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I. MATERIAL AND METHODS 
 
A. Numerical method to solve Eqs. 1-8 with a quasi-steady-state approximation of the 

molecule actions 
 
A.1. A linear model assuming the abundance of receptors  
 
To describe the dynamics of molecules A and G within a tissue, we use a model in Eqs. 6-7 
(repeated in Eqs. S1-S2 for clarity of explanation), where diffusion of those molecules are 
described by the effective diffusion rates AD  and GD  respectively; the removal of molecules due 
to degradation or binding with other molecules are controlled by rate constants adeg , gdeg ; the 
synthesis of A and G are assumed to be proportional to the density of each cell type that produces 
them with rates µ j  and η j , as 0η  being zero to reflect the fact G is only produced by TA and TD 
cells. Then we obtain the concentration of A and G within the tissue max(0, )z : 

2 2

deg2
0

[ ] ( [ ]) [ ] [ ]A j j
j

A V A AD C a A
t z z

µ
=

∂ ∂ ∂
+ = + −

∂ ∂ ∂ ∑ ,          [S1] 
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deg2
0

[ ] ( [ ]) [ ] [ ]G j j
j

G V G GD C g G
t z z

η
=

∂ ∂ ∂
+ = + −

∂ ∂ ∂ ∑ .                                                                      [S2]  

Here, the convection term is due to growth of the tissue. The uptake of A and G due to leakage 
and binding with other molecules in the underlying stroma are modeled in Eq. 8, and no-flux 
conditions are imposed for both A and G at maxz z= . 
 The typical time scales of cell cycle lengths and tissue growth of OE and other similar 
systems are days, whereas those for molecule interactions are hours. The morphogen system 
quickly reaches steady state within the time scale of cell cycle lengths, and therefore we use 
quasi-steady-state approximation for Eqs. S1-S2:  

2 2

deg2
0

[ ]0 [ ]A j j
j

AD C a A
z

µ
=

∂
= + −

∂ ∑                                                                                                [S3] 
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deg2
0

[ ]0 [ ]G j j
j

GD C g G
z

η
=

∂
= + −

∂ ∑                                                                                               [S4] 

[ ] [ ](0) [ ],    (0) [ ],G A
G AG A
z z

α α∂ ∂
= =

∂ ∂
                                                                                      [S5] 

To solve this system, we first transform Eqs. 1-4, S3-S5 by scaling z  with maxz  such that the 
new spatial variable is in a fixed domain [0,1]  and the dynamics of maxz  is embedded in the 
coefficients of the transformed PDEs. The corresponding equations for S3-S5 are then solved 
using a multigrid method (1) with the Laplacian approximated by a second order central 
difference method. Eqs. 1-3 are then solved using upwind scheme with appropriate boundary 
conditions, while the temporal discretization is carried out using a fourth order Adams-Moulton 
predictor-corrector method. Eq. 4 is integrated with the trapezoidal rule.  

A typical number of spatial grid points used in the simulations was 512 with a time-step size 
410− . We tested a range of grid and time-step sizes to assure convergence of the numerical 
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solutions.  
 
A.2. A nonlinear model with receptor-ligand binding 
 
Biochemical evidence suggests that the secreted TGF-β’s have long half-lives and may not 
undergo simple linear decay during tissue growth.  Instead, the ligands bind available receptors 
that are endocytosed leading to the removal of ligands from the extracellular pool.  If the 
receptors are not saturated in the given range for GDF11 and ActivinβB, linear degradation of 
those molecules may be appropriate to describe their removal, as in A.1, but if the receptors are 
saturated, the degradation becomes nonlinear. Here we explore the possibility of saturated 
receptors by explicitly including in the equations: 1) free GDF11 molecule, 2) receptor-bound 
GDF11, 3) free ActivinβB molecule, and 4) receptor-bound ActivinβB molecule, while assuming 
the total numbers of GDF11 receptors RG and ActivinβB receptors RA are constants. The system 
then is described by the following equations: 

2 2
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Similar as in A.1, due to the different time scales of cell cycle lengths and of the molecule 
interactions, we use the quasi-steady-state approximations for this system: 
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=  are half-maximal constants for [AR] and [GR]. 
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The boundary conditions of A and G are                                                            
[ ] [ ](0) [ ],    (0) [ ]G A
G AG A
z z

α α∂ ∂
= =

∂ ∂
. 

