
J Sci Comput
DOI 10.1007/s10915-014-9856-7

A Third Order Fast Sweeping Method with Linear
Computational Complexity for Eikonal Equations

Liang Wu · Yong-Tao Zhang

Received: 17 September 2013 / Revised: 23 February 2014 / Accepted: 5 April 2014
© Springer Science+Business Media New York 2014

Abstract Fast sweeping methods are a class of efficient iterative methods for solving steady
state hyperbolic PDEs. They utilize the Gauss-Seidel iterations and alternating sweeping
strategy to cover a family of characteristics of the hyperbolic PDEs in a certain direction
simultaneously in each sweeping order. The first order fast sweeping method for solving
Eikonal equations (Zhao in Math Comput 74:603–627, 2005) has linear computational com-
plexity, namely, the computational cost is O(N) where N is the number of grid points of the
computational mesh. Recently, a second order fast sweeping method with linear computa-
tional complexity was developed in Zhang et al. (SIAM J Sci Comput 33:1873–1896, 2011).
The method is based on a discontinuous Galerkin (DG) finite element solver and causality
indicators which guide the information flow directions of the nonlinear Eikonal equations.
How to extend the method to higher order accuracy is still an open problem, due to the
difficulties of solving much more complicated local nonlinear systems and calculations of
local causality information. In this paper, we extend previous work and develop a third order
fast sweeping method with linear computational complexity for solving Eikonal equations.
A novel approach is designed for capturing the causality information in the third order DG
local solver. Numerical experiments show that the method has third order accuracy and a
linear computational complexity.

Keywords Fast sweeping methods · Discontinuous Galerkin methods · High order
accuracy · Linear computational complexity · Static Hamilton–Jacobi equations ·
Eikonal equations

Mathematics Subject Classification 65M99

L. Wu, Y.-T. Zhang (B)
Department of Applied and Computational Mathematics and Statistics,
University of Notre Dame, Notre Dame, IN 46556, USA
e-mail: yzhang10@nd.edu

L. Wu
e-mail: lwu2@nd.edu

123

J Sci Comput

1 Introduction

In this paper, we continue to develop high order accurate and fast numerical methods to solve
the Eikonal equations

{√
φ2

x + φ2
y = f (x, y), (x, y) ∈ � \ �,

φ(x, y) = g(x, y), (x, y) ∈ � ⊂ �,
(1.1)

where f (x, y) is a positive function and f (x, y) and g(x, y) are Lipschitz continuous, �

is a computational domain in R2 and � is a subset of �. The Eikonal equations form a
very important class of static Hamilton–Jacobi equations [3]. The numerical calculations of
Eikonal equations appear in many applications, such as optimal control, image processing
and computer vision, geometric optics, seismic waves, level set methods, etc.

Challenges in designing efficient and accurate numerical methods for solving (1.1) come
from nonlinearity and non-smoothness of its solution. A class of numerical methods is to
first discretize (1.1) into a system of nonlinear equations and then design an efficient numer-
ical algorithm to solve the nonlinear system. Among such methods are the fast marching
method and the fast sweeping method. The fast marching method [6,17–19,22] is based on
the Dijkstra’s algorithm [4]. The solution is updated by following the causality in a sequential
way; i.e., the solution is updated pointwise in the order that the solution is strictly increasing
(decreasing). In the fast sweeping method [1,5,10,11,13,14,21,26–29], Gauss-Seidel itera-
tions with alternating orderings are combined with upwind schemes. In contrast to the fast
marching method, the fast sweeping method is an iterative method and follows the causality
along characteristics in a parallel way; i.e., all characteristics are divided into a finite number
of groups according to their directions and each Gauss-Seidel iteration with a specific sweep-
ing ordering covers a group of characteristics simultaneously. The first order fast sweeping
method has a remarkable property that the number of iterations for the convergence is inde-
pendent of the total number of grid points N [28], so that the computational complexity of
the algorithm is O(N).

The first high order fast sweeping method was developed in [27]. It is based on high order
finite difference WENO approximations. The method provides a quite general framework,
and is easy to incorporate any order of accuracy and any type of numerical Hamiltonian into
the framework. For example, the fifth order versions were developed in [16,23]. Much faster
convergence speed than that of the time-marching approach can be achieved. However unlike
the first order fast sweeping method, the computational complexity of high order WENO fast
sweeping methods is more than linear. A possible reason is due to the wide stencil of the high
order finite difference approximation to the derivatives, hence some downwind information
is used. In order to design high order fast sweeping methods with linear computational com-
plexity, we used discontinuous Galerkin (DG) methods to discretize the Eikonal equations
and developed second order fast sweeping methods in [12,24]. In [24], we designed causality
indicators which guide the information flow directions for the DG local solver. The values
of these indicators are initially provided by the first order finite difference fast sweeping
method, and they are updated during iterations along with the solution. The resulting algo-
rithm generates uniform second order accuracy in the L∞ norm (in smooth regions of the
solutions) and the linear computational complexity.

In this paper, we extend previous work and develop a third order fast sweeping method
with linear computational complexity for solving Eikonal equations. A novel approach is
designed for capturing the causality information in the third order DG local solver. Numer-

123

J Sci Comput

ical experiments show that the method has third order accuracy and a linear computational
complexity.

The rest of the paper is organized as follows. The detailed algorithm is described in Sect. 2.
In Sect. 3 we provide numerical examples to show the uniform third order accuracy and linear
computational complexity of the proposed algorithm. Concluding remarks and discussions
are given in Sect. 4.

2 A Third Order DG Fast Sweeping Method

In this section, we design a third order DG fast sweeping method with linear computational
complexity for solving the Eikonal equations (1.1). In order to simplify the nonlinear algebraic
system in the DG local solver, we solve a transformed form of (1.1):{

φ2
x + φ2

y = f 2(x, y), (x, y) ∈ � \ �,

φ(x, y) = g(x, y), (x, y) ∈ � ⊂ �.
(2.1)

Solving this transformed equation also simplifies calculations of local causality information
and the inverse Lax-Wendroff procedure for dealing with boundary conditions, as shown in
following sections.

We first construct a Cartesian mesh �h = ∪1≤i≤N ,1≤ j≤M Ii j covering the computational
domain �, where Ii j = Ii× J j and Ii = [xi−1/2, xi+1/2], J j = [y j−1/2, y j+1/2]. The centers
of Ii , J j are denoted by xi = 1

2 (xi−1/2+ xi+1/2) and y j = 1
2 (y j−1/2+ y j+1/2), and the sizes

are denoted by hi = xi+1/2− xi−1/2, l j = y j+1/2− y j−1/2. The centers of the cells Ii j form
a grid �h = {(xi , y j), 1 ≤ i ≤ N , 1 ≤ j ≤ M}. The grid �h is called a dual mesh of �h .
The important components of the proposed algorithm are described separately below.

2.1 Initial Causality Determination

In order to achieve fast convergence in the fast sweeping methods, a key step is to reliably
determine the causality for the nonlinear Eikonal equation (2.1). For the second order DG
fast sweeping method in [24], we determined the causality initially by the first order finite
difference fast sweeping method [28]. Following the similar strategy, the second order DG
fast sweeping method in [24] can provide initial causality information for our third order DG
fast sweeping method. Since both the first order fast sweeping method [28] and the second
order DG fast sweeping method [24] have linear computational complexity, their iterations
converge very fast and the computational cost to determine the initial causality information
is very small.

We identify a cell Ii j of �h by its center (xi , y j), which is a grid point of �h . Two integer
flags are assigned to each cell Ii j of �h to indicate the information flow directions. They are
called the causality indicators of the cell Ii j . These integer values are stored in the causality
arrays flagx(i, j) and flagy(i, j), for 1 ≤ i ≤ N , 1 ≤ j ≤ M . For a cell Ii j , flagx(i, j)=0
indicates that in the x-direction, the information is propagating from the left neighboring cell
Ii−1, j to the cell Ii j , while flagx(i, j)=1 indicates that the information is propagating from
the right neighboring cell Ii+1, j to the cell Ii j . Similarly, flagy(i, j)=0 indicates that in the
y-direction, the information is propagating from the bottom neighboring cell Ii, j−1 to the cell
Ii j , while flagy(i, j)=1 indicates that the information is propagating from the top neighboring
cell Ii, j+1 to the cell Ii j . If there is no information flowing into Ii j from the x or y-direction,
then we set the flag of that direction to be 10, i.e., flagx(i, j)=10 or flagy(i, j)=10.

123

J Sci Comput

In the second order DG fast sweeping method [24], we perform the first order fast sweeping
method [28] on the dual mesh �h till it converges, and record the obtained integer flags in
the causality arrays flagx and flagy. These integer flags serve as initial causality indicator
values. Here for the third order method, naturally we set the initial causality indicator values
to be the final causality indicator values obtained after iterations of the second order DG fast
sweeping method [24] converge, namely,

flagx_p2ini t (i, j)=flagx_p1 f inal(i, j), flagy_p2ini t (i, j)=flagy_p1 f inal(i, j),

where flagx_p1, flagy_p1 and flagx_p2, flagy_p2 denote causality arrays of the second
order DG (using the piecewise linear P1 finite element space) and the third order DG (using
the piecewise quadratic P2 finite element space) fast sweeping method respectively. For the
simplicity of notations, we use flagx, flagy to denote the causality arrays of the third order
DG fast sweeping method for the rest of this paper.

