time, this method provides
an efficient and robust time discretization technique for DG methods on unstructured
meshes for solving PDEs which have high order spatial derivatives. Development of
efficient high-order accurate time-stepping methods for DG methods applied to solve
PDEs which have high order derivatives and defined on multi-dimensional spatial do-
mains is still an active area. This is the second aspect in which this paper is trying to
contribute.

By using numerical examples of solving reaction-diffusion PDEs with exact solutions
and a realistic mathematical model in morphogenesis, we show the nice efficiency,
stability and accuracy of the Krylov IIF-DG method. For this method, we can use
a large time step size which is proportional to the spatial grid size to solve parabolic
PDEs such as the reaction-diffusion equations. Numerical examples also show that the
error generated by the Krylov subspace approximation with a quite small dimension
( the dimension M = 25 for all mesh sizes) does not affect the accuracy orders of the
IIF time discretizations ((5) or (6)) or the DG spatial discretizations (14), hence it is
already much smaller than the DG spatial and IIF temporal truncation errors.

Because the computations of matrix exponential by the scaling and squaring method
[42] are only needed for very small matrices (25×25 matrices in this paper), operations
required with the original huge matrix are a few matrix-by-vector multiplications, which
makes the algorithm easy to parallelize.

In this paper, we only used the numerical experiments to test the algorithm. No
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analysis results are reported. The current ongoing work includes the analysis of the
error generated by the Krylov subspace approximation and its effects on the truncation
errors of the IIF and DG discretizations. The error analysis techniques in [36] will be
used. In the numerical experiments of this paper, reaction-diffusion PDEs are used as
examples. The Krylov IIF methods developed in this paper can be straightforwardly
extended to solve more complex equations such as advection-reaction-diffusion PDEs
and also applied to other DG methods such as the LDG methods [90, 88] for solv-
ing PDEs involving high order spatial derivatives on multi-dimensional unstructured
meshes. These are our planned research at the next stage.

Appendix: Formulae for mesh-dependent constants in
the implicit DG schemes

We introduce the notation

ti1i2i3i4
def
=

∫

el

ξi1
mξi2

l ηi3
mηi4

l ds,

where i1, i2, i3, and i4 are integers from 0 to 4. For example t1203 =
∫
el

ξ1
mξ2

l η0
mη3

l ds =∫
el

ξmξ2
l η3

l ds.

A) The P
1 case

1. The matrix Qm =




q11 q12 q13

q21 q22 q23

q31 q32 q33


:

q11 =

∫

∆m

dx,

q12 = q21 =

∫

∆m

ξmdx,

q13 = q31 =

∫

∆m

ηmdx,

q22 =

∫

∆m

ξ2
mdx,

q23 = q32 =

∫

∆m

ξmηmdx,

q33 =

∫

∆m

η2
mdx.

2. The matrix Wm =




wam1 wbm1 wcm1

wam2 wbm2 wcm2

wam3 wbm3 wcm3


:
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wam1 =
∑

l=i,j,k

(−βt0000),

wbm1 =
∑

l=i,j,k

(
t0000nl,x

2hm
− βt1000)

wcm1 =
∑

l=i,j,k

(
t0000nl,y

2hm
− βt0010),

wam2 =
∑

l=i,j,k

(−
t0000nl,x

2hm
− βt1000),

wbm2 =
∑

l=i,j,k

(−βt2000),

wcm2 =
∑

l=i,j,k

(
t1000nl,y − t0010nl,x

2hm
− βt1010),

wam3 =
∑

l=i,j,k

(−
t0000nl,y

2hm
− βt0010),

wbm3 =
∑

l=i,j,k

(
t0010nl,x − t1000nl,y

2hm
− βt1010).

wcm3 =
∑

l=i,j,k

(−βt0020).

3. The matrix Wl =




wal1 wbl1 wcl1

wal2 wbl2 wcl2

wal3 wbl3 wcl3


, l = i, j, k:

wal1 = βt0000,

wbl1 =
t0000nl,x

2hl

+ βt0100,

wcl1 =
t0000nl,y

2hl

+ βt0001,

wal2 = −
t0000nl,x

2hm
+ βt1000,

wbl2 =
t1000nl,x

2hl

−
t0100nl,x

2hm
+ βt1100,

wcl2 =
t1000nl,y

2hl

−
t0001nl,x

2hm
+ βt1001,

wal3 = −
t0000nl,y

2hm
+ βt0010,

wbl3 =
t0010nl,x

2hl

−
t0100nl,y

2hm
+ βt0110,

wcl3 =
t0010nl,y

2hl

−
t0001nl,y

2hm
+ βt0011.
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B) The P
2 case