Since now it is the receptor-bound ligand that inhibits the cell proliferation, we replace Eq. 5 by 
0 1

0 1,     .
1 ( [ ]) 1 ( [ ])m n

A G

p pp p
AR GRγ γ

= =
+ +

 

We numerically solve the above system for the steady state solution using two sets of 
parameters representing two typical cases: high saturated receptors and low saturated receptors. 
The parameters are listed in Tables S1 and S3. For simplicity, we take RA and RG in our model to 
be 1, and hence [AR] and [GR] are between 0 and 1. We choose the highly saturated receptors to 
have the ligand-binding proportion higher than 0.5, and the low saturated receptors have the 
proportion lower than 0.5.  In Fig. S1A, a highly saturation case, the spatial distributions of [A] 
and [AR] are different, indicating the saturation of the receptors. In Fig. S1B, a low saturation 
case, the spatial distributions of [A] and [AR] are similar, showing linear relationship between 
these quantities. This case corresponds to the one in A.1 which approximates the removal of [A] 
as linear decay. 

Although receptors may be highly saturated (Fig. S1A), [AR] can exhibit a spatial gradient 
due to the leaky boundary. To compare the nonlinear model with the linear model in A.1, we 
perform similar calculations as shown in Fig. 3A. The simulation results (Fig. S1C) indicate that 
as the permeability increases, the tissue stratification measured by SF becomes larger and the 
epithelium becomes thicker, with similar magnitudes as in Fig. 3A, showing the linear and 
nonlinear models behave similarly.  
 
 
II. RESULTS 
 
A. Without feedback regulation on cell proliferation and the cell cycle lengths, 0p  is 

required to be 0.5 for the system to reach a finite size with non-zero stem cell 
population, and the resulting cell distribution is uniform in space. 

 
One of the most important performance objectives of tissues is to reach and maintain an 
appropriate size. To reach an appropriate homeostasis, the multi-stage cell lineage has to tightly 
control the proliferation of the cells. If one only considers the cell population in a homogenized, 
non-spatial setting, an ODE model similar to Eq. 1-3 (except that the variables are functions of 
only time and there are no convection terms) can be derived as in (2, 3). In those ODE models, it 
was analytically shown that if the replication probability of the stem cells is a constant, then it 
has to be exactly 0.5 for the system to reach a finite size with a non-zero stem cell population (2, 
3). In other words, the stem cells have to undergo perfect asymmetric divisions, which does not 
normally happen. Here, we would like to show that this theoretical result is still true for our 
spatial model, and we will further show that the spatial distribution of the cells will be uniform if 
the stem cells undergo perfect asymmetric divisions, provided other cells also proliferate with 
constant probabilities. 

We begin with defining the steady state of the system to be a state with the tissue size and 

local cell density at equilibrium ( 0 max1 2 0,  0C dzC C
t t t dt

∂ ∂ ∂
= = = =

∂ ∂ ∂
). Note that in this definition, 
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we do not require ( , ) 0V z t =  for all z , but only at maxz . It will be proved in A.2 that when 0p  is 
0.5, the above definition implies ( , ) 0V z t =  for all z . In the following, we will prove two results 
in the subsections: in A.1, we show that without feedback regulation on proliferation, 0p  is 
required to be 0.5 for the system to reach a finite size with non-zero stem cell density; in A.2, we 
prove that given the assumptions and results in A.1, the cell distribution is uniform in space. 
 