Remark The initial causality arrays of the third order DG fast sweeping method can be
provided by the second order DG fast sweeping method based on either the “transformed
form” (2.1) or the “original form” (1.1). Correct results for the third order scheme can be
obtained for both cases, as shown in Sect. 3.

2.2 The Local Solver

In this subsection, we describe a third order accurate local solver for discretizing the Eikonal
equations (2.1) on a general cartesian mesh. This local solver is based on a DG scheme
developed for directly solving the time-dependent Hamilton–Jacobi equations [2]. The chal-
lenge here is how to incorporate the causality information of the Eikonal equations in the
DG scheme and derive relatively simple nonlinear algebraic equations which are suitable to
be solved by nonlinear Gauss-Seidel iterations. We follow a similar approach as that in the
second order DG fast sweeping method [24], with their differences emphasized.

On the cartesian mesh �h , we define the piecewise quadratic finite element space as

V 2
h = {v : v|Ii j ∈ P2(Ii j), i = 1, . . . , N , j = 1, . . . , M} (2.2)

where P2(Ii j) denotes all quadratic polynomials on Ii j . The DG scheme for the Eikonal
equations (2.1) is defined as: find φh(x, y) ∈ V 2

h , such that

∫
Ii j

((φh)2
x + (φh)2

y)vh(x, y)dxdy + αl,i j

y j+1/2∫
y j−1/2

[φh](xi− 1
2
, y)vh(x+

i− 1
2
, y)dy

+αb,i j

xi+1/2∫
xi−1/2

[φh](x, y j− 1
2
)vh(x, y+

j− 1
2
)dx

+αr,i j

y j+1/2∫
y j−1/2

[φh](xi+ 1
2
, y)vh(x−

i+ 1
2
, y)dy

+αt,i j

xi+1/2∫
xi−1/2

[φh](x, y j+ 1
2
)vh(x, y−

j+ 1
2
)dx

123

J Sci Comput

=
∫
Ii j

f 2(x, y)vh(x, y)dxdy, i = 1, · · · , N , j = 1, · · · , M

(2.3)

holds for any vh ∈ V 2
h . Here the quadratic polynomial φh(x, y) on Ii j can be represented by

φh |Ii j = φi j + ui jξi + vi jη j + ai jξ
2
i + bi jη

2
j + ci jξiη j , (2.4)

where ξi = 2
hi

(x − xi), η j = 2
l j

(y − y j), and ξi , η j ∈ [−1, 1] on each cell Ii j . There are six
unknowns on each cell Ii j : φi j , ui j , vi j , ai j , bi j and ci j . [φh] denotes the jump of φh across
the cell interface, for example,

[φh](xi− 1
2
, y) = (φi j − φi−1, j − ui j − ui−1, j + ai j − ai−1, j)

+ (vi j − ci j − vi−1, j − ci−1, j)η j + (bi j − bi−1, j)η
2
j , (2.5)

for y ∈ [y j−1/2, y j+1/2]. And

vh(x+
i− 1

2
, y) � lim

x→xi−1/2,x>xi−1/2
vh(x, y), (2.6)

vh(x−
i+ 1

2
, y) � lim

x→xi+1/2,x<xi+1/2
vh(x, y) (2.7)

for y ∈ [y j−1/2, y j+1/2],
vh(x, y+

j− 1
2
) � lim

y→y j−1/2,y>y j−1/2
vh(x, y), (2.8)

vh(x, y−
j+ 1

2
) � lim

y→y j+1/2,y<y j+1/2
vh(x, y) (2.9)

for x ∈ [xi−1/2, xi+1/2]. αl,i j , αb,i j , αr,i j , αt,i j are local constants which depend on the
numerical solutions in the neighboring cells of Ii j and the causality of the Eikonal equation.
They are called local causality constants and will be discussed in detail in Sect. 2.2.1.

Remark Different ways to calculate local causality constants lead to different accuracy and
convergence behaviour of the schemes in [12,24], and the scheme in this paper. “Local causal-
ity constants” play a key role in incorporating the causality information of the Eikonal equa-
tions. The construction of the causality indicators and the calculation of the local causality
constants are motivated by the idea of upwind schemes for solving hyperbolic conservation
laws and the iterative framework of fast sweeping methods. The local causality constants
reflect the “local” upwind information of the Eikonal equations around a target cell. All
different ways to calculate local causality constants follow this principle to acheive the con-
vergence of the iterations. However, the speed of convergence is affected by how accurately
the “local” upwind information is captured in different ways.

2.2.1 Calculations of Local Causality Constants

Denote Ĥ � (φh)2
x + (φh)2

y , Ĥ1 � ∂ Ĥ
∂(φh)x

= 2(φh)x and Ĥ2 � ∂ Ĥ
∂(φh)y

= 2(φh)y . The local

causality constants αl,i j , αb,i j , αr,i j , αt,i j are approximations of Ĥ1(∇φh) and Ĥ2(∇φh) in
the four neighboring cells of Ii j . The calculation of the local causality constants needs the
causality information of the current iteration step. However due to the nonlinearity of the
Eikonal equations, the causality information (i.e., causality indicator values) is unknown
beforehand. On the other hand, the iterative framework of fast sweeping methods allows

123

J Sci Comput

us to initially estimate the causality indicator values, and then iterate them along with the
iteration of the solution itself of the DG scheme. Here for the third order DG scheme (2.3), the
values of causality indicators are determined initially by the second order DG fast sweeping
iterations (Sect. 2.1), and they are updated in the iterations. How to update causality indicators
will be described in detail in Sect. 2.2.3.

The local causality constant values are calculated according to the values of causality
indicators in the current iteration step. First, let us recall some details of the local causality
constants in [24]. For example, αl,i j carries causality information from the left neighboring
cell Ii−1, j in the x-direction if there is causality information coming in from that direction. If
the x-direction causality indicator flagx(i, j) = 1, it indicates that the information comes in
from the right neighboring cell Ii+1, j in the x-direction. If flagx(i, j) = 10, then it indicates
that there is no information coming into the cell Ii j in the x-direction. So for these two cases,
αl,i j should not carry any causality information and it will be set to 0. If flagx(i, j) = 0, it
indicates that information may flow in from the cell Ii−1, j . In this case, Ĥ1(∇φh)|Ii−1, j is
calculated. However, different from the second order scheme in [24], here φh is a quadratic
polynomial on Ii−1, j . Hence Ĥ1(∇φh)|Ii−1, j is not a constant as that in [24], but a linear
function

Ĥ1(∇φh)|Ii−1, j =
∂ Ĥ

∂(φh)x

∣∣∣
Ii−1, j
= 2(φh)x |Ii−1, j =

4ui−1, j

hi−1
+ 8ai−1, j

hi−1
· ξi−1+ 4ci−1, j

hi−1
· η j .

(2.10)
Since αl,i j carries the causality information from the left into the cell Ii j , we set αl,i j to be the
value of Ĥ1(∇φh)|Ii−1, j at ξi−1 = 1, η j = 0, which is the middle point (x = xi− 1

2
, y = y j)

of the cell boundary that Ii j and Ii−1, j share. The motivation of evaluating Ĥ1(∇φh)|Ii−1, j at
the middle point of the shared cell boundary is based on the observation that the information
flows into the cell Ii j from the shared cell boundary and the middle point is the center of this
inflow boundary. In summary, the formula to calculate αl,i j is

αl,i j =
⎧⎨
⎩max(0, Ĥ1(∇φh)|Ii−1, j) = max

(
0,

4ui−1, j

hi−1
+ 8ai−1, j

hi−1

)
, If flagx(i, j) = 0;

0, If flagx(i, j) = 1 or flagx(i, j) = 10.

(2.11)
Here αl,i j has a much simpler expression than the one in [24]. This is one of benefits of
solving the squared form (2.1) of Eikonal equations in stead of the original one (1.1). For
the first case, if we have max(0, Ĥ1(∇φh)|Ii−1, j) = 0, then we need to correct the current
causality indicator flagx(i,j) to be flagx(i,j)=10. By doing this, we shut down this horizontal
information flow direction of the cell Ii j in the current iteration, and wait for correct causality
information on the cell Ii−1, j to be ready in next iterations. We observe that this situation
usually happens at the early stage of the iteration process, and near shock locations where
the characteristics from the left intersect with the characteristics from the right in numerical
experiments. Likewise,

αr,i j =
⎧⎨
⎩min(0, Ĥ1(∇φh)|Ii+1, j) = min

(
0,

4ui+1, j

hi+1
− 8ai+1, j

hi+1

)
, If flagx(i, j) = 1;

0, If flagx(i, j) = 0 or flagx(i, j) = 10.