1. The matrix Qm =




q11 q12 q13 q14 q15 q16

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

q61 q62 q63 q64 q65 q66




:

q11 =

∫

∆m

dx,

q12 = q21 =

∫

∆m

ξmdx,

q13 = q31 =

∫

∆m

ηmdx,

q14 = q23 = q32 = q41 =

∫

∆m

ξmηmdx,

q15 = q51 = q22 =

∫

∆m

ξ2
mdx,

q16 = q61 = q33 =

∫

∆m

η2
mdx,

q24 = q42 = q35 = q53 =

∫

∆m

ξ2
mηmdx,

q25 = q52 =

∫

∆m

ξ3
mdx,

q26 = q62 = q34 = q43 =

∫

∆m

ξmη2
mdx,

q36 = q63 =

∫

∆m

η3
mdx,

q44 = q56 = q65 =

∫

∆m

ξ2
mη2

mdx,

q45 = q54 =

∫

∆m

ξ3
mηmdx,

q46 = q64 =

∫

∆m

ξmη3
mdx,

q55 =

∫

∆m

ξ4
mdx,

q66 =

∫

∆m

η4
mdx,

2. The matrix Wm =




wam1 wbm1 wcm1 wdm1 wem1 wfm1

wam2 wbm2 wcm2 wdm2 wem2 wfm2

wam3 wbm3 wcm3 wdm3 wem3 wfm3

wam4 wbm4 wcm4 wdm4 wem4 wfm4

wam5 wbm5 wcm5 wdm5 wem5 wfm5

wam6 wbm6 wcm6 wdm6 wem6 wfm6




:
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The formulae for wam1, wbm1, wcm1, wam2, wbm2, wcm2, wam3, wbm3 and wcm3 are the
same as those in the P 1 case.

wdm1 =
∑

l=i,j,k

(
nl,xt0010 + nl,yt1000

2hm
− βt1010),

wem1 =
∑

l=i,j,k

(
nl,xt1000

hm
− βt2000),

wfm1 =
∑

l=i,j,k

(
nl,yt0010

hm
− βt0020),

wdm2 =
∑

l=i,j,k

(
nl,yt2000

2hm
− βt2010),

wem2 =
∑

l=i,j,k

(
−nl,xt2000 + 2nl,xt2000

2hm
− βt3000),

wfm2 =
∑

l=i,j,k

(
−nl,xt0020 + 2nl,yt1010

2hm
− βt1020),

wdm3 =
∑

l=i,j,k

(
nl,xt0020

2hm
− βt1020),

wem3 =
∑

l=i,j,k

(
−nl,yt2000 + 2nl.xt1010

2hm
− βt2010),

wfm3 =
∑

l=i,j,k

(
−nl,yt0020 + 2nl,yt0020

2hm
− βt0030),

wam4 =
∑

l=i,j,k

(
−nl,xt0010 − nl,yt1000

2hm
− βt1010),

wbm4 =
∑

l=i,j,k

(−
nl,yt2000

2hm
− βt2010),

wcm4 =
∑

l=i,j,k

(−
nl,xt0020

2hm
− βt1020),

wdm4 =
∑

l=i,j,k

(−βt2020),

wem4 =
∑

l=i,j,k

(
nl,xt2010 − nl,yt3000

2hm
− βt3010),

wfm4 =
∑

l=i,j,k

(
−nl,xt0030 + nl,yt1020

2hm
− βt1030),
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wam5 =
∑

l=i,j,k

(
2q11

h2
m

−
nl,xt1000

hm
− βt2000),

wbm5 =
∑

l=i,j,k

(
2q12

h2
m

−
nl,xt2000

2hm
− βt3000),

wcm5 =
∑

l=i,j,k

(
2q13

h2
m

−
nl,xt1010

hm
+

nl,yt2000
2hm

− βt2010),

wdm5 =
∑

l=i,j,k

(
2q14

h2
m

−
nl,xt2010

2hm
+

nl,yt3000
2hm

− βt3010),

wem5 =
∑

l=i,j,k

(
2q15

h2
m

− βt4000),

wfm5 =
∑

l=i,j,k

(
2q16

h2
m

−
nl,xt1020

hm
+

nl,yt2010
hm

− βt2020),

wam6 =
∑

l=i,j,k

(
2q11

h2
m

−
nl,yt0010

hm
− βt0020),

wbm6 =
∑

l=i,j,k

(
2q12

h2
m

−
nl,yt1010

hm
+

nl,xt0020
2hm

− βt1020),

wcm6 =
∑

l=i,j,k

(
2q13

h2
m

−
nl,yt0020

2hm
− βt0030),

wdm6 =
∑

l=i,j,k

(
2q14

h2
m

−
nl,yt1020

2hm
+

nl,xt0030
2hm

− βt1030),

wem6 =
∑

l=i,j,k

(
2q15

h2
m

−
nl,yt2010

hm
+

nl,xt1020
hm

− βt2020),

wfm6 =
∑

l=i,j,k

(
2q16

h2
m

− βt0040).