A.1. Without feedback regulation on proliferation and the cell cycle lengths, 0p  is required to be 
0.5 for the system to reach a finite size with a non-zero stem cell population 
 
In order to obtain conditions on constants jp , we remove the convection terms by defining new 

variables max ( )

0
( ) ( , ) ,  0,1, 2

z t

j jC t C z t dz j= =∫ . Using the fact that jp  and jv  are constants (no 

feedback regulation) and (0, ) 0V t = , we obtain the following equations:  

( )0
00 02 1dC v p C

dt
= − ,                                                                                                                [S6]      

( ) ( )1
0 10 0 1 12 1 2 1dC v p C v p C

dt
   = − + −    ,                                                                               [S7] 

( )2
1 21 1 22 1dC v p C d C

dt
 = − −  .                                                                                                 [S8] 

While ( , )jC z t  is defined as cell density, jC  can be interpreted as the total cell population of cell 
type j within the epithelium. Eqs. S6-S8 are consistent with the non-spatial model in (2), where 
only cell populations are accounted for. By Eq. S6, a steady state with a non-zero stem cell 
population requires 0p  to be exactly 0.5 and 0C  be constant at any time; by Eq. S7, 1p  is 
required to be strictly less than 0.5 to ensure a non-zero steady state of TA cells.  
 
A.2. Without feedback regulation on proliferation and the cell cycle lengths, the cell distribution 
is uniform in space 
 
With conditions 0 0.5p =  and 1 0.5p <  obtained in A.1, we can derive a system from Eqs. 1-3 
for the steady states of 0 1 2, ,C C C  and ( )V z , denoted by 0 1 2( ),  ( ), ( )ss ss ssC z C z C z  and ( )ssV z  
respectively: 
 

0( )0 ss ssV C
z

∂
= −

∂
,                                                                                                                          [S9] 

( )1
0 0 1 1 1

( )0 2 1ss ss
ss ss

V C v C v p C
z

∂
= − + + −  ∂

,                                                                            [S10] 

( )2
1 1 1 2 2

( )0 2 1ss ss
ss ss

V C v p C d C
z

∂
= − + − −  ∂

,                                                                           [S11] 

( ) ( )0 0 1 1 1 1 1 1 2 22 1 2 1ss
ss ss ss ss

V v C v p C v p C d C
z

∂
= + − + − −      ∂

,                                                [S12] 

max0 ( )ssV z= , 
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where maxz  is the thickness of the tissue at the steady state. 
After integrating Eq. S9 from 0 to z , we obtain that 0( ) ( )ss ssV z C z  is a constant within the 

epithelium. Since (0) 0ssV = , we have 0( ) ( ) 0ss ssV z C z =  for all z  in max[0, ]z . In the following, 
we show that ( ) 0ssV z =  for all z  in max[0, ]z . Suppose ( )ssV z  is not entirely zero in max[0, ]z , by 
the continuity of ssV , there exists an interval 1 2[ , ]z z  with 1 2z z≠  and 1 2 max0 ,z z z≤ ≤  such that 

ssV  is non-zero in the interval but 1 2( ) ( ) 0ss ssV z V z= = . By the condition 0( ) ( ) 0ss ssV z C z =  for all 
z , one can obtain 0 ( ) 0ssC z =  in 1 2( , )z z . Integrating Eqs. S10-S11 from 1z  to 2z , we obtain 

( ) 2

1
1 1 10 2 1 ( ) 

z

ssz
v p C z dz = −  ∫ ,                                                                                                [S13] 

( ) 2 2

1 1
1 1 1 2 20 2 1 ( ) ( ) 

z z

ss ssz z
v p C z dz d C z dz = − −  ∫ ∫ .                                                                    [S14] 