(2.12)

123

J Sci Comput

For the first case, if we have min(0, Ĥ1(∇φh)|Ii+1, j) = 0, then we need to correct the current
causality indicator flagx(i,j) to be flagx(i,j)=10. Similarly,

αb,i j =
⎧⎨
⎩max(0, Ĥ2(∇φh)|Ii, j−1) = max

(
0,

4vi, j−1

l j−1
+ 8bi, j−1

l j−1

)
, If flagy(i, j) = 0;

0, If flagy(i, j) = 1 or flagy(i, j) = 10.

(2.13)
For the first case, if we have max(0, Ĥ2(∇φh)|Ii, j−1) = 0, then we need to correct the current
causality indicator flagy(i,j) to be flagy(i,j)=10. Finally,

αt,i j =
⎧⎨
⎩min(0, Ĥ2(∇φh)|Ii, j+1) = min

(
0,

4vi, j+1

l j+1
− 8bi, j+1

l j+1

)
, If flagy(i, j) = 1;

0, If flagy(i, j) = 0 or flagy(i, j) = 10.

(2.14)
For the first case, if we have min(0, Ĥ2(∇φh)|Ii, j+1) = 0, then we need to correct the current
causality indicator flagy(i,j) to be flagy(i,j)=10. If both flagx(i,j)=10 and flagy(i,j)=10, we
will skip the current cell in the current iteration.

To calculate local causality constants for the second order scheme based on the transformed
form (2.1), we can just simply take the coefficients of quadratic terms (i.e., all a’s and b’s) in
(2.11)–(2.14) to be zeros. The resulting formulas are much simpler than those based on the
original form (1.1) in [24].

Remark We emphasize the difference of calculating local causality constants between the
third order scheme in this paper and the second order scheme in [24]. The local causality
constants are approximations of Ĥ1(∇φh) and Ĥ2(∇φh), and they carry the causality / upwind
information of the Eikonal equations. In the second order scheme [24], direct evaluations of
Ĥ1(∇φh) and Ĥ2(∇φh) give constants, so the calculations are trival. However for the third
order scheme, Ĥ1(∇φh) and Ĥ2(∇φh) are linear functions. We evaluate the linear functions
at the middle point of shared cell boundaries, and use them as local causality constants.
Numerical experiments in Sect. 3 verify that this approach can corretly capture the causality
information and guarantee fast convergence of the iterations.

2.2.2 The Local Nonlinear System

By taking vh = 1, ξi , η j , ξ2
i , η2

j , ξiη j on any given element Ii j , the DG formulation (2.3)
is converted from the integral form to a 6 × 6 nonlinear system for six unknowns: φi j , ui j ,
vi j , ai j , bi j and ci j . In order to solve this nonlinear system, we adopt the Gauss-Seidel
philosophy, i.e., we use the current numerical values of neighboring cells of Ii j . Denoting
k � l j/hi (k = 1 for a uniform mesh), and leaving all unknowns for the cell Ii j to the left
hand side and moving the rest terms, including numerical values of neighboring cells of Ii j ,
to the right hand side of the nonlinear system, we have the following six local equations

1.

4k u2
i j +

4

k
v2

i j +
16k

3
a2

i j +
16

3k
b2

i j +
(

4k

3
+ 4

3k

)
c2

i j

+ (
l j (αl − αr)+ hi (αb − αt)

)
φi j + l j (−αl − αr)ui j + hi (−αb − αt)vi j

+ (
l j (αl − αr)+ 1

3
hi (αb − αt)

)
ai j +

(
1

3
l j (αl − αr)+ hi (αb − αt)

)
bi j

123

J Sci Comput

=
∫
Ii j

f 2(x, y) dxdy −
(
− l jαlφi−1, j − hiαbφi, j−1 + l jαrφi+1, j + hiαtφi, j+1

− l jαl ui−1, j − l jαr ui+1, j − hiαbvi, j−1 − hiαtvi, j+1

− l jαlai−1, j − 1

3
hiαbai, j−1 + l jαr ai+1, j + 1

3
hiαt ai, j+1

− 1

3
l jαl bi−1, j − hiαbbi, j−1 + 1

3
l jαr bi+1, j + hiαt bi, j+1

)
;

(2.15)

2.

16k

3
ai j ui j + 8

3k
ci jvi j

+ l j (−αl − αr)φi j +
(

l j (αl − αr)+ 1

3
hi (αb − αt)

)
ui j

+ l j (−αl − αr)ai j + 1

3
l j (−αl − αr)bi j + 1

3
hi (−αb − αt)ci j

=
∫
Ii j

f 2(x, y)ξi dxdy −
(

l jαlφi−1, j + l jαrφi+1, j

+ l jαl ui−1, j − 1

3
hiαbui, j−1 − l jαr ui+1, j + 1

3
hiαt ui, j+1

+ l jαlai−1, j + l jαr ai+1, j + 1

3
l jαl bi−1, j + 1

3
l jαr bi+1, j

− 1

3
hiαbci, j−1 − 1

3
hiαt ci, j+1

)
; (2.16)

3.

16

3k
bi jvi j + 8k

3
ci j ui j

+ hi (−αb − αt)φi j +
(

1

3
l j (αl − αr)+ hi (αb − αt)

)
vi j

+ 1

3
hi (−αb − αt)ai j + hi (−αb − αt)bi j + 1

3
l j (−αl − αr)ci j

=
∫
Ii j

f 2(x, y)η j dxdy −
(

hiαbφi, j−1 + hiαtφi, j+1

− 1

3
l jαlvi−1, j + hiαbvi, j−1 + 1

3
l jαrvi+1, j − hiαtvi, j+1

+ 1

3
hiαbai, j−1 + 1

3
hiαt ai, j+1 + hiαbbi, j−1 + hiαt bi, j+1

− 1

3
l jαl ci−1, j − 1

3
l jαr ci+1, j

)
; (2.17)

4.

4k

3
u2

i j +
4

3k
v2

i j +
16k

5
a2

i j +
16

9k
b2

i j + (
4k

9
+ 4

5k
) c2

i j

+
(

l j (αl − αr)+ 1

3
hi (αb − αt)

)
φi j + l j (−αl − αr)ui j + 1

3
hi (−αb − αt)vi j

123

J Sci Comput

+ (
l j (αl − αr)+ 1

5
hi (αb − αt)

)
ai j + 1

3

(
l j (αl − αr)+ hi (αb − αt)

)
bi j

=
∫
Ii j

f 2(x, y)ξ2
i dxdy−

(
−l jαlφi−1, j− 1

3
hiαbφi, j−1+l jαrφi+1, j+ 1

3
hiαtφi, j+1

− l jαl ui−1, j − l jαr ui+1, j − 1

3
hiαbvi, j−1 − 1

3
hiαtvi, j+1

− l jαlai−1, j − 1

5
hiαbai, j−1 + l jαr ai+1, j + 1

5
hiαt ai, j+1

− 1

3
l jαl bi−1, j − 1

3
hiαbbi, j−1 + 1

3
l jαr bi+1, j + 1

3
hiαt bi, j+1

)
; (2.18)

5.

4k

3
u2

i j +
4

3k
v2

i j +
16k

9
a2

i j +
16

5k
b2

i j +
(

4k

5
+ 4

9k

)
c2

i j

+
(

1

3
l j (αl − αr)+ hi (αb − αt)

)
φi j + 1

3
l j (−αl − αr)ui j + hi (−αb − αt)vi j

+ 1

3

(
l j (αl − αr)+ hi (αb − αt)

)
ai j +

(
1

5
l j (αl − αr)+ hi (αb − αt)

)
bi j

=
∫
Ii j

f 2(x, y)η2
j dxdy−

(
− 1

3
l jαlφi−1, j−hiαbφi, j−1 + 1

3
l jαrφi+1, j + hiαtφi, j+1

− 1

3
l jαl ui−1, j − 1

3
l jαr ui+1, j − hiαbvi, j−1 − hiαtvi, j+1

− 1

3
l jαlai−1, j − 1

3
hiαbai, j−1 + 1

3
l jαr ai+1, j + 1

3
hiαt ai, j+1

− 1

5
l jαl bi−1, j − hiαbbi, j−1 + 1

5
l jαr bi+1, j + hiαt bi, j+1

)
; (2.19)

6.

16k

9
ai j ci j + 16

9k
bi j ci j

+ 1

3
hi (−αb − αt)ui j + 1

3
l j (−αl − αr)vi j

+ 1

3

(
l j (αl − αr)+ hi (αb − αt)

)
ci j

=
∫
Ii j

f 2(x, y)ξiη j dxdy−
(1

3
hiαbui, j−1+ 1

3
hiαt ui, j+1+ 1

3
l jαlvi−1, j+ 1

3
l jαrvi+1, j

+ 1

3
l jαl ci−1, j − 1

3
l jαr ci+1, j + 1

3
hiαbci, j−1 − 1

3
hiαt ci, j+1

)
. (2.20)

Note that for simplicity, we omit the subscript i j of local causality constants in these equations
with the understanding that they are values on the cell Ii j . In a vector form, we have the
nonlinear system

	f (x) = 	0, (2.21)

where 	x = (φi j , ui j , vi j , ai j , bi j , ci j)
T , and 	f = (f1, f2, f3, f4, f5, f6)

T corresponding
to the six Eqs. (2.15)–(2.20). The Newton’s method is used to solve this local nonlinear system.