3. The matrix Wl =




wal1 wbl1 wcl1 wdl1 wel1 wfl1

wal2 wbl2 wcl2 wdl2 wel2 wfl2

wal3 wbl3 wcl3 wdl3 wel3 wfl3

wal4 wbl4 wcl4 wdl4 wel4 wfl4

wal5 wbl5 wcl5 wdl5 wel5 wfl5

wal6 wbl6 wcl6 wdl6 wel6 wfl6




, l = i, j, k:

The formulae for wal1, wbl1, wcl1, wal2, wbl2, wcl2, wal3, wbl3 and wcl3 are the same as
those in the P 1 case.
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wdl1 =
t0001nl,x

2hl

+
t0100nl,y

2hl

+ βt0101,

wel1 =
t0100nl,x

hl

+ βt0200,

wfl1 =
t0001nl,y

hl

+ βt0002,

wdl2 = −
t0101nl,x

2hm
+

t1001nl,x + t1100nl,y

2hl

+ βt1101,

wel2 =
t1100nl,x

hl

−
t0200nl,x

2hm
+ βt1200,

wfl2 =
t1001nl,y

hl

−
t0002nl,x

2hm
+ βt1002,

wdl3 = −
t0101nl,y

2hm
+

t0011nl,x + t0110nl,y

2hl

+ βt0111,

wel3 =
t0110nl,x

hl

−
t0200nl,y

2hm
+ βt0210,

wfl3 =
t0011nl,y

hl

−
t0002nl,y

2hm
+ βt0012,

wal4 = −
t0010nl,x + t1000nl,y

2hm
+ βt1010,

wbl4 = −
t0110nl,x + t1100nl,y

2hm
+

t1010nl,x

2hl

+ βt1110,

wcl4 = −
t0011nl,x + t1001nl,y

2hm
+

t1010nl,y

hl

+ βt1011,

wdl4 = −
t0111nl,x + t1101nl,y

2hm
+

t1011nl,x + t1110nl,y

2hl

+ βt1111,

wel4 = −
t0210nl,x + t1200nl,y

2hm
+

t1110nl,x

hl

+ βt1210,

wfl4 = −
t0012nl,x + t1002nl,y

2hm
+

t1011nl,y

hl

+ βt1012,

wal5 = −
t1000nl,x

hm
+ βt2000,

wbl5 = −
t1100nl,x

hm
+

t2000nl,x

2hl

+ βt2100,

wcl5 = −
t1001nl,x

hm
+

t2000nl,y

2hl

+ βt2001,

wdl5 = −
t1101nl,x

hm
+

t2001nl,x + t2100nl,y

2hl

+ βt2101,

wel5 = −
t1200nl,x

hm
+

t2100nl,x

hl

+ βt2200,

wfl5 = −
t1002nl,x

hm
+

t2001nl,y

hl

+ βt2002,

wal6 = −
t0010nl,y

hm
+ βt0020,

wbl6 = −
t0110nl,y

hm
+

t0020nl,x

2hl

+ βt0120,
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wcl6 = −
t0011nl,y

hm
+

t0020nl,y

2hl

+ βt0021,

wdl6 = −
t0111nl,y

hm
+

t0021nl,x + t0120nl,y

2hl

+ βt0121,

wel6 = −
t0210nl,y

hm
+

t0120nl,x

hl

+ βt0220,

wfl6 = −
t0012nl,y

hm
+

t0021nl,y

hl

+ βt0022.

C) The Gaussian quadratures

The Gaussian quadrature for computing an integral
∫
∆ f(x, y)dxdy on a triangle

element ∆ for the P 1 case has been given in the main text. Here we give the 7
points Gaussian quadrature for the P 2 case used in the computations of this paper.
Suppose that the triangle element ∆ has vertexes (xi, yi), (xj , yj) and (xk, yk), then
the 7 Gaussian quadrature points are

(x1, y1) = (1/3 · (xi + xj + xk), 1/3 · (yi + yj + yk)),

(x2, y2) = (axi + b(xj + xk), ayi + b(yj + yk)),

(x3, y3) = (axj + b(xi + xk), ayj + b(yi + yk)),

(x4, y4) = (axk + b(xi + xj), ayk + b(yi + yj)),

(x5, y5) = (cxi + d(xj + xk), cyi + d(yj + yk)),

(x6, y6) = (cxj + d(xi + xk), cyj + d(yi + yk)),

(x7, y7) = (cxk + d(xi + xj), cyk + d(yi + yj)),

where a = 0.059715871789770, b = 0.470142064105115, c = 0.797426985353087, d =
0.101286507323456. The Gaussian quadrature is

∫

∆
f(x, y)dxdy ≈ |∆| {w1f(x1, y1) + w2[f(x2, y2) + f(x3, y3) + f(x4, y4)]

+w3[f(x5, y5) + f(x6, y6) + f(x7, y7)]} ,

(47)

where |∆| is the area of the triangle element ∆, w1 = 0.225, w2 = 0.132394152788506,
and w3 = 0.125939180544827.
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Figure 2: Simulation results of the normalized concentrations of morphogens for the zebrafish
system. Normalized final time T = 10. The spatial triangular mesh has 154560 elements.
∆t = 0.5hmin = 6.416 × 10−4. (a) A: the normalized concentration of molecule BMP;
(b) B: the normalized concentration of BMP-receptor complexes; (c) U: the normalized
concentration of BMP-Chordin complexes; (d) S: the normalized concentration of molecule
Chordin.
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