With the assumption 1 0.5p < , 2

1
1 ( ) 

z

ssz
C z dz∫  must be zero by Eq. S13 and this also implies that 

2

1
2 ( ) 0

z

ssz
C z dz =∫  using Eq. S14. This contradicts the underlying relation 

0 1 2( ) ( ) ( ) 1ss ss ssC z C z C z+ + = . Therefore, ( )ssV z  must vanish everywhere. To prove the uniform 
distribution of the cells, we take Eqs. S10-S11, together with ( ) 0ssV z =  and the definition of 

( )jssC z , and finally obtain  

( )0 0 1 1 10 ( ) 2 1 ( )ss ssv C z v p C z= + −   , 

( )1 1 1 2 20 2 1 ( ) ( )ss ssv p C z d C z= − −   , 

0 1 21 ( ) ( ) ( )ss ss ssC z C z C z= + + . 
With constant parameters, this system is linear and has the same unique solution for all z . This 
proves that without any feedback, the spatial distribution of cells is always uniform.  
 
 
B. Relation between the coefficients of permeability in Eq. 8 and the decay lengths of 

regulatory molecules A and G 
 
Both in our modeled system and in OE, the epithelium is bounded atop by a layer of tightly 
packed sustentacular cells, preventing the epithelial regulatory molecules from escaping to the 
adjacent cavity. This diffusion barrier is modeled by no-flux boundary conditions at maxz z= . On 
the other hand, the epithelium sits atop the basal lamina, a permeable membrane that allows 
molecules to diffuse through and bind with other molecules in the stroma. We model this 
permeability and the molecule uptake in the stroma by leaky boundary conditions in Eq. 8, in 
which the coefficients stand for the level of permeability and the strength of the uptake. In this 
section, we explore physical meaning of permeability coefficients: the ratio between decay 
lengths in the epithelium and the stroma. Decay length typically describes average distance that a 
molecule travels before it is degraded. More precisely, if the molecule degrades with rate 
constant k and diffuses with rate D, the decay length can be formulated by /D k . In the 
epithelium that we model, a diffusing regulatory molecule A or G may have different decay 
lengths at two sides of the basal lamina, due to its differential diffusion and degradation rates in 
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the epithelium and stroma. 
 In order to characterize the permeability coefficient, we consider a domain consisting of 
both epithelium ( max0 z z< < ) and stroma ( 0z < ), with the basal lamina in between at 0z =   (in 
the main text, we only consider the epithelium, taking the basal lamina as a boundary). Here, we 
use a to denote the concentration of the diffusing regulatory molecule A or G. Let D  stand for 
the diffusion coefficient of the molecule, and k  be its degradation rate constant. Because D  and 
k  may be different in the epithelium versus the stroma, we use subscripts E and S to distinguish 
those rate constants in epithelial and stroma regions, respectively. By the fact that the regulatory 
molecules reach quasi steady-state under the time scale of cell cycle lengths, only the steady state 
distribution of a is considered. In this case, a only depends on the space variable z . In order to 
have boundary conditions at the two ends, we define a “dummy point” min 0z− < , where we will 
set a to zero. In the solution, we take minz  as infinity, so that the result corresponds to an open-
ended stroma. Since a represents the molecule A or G that is only produced in the epithelium, we 
use Ev  to denote the constant production within the epithelium. We remark here that the 
assumption of constant production rate of molecule within the epithelium is different from the 

actual production terms 
2

0
j j

j
Cµ

=
∑  and 

2

0
j j

j
Cη

=
∑  in Eqs. S1-S2, in which the production depends 

on the spatial distribution of the cells, and therefore depends on z . However, since A is produced 
by all types of cells, if the production rate jµ  is the same for all cells (as taken in our model and 
simulations), by the relation 0 1 2 1C C C+ + = , the production of A will be uniform in space. As 
for G, which is only produced by 1C  and 2C , its production is nearly uniform as 2C  constitutes 
the majority of the epithelium (in our simulation results, 2C  is usually larger than 0.8). Together, 
the production of the molecule can be approximated by a constant in those cases. 
 With those assumptions, the distribution of a at steady state is governed by the following 
equations:  