123

J Sci Comput

Notice that here we have two kind of iterations. One is the outer fast sweeping iteration, and
the other is the Newton iteration for the local nonlinear system of every cell Ii j inside a fast
sweeping iteration. So each fast sweeping iteration consists of many inner Newton iteration
procedures. In the k−th fast sweeping iteration, the Newton iteration procedure to solve the
local nonlinear system (2.21) for the cell Ii j is as following.

1. The initial Newton iteration values 	x (0) = (φold
i j , uold

i j , vold
i j , aold

i j , bold
i j , cold

i j)T are the
values of the last (i.e., the (k − 1)-th) fast sweeping iteration step.

2. At the Newton iteration step n + 1, we calculate the Jacobian matrix J (x (n)) = 	f ′(x (n))

(see Appendix for detailed formulae of the Jacobian matrix) and solve the 6 × 6 linear
system J (x (n)) ·
x (n) = − 	f (x (n)), then update 	x (n+1) = 	x (n) +
x (n).

3. Repeat the step 2 until ‖	x (n+1)− 	x (n)‖∞ < 10−11 or stop the Newton iteration if this con-
vergence criterion can not be satisfied in 100 iterations. If the Newton iteration converges
(i.e., the convergence criterion is satisfied), then the local nonlinear system for the cell
Ii j has been solved and we update the values of (φi j , ui j , vi j , ai j , bi j , ci j). Otherwise,
we keep the old values on the cell Ii j from the last fast sweeping iteration step, and may
update them in the next fast sweeping iteration step.

Via numerical experiments, we observe that the non-convergence of the Newton iteration for
the local nonlinear system mainly happens around shock locations where the characteristics
from the left intersect with the characteristics from the right. However, along with the fast
sweeping iterations, Newton iterations for local nonlinear systems of all cells converge and
DG solutions are obtained.

Remark To obtain the local nonlinear system for the second order scheme based on the
transformed form (2.1), we can just simply take the coefficients of quadratic terms (i.e., all
a’s, b’s and c’s) in (2.15)–(2.17) to be zeros. The resulting quadratic system is simple enough
to be solved directly as that in [24], without using the Newton iteration.

2.2.3 Update of Causality Arrays

If the values of φi j , ui j , vi j , ai j , bi j and ci j have been updated by the third order DG local
solver, then we need to make the current values of causality indicators in the neighboring
cells of Ii j consistent with the current information flow directions determined by the third
order DG local solver. As that in [24], we need to consider the causality information on
neighboring cells of the cells whose causality arrays may be updated.

Again, as that in the calculation of local causality constants, there is a difference here from
the second order method in [24]. The information flow directions of a DG solution on the cell
Ii j are indicated by Ĥ1(∇φh)|Ii, j and Ĥ2(∇φh)|Ii, j . In the second order method [24], they are
constants, and their signs directly indicate the causality information flow directions. However,
here we have a quadratic polynomial φh on Ii j for the third order method, Ĥ1(∇φh)|Ii, j and

Ĥ2(∇φh)|Ii, j are linear functions. We evaluate Ĥ1(∇φh)|Ii, j and Ĥ2(∇φh)|Ii, j at the middle
points of the shared cell boundaries of Ii j and its four neighboring cells, and use the signs
of the obtained values to indicate the causality information flow directions. The detailed
algorithm is described in the following.

In the x−direction, if(ui j + 2ai j > 0 .and.i < N): this indicates that the information
in the cell (i, j) is propagating to the right cell (i+1, j), and it is possible that we need to
update flagx(i+ 1, j). If the cell (i+1, j) is a boundary cell (i.e. a cell around � which has
preassigned values and these values are fixed during iterations), then we do not need to update
flagx(i+ 1, j). Otherwise we need to look at the causality information at the right hand side

123

J Sci Comput

of the cell (i+1, j). If the cell (i+1, j) happens to be at the boundary of the computational
domain, then there is no causality information at the right hand side of the cell (i+1, j), and
we just update flagx(i+ 1, j) = 0. If the cell (i+1, j) is an interior cell, then there is causality
information at its right neighboring cell (i+2, j) which we need to consider. Following [24],
we should update flagx(i+ 1, j) if and only if the current numerical values on cell (i+2, j)
have been provided by the third order DG local solver (i.e., not the initial iteration values
from the second order scheme), and the “global” causality between the cell (i, j) and the
cell (i+2, j) is consistent with the current “local” causality for the cell (i+1, j). Here the
current “local” causality is just the information propagation direction indicated by the third
order DG solution in the current iteration step and current cell. In this case, it is indicated by
ui j + 2ai j > 0. The “global” causality between the cell (i, j) and the cell (i+2, j) is motivated
by the “first arrival time” used in the first order fast sweeping method [28]. In the Eikonal
equations (1.1), φ(x, y) has the physical meaning that it represents the “first arrival time”
which the waves take from the boundary � to a point (x, y) in the domain, and f (x, y) is
the reciprocal of the wave velocity at the point (x, y). Hence the “first arrival time” from the
middle point of the shared cell boundary of Ii j and Ii+1, j to the center of the cell Ii+1, j can
be approximated by φi j + ui j + ai j + 1

2 hi+1 fi+1, j , where fi+1, j = f (xi+1, y j). And the
“first arrival time” from the middle point of the shared cell boundary of Ii+1, j and Ii+2, j to
the center of the cell Ii+1, j can be approximated by φi+2, j −ui+2, j +ai+2, j + 1

2 hi+1 fi+1, j .
If φi j+ui j+ai j+ 1

2 hi+1 fi+1, j < φi+2, j−ui+2, j+ai+2, j+ 1
2 hi+1 fi+1, j , then the causality

information is flowing from the cell (i,j) into the cell (i+2, j) “globally”. In summary, with
the cancellation of the common term, we have

if ((the values on cell (i+ 2, j) are from the third order DG solver) .and.

φi j + ui j + ai j < φi+2, j − ui+2, j + ai+2, j), then

flagx(i+ 1, j) = 0;
otherwise, we do not update flagx(i+ 1, j). We would like to point out the reason that we
need the current numerical values on cell (i+2, j) to be provided by the third order DG local
solver. This is because the numerical values on the cell (i,j) have been provided by the third
order DG local solver in the current iteration. So we request the similar type of numerical
information on the cell (i+2,j) in order to be consistent in computing the “global” causality.

Similarly if(ui j −2ai j < 0 .and.i > 1): this indicates that the information in the cell (i, j)
is propagating to the left cell (i−1, j) and it is possible that we need to update flagx(i− 1, j).
If the cell (i−1, j) is a boundary cell, then we do not need to update flagx(i− 1, j). Otherwise,
if the cell (i−1, j) happens to be at the boundary of the computational domain, we update
flagx(i− 1, j) = 1. If the cell (i−1, j) is an interior cell, then there is causality information
at its left neighboring cell (i−2, j) which we need to consider.

if ((the values on cell (i− 2, j) are from the third order DG solver) .and.

φi j − ui j + ai j < φi−2, j + ui−2, j + ai−2, j), then

flagx(i− 1, j) = 1;
otherwise we do not update flagx(i− 1, j).

Cases in the y-direction are similar. In the y-direction, if(vi j + 2bi j > 0 .and. j < M):
this indicates that the information in the cell (i, j) is propagating to the top cell (i, j+1), and it
is possible that we need to update flagy(i, j+ 1). If the cell (i, j+1) is a boundary cell, then
we do not need to update flagy(i, j+ 1). Otherwise, if the cell (i, j+1) happens to be at the
boundary of the computational domain, we update flagy(i, j+ 1) = 0. If the cell (i, j+1) is

123

J Sci Comput

an interior cell, then there is causality information at its top neighboring cell (i, j+2) which
we need to consider.

if ((the values on cell (i, j+ 2) are from the third order DG solver) .and.

φi j + vi j + bi j < φi, j+2 − vi, j+2 + bi, j+2), then

flagy(i, j+ 1) = 0;
otherwise we do not update flagy(i, j+ 1).

If(vi j − 2bi j < 0 .and. j > 1): this indicates that the information in the cell (i, j) is
propagating to the bottom cell (i, j−1), and it is possible that we need to update flagy(i, j− 1).
If the cell (i, j−1) is a boundary cell, then we do not need to update flagy(i, j− 1). Otherwise,
if the cell (i, j−1) happens to be at the boundary of the computational domain, we update
flagy(i, j− 1) = 1. If the cell (i, j−1) is an interior cell, then there is causality information
at its bottom neighboring cell (i, j−2) which we need to consider.

if ((the values on cell (i, j− 2) are from the third order DG solver) .and.

φi j − vi j + bi j < φi, j−2 + vi, j−2 + bi, j−2), then

flagy(i, j− 1) = 1;
otherwise we do not update flagy(i, j− 1).

2.2.4 Initialization of the DG Local Solver and Boundary Conditions

Cells in the computational domain are classified as “boundary cells” or “non-boundary cells”.
Boundary cells are around the boundary � and the values on them are fixed during iterations.
For this third order DG fast sweeping method, on non-boundary cells the initial iteration
values of φi j , ui j , vi j are the values from the second order DG fast sweeping iteration, and
the initial iteration values of ai j , bi j and ci j are zeros. And we use L2 projection of the exact
or approximating boundary values to pre-assign the values of φi j , ui j , vi j , ai j , bi j and ci j

on boundary cells. The formulae resulting from the L2 projection of a function φ on the
boundary cell Ii j are

φi j = A − 15

4

(
B + C − 2

3
A

)
, (2.22)

ui j = 3

hi l j

∫
Ii j

φ · ξi dxdy, (2.23)

vi j = 3

hi l j

∫
Ii j

φ · η j dxdy, (2.24)

ai j = 45

4

(
B − 1

3
A

)
, (2.25)

bi j = 45

4

(
C − 1

3
A

)
, (2.26)

ci j = 9

hi l j

∫
Ii j

φ · ξiη j dxdy, (2.27)

123

J Sci Comput

where

A = 1

hi l j

∫
Ii j

φ dxdy, B = 1

hi l j

∫
Ii j

φ · ξ2
i dxdy, C = 1

hi l j

∫
Ii j

φ · η2
j dxdy.

The integrals here are numerically approximated by an 8-point Gaussian quadrature rule.
Gaussian quadrature points are four corners and four middle points of cell boundaries on
a boundary cell. Hence the numerical values of φ are needed at these Gaussian quadrature
points of boundary cells around the inflow boundary � in order to perform the L2 projection
(2.22)–(2.27). In applications, if these points of boundary cells are not on the boundary � and
numerical values on them can not be directly provided by the boundary condition in the Eq.
(1.1), the Richardson extrapolation or inverse Lax-Wendroff procedure developed in [8] can
provide accurate approximations to these values. In the Richardson extrapolation procedure,
first order accurate solutions on several locally successively refined meshes are used to obtain
high order approximations to numerical values at the points of boundary cells. The Richardson
extrapolation procedure is suitable for different types of inflow boundaries, especially for the
point source boundary. In the inverse Lax-Wendroff procedure, the PDE itself and the given
boundary condition are repeatedly used to obtain high order approximations to the numerical
values for the points near the boundary. More details can be found in [8] and its application to
fifth order WENO fast sweeping method in [23]. It can also be applied to complex domains and
other hyperbolic PDEs, as shown in [20]. In this paper, our major focus is on the development
of the third order fast sweeping method itself. Hence in most of numerical experiments of
the next section, we directly use exact solutions to specify the values at Gaussian quadrature
points of boundary cells. The inverse Lax-Wendroff procedure is tested in one of the examples
in order to demonstrate its performance.

2.3 Algorithm Summary

Now we summarize the third order DG fast sweeping method in the following.

1. Use the final causality arrays provided by the second order DG fast sweeping method in
[24] as the initial causality arrays for this third order DG fast sweeping method. See the
description in Subsect. 2.1.

2. Initialize the third order DG local solver as described in Subsect. 2.2.4.
3. Perform iterations on non-boundary cells with four alternating direction sweepings. In

each sweeping, use the procedure described in Subsects. 2.2.1, 2.2.2 and 2.2.3 to update
values φi j , ui j , vi j , ai j , bi j and ci j on specific cells whose causality values are consistent
with current sweeping direction (shown in Table 1), and update the causality arrays of
their neighboring cells when it is needed.

4. Convergence: we check iteration convergence every four sweepings, i.e., if

||φ(k)
h − φ

(k−4)
h ||L∞ ≤ δ,

where δ is a given convergence threshold value, the iteration converges and stops. �

Remark The procedure of step 3 indicates that in each sweeping, candidate cells for which
the DG local solver may be applied are only the cells whose causality indicator values are
consistent with the current sweeping direction. This approach can save a lot of computational
costs since the cells where the correct characteristic information has not reached are excluded
from the current sweeping. In step 4 of the algorithm, δ = 10−11 is taken as the threshold
value to stop the iterations in all numerical experiments of this paper.

123

J Sci Comput

Table 1 Specific cells to be
updated in different direction
sweepings

Sweeping direction Causality arrays of cells to be updated

i = 1 : N , j = 1 : M flagx(i,j) �= 1 and flagy(i,j) �= 1

i = N : 1, j = 1 : M flagx(i,j) = 1 and flagy(i,j) �= 1

i = N : 1, j = M : 1 flagx(i,j) �= 0 and flagy(i,j) = 1

i = 1 : N , j = M : 1 flagx(i,j) = 0 and flagy(i,j) = 1

Table 2 Correspondence of
colors and causality indicator
values and information flow
directions

Color Flag x-direction Flag y-direction

Red 0 → 0 ↑
Blue 0 → 1 ↓
Green 0 → 10 no info

Pale Violet Red 1 ← 0 ↑
Dark Blue 1 ← 1 ↓
Aqua 1 ← 10 no info

Yellow 10 no info 0 ↑
Deep Pink 10 no info 1 ↓
Black 10 no info 10 no info

3 Numerical Examples

In this section, numerical examples are presented for solving the Eikonal equations (1.1).
Examples include solutions which have discontinuities in their derivatives, and benchmark
test cases such as the examples of shape from shading arising in the application area of com-
puter vision. Numerical results demonstrate a uniform third order accuracy of the proposed
method in smooth regions of the solutions, and the linear computational complexity. We
calculate numerical errors for non-boundary cells in all examples.

Since in each sweeping, only if causality indicator values of the cells are consistent with the
current sweeping direction, the third order DG local solver may be applied for them. Hence to
measure the computational complexity accurately, we define the effective sweeping number
as that in [24]:

effective sweeping number � the total # of times the third order DG local solver is executed

the total # of cells excluding the boundary cells
,

where “the third order DG local solver is executed” includes all cases that the subroutine for
solving the quadratic system in the Subsect. 2.2.2 has been executed no matter whether the
Newton iteration for local system converges or not. The resulting effective sweeping number
can be a non-integer value since many cells are not updated in specific sweeps and hence are
not counted towards the computation of this number. In all examples, if we have sweeping /
effective sweeping number n, then it means n iterations, not n × 4 iterations.

In all examples, we plot the patterns of causality indicator values when the iterations
converge. Different colors represent different values of causality indicators. Their correspon-
dence relationship is given in Table 2. Patterns of the second order scheme in [24] and the
third order one developed in this paper are compared.

Example 1 � = [−1, 1]2, � = {(0, 0)}, and

f (x, y) = π

2

√
sin2

(π

2
x
)
+ sin2

(π

2
y
)
, g(0, 0) = −2.

123

J Sci Comput

Table 3 Example 1: The values of φi j , ui j , vi j , ai j , bi j and ci j are preassigned on the cells in the fixed

region [−0.1, 0.1]2

Mesh L1 error Order L∞ error Order Eff. swp.number Swp. number

20 × 20 1.52E−5 – 1.29E−4 – 2.00 8

40 × 40 1.90E−6 3.00 1.57E−5 3.03 2.00 8

80 × 80 2.39E−7 2.99 1.95E−6 3.01 2.00 8

160 × 160 2.99E−8 3.00 2.43E−7 3.00 2.00 8

320 × 320 3.75E−9 3.00 3.03E−8 3.00 2.00 8

640 × 640 4.69E−10 3.00 3.79E−9 3.00 2.00 8

1280 × 1280 5.86E−11 3.00 4.74E−10 3.00 2.00 8

Table 4 Example 1: The values of φi j , ui j , vi j , ai j , bi j and ci j are preassigned on the cells in the region

[−h, h]2

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 1.52E−5 – 1.29E−4 – 2.00 8

40 × 40 1.84E−6 3.04 1.61E−5 3.00 2.00 8

80 × 80 2.27E−7 3.02 2.02E−6 3.00 2.00 8

160 × 160 2.83E−8 3.01 2.52E−7 3.00 2.00 8

320 × 320 3.53E−9 3.00 3.15E−8 3.00 2.00 8

640 × 640 4.41E−10 3.00 3.94E−9 3.00 2.00 8

1,280 × 1,280 5.50E−11 3.00 4.93E−10 3.00 2.00 8

The exact solution is

φ(x, y) = − cos
(π

2
x
)
− cos

(π

2
y
)

.