2

max2

2

2

0 ,          if 0

0 ,                  if 0

E E E

S S

d aD v k a z z
dz
d aD k a z
dz


= + − < <


 = − ≤

                                

If the continuity of ( )a z  and ( )da z
dz

 are imposed at 0z = , we obtain the solution 

( )
( ) ( )

( )
( ) ( )

max
max

max max

max

max max

2 cosh ( )
2 ,                if  0           

cosh sinh
( )    

2 sinh
,                        if  0

cosh sinh

E

E E
E

E E

z

E E

E E

v z z
v z z

z z
a z

e v z
z

z z

λ
ρ

λ
λ ρ λ

ρ λ
λ ρ λ

+
− < < += 


≤

+

 

where E

S

λρ λ= , with /E E Ek Dλ = , /S S Sk Dλ = . Eλ  and Sλ  are length constants (with 

units of length-1) and represent the inverse of decay lengths of a in the epithelium and stroma 
respectively. By taking derivatives, we obtain '(0) (0) S Ea a ρ λ λ= = . This implies that the 
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permeability coefficient at the basal lamina, defined as '(0) (0)a a , is the ratio of the decay 
lengths of molecule a in the epithelium and stroma.  
 
 
C. Uptake of A by F (leaky boundary condition for A in Eq. 8) prevents extinction of the 

stem cell population 
 

In this section, we use the steady state equations of A, along with its boundary conditions, to 
show how the leakiness of A from the epithelium to stroma affects the local dynamics of stem 
cell density, which in turn affects the global behavior of the system.   

Consider Eqs. 1-5 and the quasi-steady-state approximation of A (Eq. S3 and S5). We first 
take integration of Eq. S3 over max[0, ]z , where maxz  denotes the epithelium thickness maxz  at 
time t . Using the leaky boundary condition Eq. S5 at 0z =  and the no-flux boundary condition 
at maxz z= , we get 

max max
2

1  deg0 0 0
0

0 [ ] [ ] 
z z

A j jz
j

D A C dz a A dzα µ
=

=

= − + −∑ ∫ ∫ ,                                                             [S15] 

By Eq. S15 and the positivity of the term max

deg 0
[ ] 

z
a A dz∫ , we get the following inequality: 

max
2

1  0 0
0

[ ]
z

A j jz
j

D A C dzα µ
=

=

<∑ ∫ ,                                                                                                 [S16] 

Inequality S16, along with the formula for regulated replication probability of stem cells in Eq. 5, 
gives rise to a lower bound for the replication probability of stem cell at 0z = : 

max

0 0
0 22 2

 0
01

(0, )
1 ( [ ])

1
zA A

j j
jA

p pp t
A

C dz
D

γ γ µ
α =

= >
+  

+  
 

∑ ∫
.                                                            [S17]  

Because 0p  is greater than 0.5, we can write 0p  as 0.5 ε+ , with 0ε > . Substituting 0p  by 
0.5 ε+  in Eq. S17, and then by Eq. 1, one obtains a lower bound for the overall proliferation rate 
of the stem cell 0 0(2 1)v p −  at 0z = : 

( )

max

max

2
2

 0
01

0 0 0 2
2

 0
01

2
2 (0, ) 1

1

z
A

j j
jA

z
A

j j
jA

C dz
D

v p t v

C dz
D

γε µ
α

γ µ
α

=

=

 
−  
 − >
 

+  
 

∑ ∫

∑ ∫
                                                                [S18] 

According to inequality S18, as long as max

2
2

 0
01

2
zA

j j
jA

C dz
D
γ µ ε
α =

 
< 

 
∑ ∫ , 02 (0, ) 1p t −  becomes 

positive, and hence ( )0
0 0 0(0, ) 2 1 0C t v p C

t
∂

= − >
∂

. As a result, the stem cell density 0C  near the 

basal lamina starts to increase. In conclusion, when the system is close to an extinction state with 

0 1 2 0C C C= = =  for all z , the quantity max
2

 0
0

z

j j
j

C dzµ
=
∑ ∫  becomes close to zero, leading to an 
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increase in stem cell density near the basal lamina. This implies that the system will never reach 
the extinction state 0 1 2 0C C C= = = . 
 