To initialize the third order DG solver, we preassign the values of φi j , ui j , vi j , ai j , bi j and
ci j on the boundary cells in the fixed region [−0.1, 0.1]2 around �. The results are listed
in Table 3. We can see that only 8 sweepings and 2 effective sweepings are needed for
convergence regardless of the mesh size, and the error is uniformly third order both in L1

and in L∞ norms. The fact that iteration numbers are independent of mesh sizes verifies the
linear computational complexity of the algorithm. If we preassign the values of φi j , ui j , vi j ,
ai j , bi j and ci j on the cells in the region [−h, h]2 (h is grid size, so the number of boundary
cells is 4 for all meshes) around �, we still observe uniformly third order accuracy as shown
in Table 4. This shows that the third order DG fast sweeping method is robust with respect
to different setups of the boundary cells in this example. In Fig. 1, the patterns of causality
indicator values when the iterations converge are shown for both the second order and the
third order method. We can see that they are totally same.

Example 2 (Point source distance problem). � = [−1, 1]2, � = {(0, 0)} and f (x, y) = 1,
g = 0. The boundary cells are the cells in the domain [−0.1, 0.1]2. We preassign values for
them based on the exact solution (the distance function from the point (0, 0)). The numerical
results are listed in Table 5. We can again observe that only 8 sweepings and 2 effective
sweepings are needed for convergence regardless of the mesh size and third order accuracy
is obtained in both L1 and L∞ norms. As that in the example 1, the linear computational

123

J Sci Comput

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 Example 1. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

Table 5 Example 2: The point source distance problem

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 1.59E−3 – 3.52E−3 – 2.00 8

40 × 40 8.47E−5 4.23 7.96E−4 2.14 2.01 8

80 × 80 9.59E−6 3.14 9.16E−5 3.12 2.01 8

160 × 160 1.01E−6 3.25 1.21E−5 2.92 2.00 8

320 × 320 1.13E−7 3.16 1.56E−6 2.96 2.00 8

640 × 640 1.32E−8 3.10 1.98E−7 2.98 2.00 8

1,280 × 1,280 1.58E−9 3.05 2.49E−8 2.99 2.00 8

complexity of the algorithm is verified. In Fig. 2, the patterns of causality indicator values
when the iterations converge are shown for both the second order and the third order method.
We can see that they are same for most of cells, except for the cells at the middle lines of the
domain where the information flows in just one direction.

Example 3 � = [−1, 1]2, � is a circle with center (0, 0) and radius 0.5, and f (x, y) = 1,
g = 0. To initialize the third order DG solver, we preassign the values of φi j , ui j , vi j , ai j ,
bi j and ci j on the boundary cells whose centers are within the 2h distance from � (h is grid
size). The numerical results are listed in Tables 6 and 7. We observe as before that only 8
sweepings and 2 effective sweepings are needed for convergence regardless of the mesh size.
Hence the algorithm has a linear computational complexity for this example. The error is
uniformly third order in both L1 and L∞ norms if we measure it in the smooth region outside
the circle center (see Table 6); or we have third order in L1 and first order in L∞ if the error is
measured in the whole computational domain, as shown in Table 7. The patterns of causality
indicator values when the iterations converge are shown in Fig. 3. As that in the example 2,
we see similar patterns for the second order and the third order method, except at the middle
lines of the domain where the information flows in just one direction.

123

J Sci Comput

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2 Example 2. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

Table 6 Example 3: The distance from one circle problem

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 3.79E−5 – 2.99E−4 – 2.01 8

40 × 40 5.08E−6 2.90 5.28E−4 2.50 2.01 8

80 × 80 6.48E−7 2.97 7.49E−5 2.82 2.00 8

160 × 160 8.26E−8 2.97 1.03E−5 2.87 2.00 8

320 × 320 1.04E−8 2.99 1.35E−6 2.92 2.00 8

640 × 640 1.31E−9 3.00 1.75E−7 2.95 2.00 8

1,280 × 1,280 1.63E−10 3.00 2.23E−8 2.97 2.00 8

Errors are measured in the smooth region, which is outside of [−0.1, 0.1]2

Table 7 Example 3: The distance from one circle problem

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 5.58E−5 – 5.58E−3 – 2.01 8

40 × 40 8.18E−6 2.77 2.73E−3 1.03 2.01 8

80 × 80 1.16E−6 2.82 1.36E−3 1.00 2.00 8

160 × 160 1.61E−7 2.84 6.81E−4 1.00 2.00 8

320 × 320 2.22E−8 2.86 3.41E−4 1.00 2.00 8

640 × 640 3.03E−9 2.87 1.70E−4 1.00 2.00 8

1,280 × 1,280 4.10E−10 2.88 8.52E−5 1.00 2.00 8

Errors are measured in the whole region

Example 4 Consider Eikonal equation (1.1) with f (x, y) = 1, g = 0. The computational
domain is � = [−1, 1] × [−1, 1], and � consists of two circles of equal radius 0.3 with
centers located at (−0.5,−0.5) and (0.5, 0.5), respectively. The exact solution is the distance
function to �, i.e.

φ(x, y) = min(|
√

(x − 0.5)2 + (y − 0.5)2 − 0.3|, |
√

(x + 0.5)2 + (y + 0.5)2 − 0.3|).

123

J Sci Comput

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3 Example 3. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

Table 8 Example 4: � consists of two circles

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 3.58E−5 – 2.49E−4 – 5.03 20

40 × 40 5.44E−6 2.72 3.79E−5 2.72 6.02 24

80 × 80 8.06E−7 2.75 5.79E−6 2.71 9.01 36

160 × 160 1.06E−7 2.92 8.06E−7 2.84 9.00 36

320 × 320 1.37E−8 2.95 1.07E−7 2.92 8.00 32

640 × 640 1.75E−9 2.97 1.37E−8 2.96 9.00 36

1,280 × 1,280 2.20E−10 2.99 1.74E−9 2.98 7.00 28

Errors are measured in the smooth region, which is outside of [−0.6,−0.4]2, [0.4, 0.6]2 and |x + y| ≤ 0.1

The boundary cells are chosen to be cells whose centers are within the 2h distance from � (h
is grid size). Characteristics intersect at the center of each circle and the line that is of equal
distance to the two circles, and the solution develops singularities there. This test case is a
challenge problem for high order fast sweeping methods, see for example [12,27], in terms of
obtaining both high order accuracy in smooth regions and linear computational complexity.
Our third order algorithm works well, as that shown in Tables 8 and 9. More iterations are
needed in this example than previous ones due to the shock waves in the solution. Since high
order schemes do not have monotonicity property as that in the first order scheme [28], the
iteration numbers exhibit a little nonuniformity for different mesh sizes. As shown in Tables
8 and 9, about 5 to 9 effective sweepings are needed for different mesh sizes. In Table 10, the
CPU times for computing causality indicators and arrays, the global CPU times, and their
ratios are shown. We can see that the computations of causality information only take about
4–5 % of global CPU times. The global CPU times approximately exhibit a linear relationship
with respect to different meshes. The error is uniformly third order in both L1 and L∞ norms
if it is measured in smooth regions excluding the derivative singularities (Table 8). If the error
is measured in the whole computational domain, we obtain second order in L1 norm and first
order in L∞ norm (Table 9). We observe a little oscillation of the L∞ accuracy order, again,
due to the non-monotonicity of high order linear schemes around the shock wave regions.

123

J Sci Comput

Table 9 Example 4: � consists of two circles: whole region

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 1.06E−3 – 1.00E−1 – 5.03 20

40 × 40 2.03E−4 2.38 4.88E−2 1.04 6.02 24

80 × 80 4.39E−5 2.21 2.40E−2 1.02 9.01 36

160 × 160 1.04E−5 2.08 1.83E−2 0.39 9.00 36

320 × 320 2.48E−6 2.06 1.12E−2 0.71 8.00 32

640 × 640 6.06E−7 2.03 6.10E−3 0.88 9.00 36

1,280 × 1,280 1.50E−7 2.02 2.89E−3 1.08 7.00 28

Table 10 Example 4: CPU time (Unit: seconds) and iteration numbers

Mesh CPU for causal. info. Global CPU Percentage (%) Swp. # Eff. swp. #

80 × 80 0.07 1.56 4.49 36 9.01

160 × 160 0.29 6.11 4.75 36 9.00

320 × 320 1.12 22.29 5.02 32 8.00

640 × 640 5.13 97.30 5.27 36 9.00

1,280 × 1,280 18.10 325.68 5.56 28 7.00

The pictures of the numerical solution on the 160 × 160 mesh are presented in Fig. 4. The
derivative singularities are captured sharply. The patterns of causality indicator values when
the iterations converge are shown in Fig. 5. For this example, similar patterns are observed
on most of the cells for the second order and the third order method. The differences appear
around the shock line that is of equal distance to the two circles, and the places where the
information flows in just one direction.

To study the differences of weak solutions from the transformed equation (2.1) and the
original Eq. (1.1), we implement the second order scheme based on the transformed equation,
and compare the results with that in [24] based on the original equation. The implementation
of the second order scheme based on the transformed equation follows same procedure as
that in [24], except that it has different local causality constants and different local nonlinear
system as that described in Sect. 2. Numerical errors, accuracy orders and iteration numbers
are reported in Tables 11 and 12. Correct accuracy orders are obtained in both smooth regions
and the whole region. CPU times for computing causality indicators and arrays, the global
CPU times, and their ratios are shown in Table 13. We can see that the computations of
causality information only take about 11–12 % of global CPU times. Both the global CPU
times and CPU times for computing causality information approximately exhibit a linear
relationship with respect to different meshes. The pictures of the numerical solution on the
160× 160 mesh are shown in Fig. 6. We can see that the viscosity solution is captured very
well. Comparing with the numerical errors reported in [24] based on the original equation
(1.1), we can see very slight differences. We also compare the patterns of causality indicator
values when the iterations converge. They are shown in Fig. 7 for 80×80 mesh, and Fig. 8 for
40× 40 mesh. The patterns are exactly the same on the 40× 40 mesh. On the 80× 80 mesh,
same patterns are also obtained except only four cells around the shock line. The comparisons
here show that correct numerical viscosity solution is obtained for both formulations. Slight
differences in numerical errors are observed. It could be due to that the transformed equation

123

J Sci Comput

X

Y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

XY

P
hi

Fig. 4 Example 4. The pictures of the numerical solution of φ on the 160× 160 mesh. Left: the contour plot
for φ; right: the 3D plot for φ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5 Example 4. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

has simpler formulas for local causality constants than the original equation. Hence the DG
schemes have slight different fluxes.

Initial numerical values and causality information of the third order DG fast sweeping
method can be provided by the second order DG fast sweeping method based on either the
“transformed form” (2.1) or the “original form” (1.1). Here we test the third order method
based on the second order one using the “transformed form”. Correct numerical results are
obtained as shown in Table 14. We also observe that the patterns of causality indicator values
when the iterations converge are the same for different initial values.

We compare the computation efficiency of the third order fast sweeping DG method in
this paper with the third order WENO fast sweeping method in [27], for this example. The
numerical results of WENO fast sweeping method are reported in Tables 15 and 16. The

123

J Sci Comput

Table 11 Example 4: � consists of two circles

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 1.30E−3 – 1.73E−2 – 2.96 12

40 × 40 3.49E−4 1.89 2.54E−3 2.77 3.98 16

80 × 80 9.27E−5 1.91 7.64E−4 1.73 3.99 16

160 × 160 2.40E−5 1.95 2.14E−4 1.84 3.99 16

320 × 320 6.10E−6 1.98 5.74E−5 1.90 4.00 16

640 × 640 1.54E−6 1.99 1.48E−5 1.96 4.00 16

1,280 × 1,280 3.87E−7 1.99 3.76E−6 1.98 4.00 16

Transformed equation is solved using second order method. Errors are measured in the smooth region, which
is outside of [−0.6,−0.4]2, [0.4, 0.6]2 and |x + y| ≤ 0.1

Table 12 Example 4: � consists of two circles

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 2.70E−3 – 7.65E−2 – 2.96 12

40 × 40 6.45E−4 2.07 3.88E−2 0.98 3.98 16

80 × 80 1.59E−4 2.02 1.95E−2 0.99 3.99 16

160 × 160 4.02E−5 1.99 9.79E−3 1.00 3.99 16

320 × 320 1.01E−5 1.99 4.90E−3 1.00 4.00 16

640 × 640 2.54E−6 1.99 2.45E−3 1.00 4.00 16

1,280 × 1,280 6.38E−7 1.99 1.23E−3 1.00 4.00 16

Transformed equation is solved using second order method. Errors in whole region

Table 13 Example 4: CPU time (Unit: seconds) and iteration numbers when solving transformed equation
by second order method

Mesh CPU for causal. info. Global CPU Percentage (%) Swp. # Eff. swp. #

80 × 80 0.02 0.20 11.64 16 3.99

160 × 160 0.10 0.84 11.59 16 3.99

320 × 320 0.40 3.43 11.60 16 4.00

640 × 640 1.59 13.83 11.50 16 4.00

1,280 × 1,280 6.57 55.54 11.83 16 4.00

computational complexity of the WENO fast sweeping method is not linear. However, each
method has its advantages. We found that for this example, the third order fast sweeping
DG method needs fewer CPU times to reach certain accuracy in the smooth region than the
WENO one by comparing Tables 8, 10 and Table 15. Hence the DG one is more efficient
than the third order WENO fast sweeping method to obtain accurate results for the smooth
region of the solution. On the other hand, the third order WENO fast sweeping method is
more efficient for the regions with derivative singularities to get certain accuracy, as shown
in Tables 9, 10 and Table 16.

Example 5 (Shape-from-shading I) Consider Eikonal equation (1.1) with

f (x, y) = 2
√

y2(1− x2)2 + x2(1− y2)2. (3.1)

123

J Sci Comput

X

Y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

XY

P
hi

Fig. 6 Example 4. The pictures of the numerical solution of φ on the 160×160 mesh when solving transformed
equation using second order method. Left: the contour plot for φ; right: the 3D plot for φ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 7 Example 4. Visualization of final causality arrays on the 80 × 80 mesh using second order method.
Left: solving transformed equation; right: solving original equation

The computational domain � = [−1, 1]×[−1, 1]. φ(x, y) = 0 is prescribed at the boundary
of the square with the additional boundary condition φ(0, 0) = 1. This one and the next
two examples are called shape-from-shading problems from the applications in computer
vision [15]. They are typically used to test the high order numerical methods for Hamilton–
Jacobi equations (e.g. [7,9,12,23,25,27]). The exact solution for this example is φ(x, y) =
(1 − x2)(1 − y2). The boundary cells consist of the cells whose centers are within 0.1
distance from the boundary of the square, and the cells whose centers are in the domain
[−0.1, 0.1]2. We test the algorithm on both the uniform meshes and nonuniform meshes.
The nonuniform meshes are obtained by randomly perturbing grid points of the uniform
meshes in the range [−0.1h, 0.1h] × [−0.1h, 0.1h], where h is the mesh size of a uniform
mesh. The numerical results are reported in Tables 17 and 18. We can observe that only

123

J Sci Comput

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 8 Example 4. Visualization of final causality arrays on the 40 × 40 mesh using second order method.
Left: solving transformed equation; right: solving original equation

Table 14 Example 4: � consists of two circles

mesh L1 error order L∞ error order eff. swp.number swp. number

20 × 20 3.58E−5 – 2.49E−4 – 5.03 20

40 × 40 5.44E−6 2.72 3.79E−5 2.72 6.02 24

80 × 80 8.06E−7 2.75 5.79E−6 2.71 9.00 36

160 × 160 1.06E−7 2.92 8.06E−7 2.84 10.00 40

320 × 320 1.37E−8 2.95 1.07E−7 2.92 8.00 32

640 × 640 1.75E−9 2.97 1.37E−8 2.96 8.00 32

1,280 × 1,280 2.20E−10 2.99 1.74E−9 2.98 7.00 28

Transformed equation is solved by the second order method to provide initial information for the third order
method. Errors are measured in the smooth region, which is outside of [−0.6,−0.4]2, [0.4, 0.6]2 and |x+ y| ≤
0.1

Table 15 Example 4: � consists of two circles

Mesh L1 error Order L∞ error Order Swp. number Global CPU time (s)

80 × 80 9.30E−6 − 4.44E−4 − 116 0.2

160 × 160 5.26E−7 4.14 1.39E−5 4.99 176 1.22

320 × 320 1.09E−7 2.27 3.94E−6 1.82 176 4.93

640 × 640 1.46E−8 2.90 5.84E−7 2.76 280 31.15

1,280 × 1,280 1.86E−9 2.97 7.65E−8 2.93 860 377.63

Third order WENO fast sweeping method. Errors are measured in the smooth region, which is outside of
[−0.6,−0.4]2, [0.4, 0.6]2 and |x + y| ≤ 0.1

2 and 3 effective sweepings are needed for convergence of the algorithm on uniform and
nonuniform meshes respectively, regardless of mesh sizes. Uniform third order accuracy are
obtained in both L1 and L∞ norms for uniform meshes. For nonuniform meshes, a clean

123

J Sci Comput

Table 16 Example 4: � consists of two circles

Mesh L1 error Order L∞ error Order Swp. number Global CPU time (s)

80 × 80 7.90E−5 − 5.87E−3 − 116 0.2

160 × 160 1.59E−5 2.31 2.80E−3 1.07 176 1.22

320 × 320 3.56E−6 2.16 1.27E−3 1.14 176 4.93

640 × 640 9.07E−7 1.97 5.34E−4 1.25 280 31.15

1,280 × 1,280 1.90E−7 2.26 2.04E−4 1.39 860 377.63

Third order WENO fast sweeping method. Errors are measured in the whole region

Table 17 Example 5: Shape-from-shading problem I, uniform mesh

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 3.92E−5 – 5.25E−4 – 2.00 8

40 × 40 4.62E−6 3.08 6.83E−5 2.94 2.00 8

80 × 80 5.55E−7 3.06 8.69E−6 2.97 2.00 8

160 × 160 6.77E−8 3.03 1.10E−6 2.99 2.00 8

320 × 320 8.35E−9 3.02 1.37E−7 2.99 2.00 8

640 × 640 1.04E−9 3.01 1.72E−8 3.00 2.00 8

1,280 × 1,280 1.29E−10 3.01 2.15E−9 3.00 2.00 8

Table 18 Example 5: Shape-from-shading problem I, non-uniform mesh

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 4.00E−5 – 5.63E−4 – 3.01 12