D.  Parameter sensitivity for Fig. 3, Fig. 5 and Fig. 6; parameter sensitivity for adeg and gdeg  
 
We find that the qualitative behavior and results demonstrated by Fig. 3, Fig. 5 and Fig. 6 are 
robust to parameter changes in the system. Fig. S2-S4 are examples of the corresponding 
dynamics of Fig. 3, 5 and 6 using different parameters from those figures.  The parameters are 
randomly chosen from ranges around the values of the parameter used in Fig. 3, 5 and 6. 

In Fig. S5, three values of adeg, gdeg and fdeg (5×10-4,10-4,5×10-5) are tested. It is found that the 
qualitative behavior with those parameters is similar to that with the typical value 

3
deg deg deg 10a g f −= = =  used for all the other figures.  

 
III.  TABLES FOR PARAMETERS USED IN ALL FIGURES   
 
Table S1. Parameters typically used for Fig. 1-6 and Fig. S1-S5 unless otherwise specified. 
 

Parameters Values Units 

0v , 1v  1 per cell cycle 

2d  0.01 per cell cycle 

AD , GD , FD  710−  2 1cm s−  

0µ , 1µ , 2µ , 1η , 2η  31 10−×  1s Mµ−  

dega , degg , degf  31 10−×  1s−  

Fρ  150  1cm Mµ−  
 
 
Table S2: Parameters used in Fig. 3-6. ‘—‘ means not applicable. 
 

Parameter Aγ   
( 1Mµ − ) 

Gγ   
( 1Mµ − ) 

0p  1p  Aα  , Gα  
( 1cm− ) 

β   
( 1Mµ − ) 

afk  , gfk   

( 1 1M sµ − − ) 
Fig. 3A 1.1 5 0.7 0.4 -- -- -- 
Fig. 3B 0.675~1.12 40 0.7 0.4 -- -- -- 
Fig. 3C  0.675~1.12 40 0.7 0.4 -- -- -- 
Fig. 3D 0.675~1.12 40 0.7 0.4 -- -- 0 
Fig. 4C  

(Fig. 4A, 4B case 1) 
3 40 0.7 0.4 100 -- 100 

Fig. 4D 
(Fig. 4A, 4B case 2)  

1.95 30 0.7 0.4 10 -- 100 

Fig. 4E  
(Fig. 4A, 4B case 3) 

1.04 30 0.7 0.4 100 -- 0 

Fig. 5 3.9 40 0.7 0.4 100 -- 10 
Fig. 6 3.9 40 0.7 0.4 100 3 10 
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Table S3: Parameters used in Fig. S1-S5. ‘—‘ means not applicable. 

 
Parameter Aγ   

( 1Mµ − ) 
Gγ   

( 1Mµ − ) 
0p  1p  Aα , Gα  

( 1cm− ) 

β   
( 1Mµ − ) 

afk  , gfk   

( 1 1M sµ − − ) 
AK , GK  

( Mµ ) 

dega ,

degg ,

degf  
( 1s− ) 

Fig.S1A 0.85 7 0.7 0.4 100 -- -- 0.5 -- 
Fig.S1B 2.62 7 0.7 0.4 100 -- -- 0.5 -- 
Fig. S2A 1.4 3 0.8 0.3 -- -- -- -- -- 
Fig. S2B 0.9 6 0.6 0.5 -- -- -- -- -- 
Fig. S3A 2.73 40 0.7 0.4 32 -- 10 -- -- 
Fig. S3B 5 20 0.8 0.3 100 -- 100 -- -- 
Fig. S4A 2.73 40 0.7 0.4 32 3 10 -- -- 
Fig. S4B 5 20 0.8 0.3 100 3 100 -- -- 
Fig. S5A 1.6 25 0.7 0.4 100 -- 10 -- 45 10−×  
Fig. S5B 0.6 5 0.7 0.4 100 -- 10 -- 41 10−×  
Fig. S5C 0.47 3 0.7 0.4 100 -- 100 -- 55 10−×  

 
** In Fig.S1B, 0µ , 1µ , 2µ

45 10−= × . 
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Figure S1 
 
 

 
 
Figure S1. Tissue stratification and morphogen distribution with high and low saturated 
receptors. The parameters are listed in Tables S1 and S3. (A) Highly saturated case. Left panel: 
spatial distributions of ligand-bound receptors [AR] (red) and free molecules [A] (blue); right 
panel: cell distribution. (B) Low saturated case. Left panel: spatial distributions of [AR] (red) and 
[A] (blue); right panel:  cell distribution. In the simulations of (A) and (B), zmax is fixed to be 0.02 
cm, which can be achieved by adjusting one of ,A Gγ γ . (C) Correlation between permeability 
coefficients ,A Gα α  with SF of stem cell and zmax; blue: permeability coefficients ,  A Gα α  in Eq. 
8 (log scale) versus stratification factor (SF) defined in Eq. 9; green: permeability coefficients 
versus epithelium thickness. 
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Figure S2. 
 

 
 
Figure S2. Supporting calculations for Fig. 3A: correlation between permeability coefficients 

,A Gα α  with SF of stem cell and maxz , using two different sets of parameters for Aγ , Gγ , 0p  and 

1p  (see Tables S1 and S3). The behavior of SF and maxz  is similar to Fig. 3A: the epithelium 
thickness and stratification increases as the permeability coefficients of A and G are increased.  
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Figure S3. 
 

 
Figure S3. Supporting calculations for Fig. 5: tissue stratification and thickness as functions of 
death rate of TD cells. Two sets of parameters are randomly chosen and used to conduct the 
same simulations as for Fig. 5. Parameters used in (A) are different from the original parameters 
for Fig. 5 in Aγ , Aα , Gα ; parameters used in (B) are different from the original parameters for 
Fig. 5 in Aγ , Gγ , 0p , 1p , afk  and gfk . The values of the parameters are listed in Tables S1 and S3. 
The behaviors of maxz , total stem/TA cell amount, and stem/TA cell stratification versus the 
death rate of TD cells are similar to Fig. 5.  
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Figure S4. 
 

 
 
 
Figure S4. Supporting calculations for Fig. 6: feedback on cell cycle length of stem cells induces 
transient peaks of stem cell density. Two sets of parameters are randomly chosen to conduct the 
same simulations as for Fig. 6. Parameters used in (A) are different from the original parameters 
for Fig. 6 in Aγ , Aα , Gα ; parameters used in (B) are different from the original parameters for 
Fig. 6 in Aγ , Gγ , 0p , 1p , afk  and gfk . The values of the parameters are listed in Tables S1 and S3. 
Similar to Fig. 6, the feedback on cell cycle length of stem cells induces transient peaks of stem 
cell density at the basal lamina and apical surface, and the peak at the apical end vanishes 
eventually. 



 15 

Figure S5. 
 

 
 
Figure S5. Supporting calculations for different values of adeg, gdeg and fdeg. (A) 

4
deg deg deg 5 10a g f −= = = × ; (B) 4

deg deg deg 10a g f −= = = ; (C) 5
deg deg deg 5 10a g f −= = = × . In (A)-

(C), parameters ,A Gγ γ  are adjusted accordingly, and all the other parameters are listed in Tables 
S1 and S3. 
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