40 × 40 4.71E−6 3.08 7.35E−5 2.94 3.01 12

80 × 80 5.68E−7 3.05 9.36E−6 2.97 3.01 12

160 × 160 6.90E−8 3.04 2.72E−6 1.79 3.00 12

320 × 320 8.54E−9 3.02 1.58E−7 4.10 3.00 12

640 × 640 1.06E−9 3.01 6.37E−8 1.31 3.00 12

1,280 × 1,280 1.31E−10 3.01 4.59E−9 3.79 3.00 12

The mesh is obtained by randomly perturbing grid points of the uniform mesh in the range [−0.1h, 0.1h] ×
[−0.1h, 0.1h]

third order accuracy is obtained in L1 norm, with some oscillations in the accuracy orders in
L∞ norm. The pictures of the numerical solution on the 160×160 mesh are presented in the
Fig. 9. In Fig. 10, the patterns of causality indicator values when the iterations converge are
shown for both the second order and the third order method. We can see that they are totally
same.

Example 6 (Shape-from-shading II). Consider Eikonal equation (1.1) with

f (x, y) = 2π

√
[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2. (3.2)

The computational domain � = [0, 1]×[0, 1]. � = {(1
4 , 1

4), (3
4 , 3

4), (1
4 , 3

4), (3
4 , 1

4), (1
2 , 1

2)}∪
∂�, consisting of five isolated points and the domain boundary. g(1

4 , 1
4) = g(3

4 , 3
4) = 1,

123

J Sci Comput

X

Y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

XY

P
hi

Fig. 9 Example 5. The pictures of the numerical solution of φ on the 160× 160 mesh. Left: the contour plot
for φ; right: the 3D plot for φ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10 Example 5. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

g(1
4 , 3

4) = g(3
4 , 1

4) = −1, and g(1
2 , 1

2) = 0. In addition, φ(x, y) = 0 is prescribed
on ∂�. The solution for this problem is the shape function, which has the brightness
I (x, y) = 1/

√
1+ f (x, y)2 under vertical lighting [15]. The exact solution is φ(x, y) =

sin(2πx) sin(2πy). This is a challenge problem for high order fast sweeping methods to
achieve both high order accuracy and fast convergence speed, as shown in [12,27].

The boundary cells are chosen to consist of cells whose centers are within 0.05 distance
from the boundary of the unit square, and the cells which are in the five square boxes with
length 0.1 and the centers {(1

4 , 1
4), (3

4 , 3
4), (1

4 , 3
4), (3

4 , 1
4), (1

2 , 1
2)}. The third order DG fast

sweeping method is tested on both the uniform meshes and non-uniform meshes. Again, the
nonuniform meshes are obtained by randomly perturbing grid points of the uniform meshes

123

J Sci Comput

Table 19 Example 6: Shape-from-shading problem II, uniform mesh

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 4.10E−4 – 5.03E−3 – 3.01 12

40 × 40 3.92E−5 3.39 5.18E−4 3.28 3.00 12

80 × 80 4.32E−6 3.18 5.95E−5 3.12 3.00 12

160 × 160 5.21E−7 3.05 7.14E−6 3.06 4.00 16

320 × 320 6.43E−8 3.02 8.75E−7 3.03 4.00 16

640 × 640 7.98E−9 3.01 1.08E−7 3.01 4.00 16

1,280 × 1,280 9.93E−10 3.01 1.35E−8 3.01 4.00 16

Table 20 Shape-from-shading problem II, Example 6, non-uniform mesh

Mesh L1 error Order L∞ error Order Eff. swp. number Swp. number

20 × 20 6.35E−4 – 1.26E−1 – 4.00 16
40 × 40 4.02E−5 3.98 6.29E−4 7.65 4.00 16
80 × 80 4.44E−6 3.18 7.27E−5 3.11 4.00 16
160 × 160 5.44E−7 3.03 1.25E−5 2.54 4.00 16
320 × 320 6.66E−8 3.03 1.12E−6 3.49 4.00 16
640 × 640 8.27E−9 3.01 1.56E−7 2.84 4.00 16
1,280 × 1,280 1.03E−9 3.00 2.36E−8 2.73 4.00 16

The mesh is obtained by randomly perturbing grid points of the uniform mesh in the range [−0.1h, 0.1h] ×
[−0.1h, 0.1h]

in the range [−0.1h, 0.1h]× [−0.1h, 0.1h]where h is the mesh size of a uniform mesh. The
numerical results are reported in Tables 19 and 20. We can observe that only 3 or 4 effective
sweepings are needed for the convergence for uniform meshes. For nonuniform meshes, the
effective sweeping number is 4 regardless of the mesh size. We observe a uniform third order
accuracy for both the L1 and the L∞ norms, with a slight oscillation in L∞ accuracy orders
for nonuniform meshes as that in Example 5.

In Table 21, the CPU times for computing causality indicators and arrays, the global CPU
times, and their ratios are reported. We can see that the computations of causality informa-
tion only take about 1–1.5 % of global CPU times. CPU times show linear computational
complexity of the algorithm. The pictures of the numerical solution on the 160× 160 mesh
are shown in Fig. 11. The patterns of causality indicator values when the iterations converge
are shown in Fig. 12. For this example, similar patterns are observed on most of the cells for
the second order and the third order method. The differences appear around the places where
the information flows in just one direction.

Example 7 (Shape-from-shading III). Consider Eikonal equation (1.1) with

f (x, y) =
√

(1− |x |)2 + (1− |y|)2. (3.3)

The computational domain � = [−1, 1] × [−1, 1]. φ(x, y) = 0 is prescribed at the
boundary of the square. This example is used to test the inverse Lax-Wendroff procedure
for the boundary cells. The exact solution of this problem is φ = (1 − |x |)(1 − |y|).
Here we do not use the exact solution to provide boundary values. The values of φi j ,
ui j , vi j , ai j , bi j and ci j on the boundary cells whose centers are within the distance h
from � are generated by the inverse Lax-Wendroff procedure [8]. The numerical results

123

J Sci Comput

Table 21 Example 6, uniform mesh

Mesh CPU for causal. info. Global CPU Percentage (%) Swp. # Eff. swp. #

40 × 40 0.017 1.29 1.32 12 3.00

80 × 80 0.06 4.88 1.23 12 3.00

160 × 160 0.28 21.91 1.28 16 4.00

320 × 320 1.11 80.26 1.38 16 4.00

640 × 640 4.25 303.36 1.40 16 4.00

1,280 × 1,280 12.53 1202.26 1.04 16 4.00

CPU time (Unit: seconds) and iteration numbers

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

XY

P
hi

Fig. 11 Example 6. The pictures of the numerical solution of φ on the 160× 160 mesh. Left: the contour plot
for φ; right: the 3D plot for φ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12 Example 6. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

123

J Sci Comput

Table 22 Example 7: Shape-from-shading problem III

Mesh L1 error Order L∞ error Order Swp. # Eff. swp. #

20 × 20 2.25E−16 – 1.79E−15 – 8 2.00

40 × 40 2.35E−16 – 2.23E−15 – 8 2.00

80 × 80 2.43E−16 – 2.17E−15 – 8 2.00

160 × 160 2.45E−16 – 3.52E−15 – 8 2.00

320 × 320 2.75E−16 – 4.81E−15 – 8 2.00

640 × 640 3.41E−16 – 6.91E−15 – 8 2.00

1,280 × 1,280 3.90E−16 – 8.52E−15 – 8 2.00

A test for the inverse Lax-Wendroff boundary treatment

X

Y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

0

1

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

XY

P
hi

Fig. 13 Example 7. The pictures of the numerical solution of φ on the 160× 160 mesh. Left: the contour plot
for φ; right: the 3D plot for φ

are reported in Table 22. We can see that only 8 sweepings and 2 effective sweep-
ings are needed for convergence regardless of the mesh size. Since the exact solution of
this problem is a piecewise quadratic polynomial in the finite element space V 2

h (2.2),
the numerical errors are at the round-off error level as shown in Table 22. The pic-
tures of the numerical solution on the 160 × 160 mesh are presented in Fig. 13. In
Fig. 14, the patterns of causality indicator values when the iterations converge are shown
for both the second order and the third order method. We can see that they are totally
same.

Remark In all numerical examples of this section, we present patterns of causality indicator
values when the iterations converge and compare them for the second order and the third
order DG fast sweeping method. It is interesting that similar patterns are observed on most
of the cells for different order methods. The slight differences often appear around the shock
lines and the places where the information propagates in just one direction.

123

J Sci Comput

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 14 Example 7. Visualization of final causality arrays on the 80× 80 mesh. Left: the third order method;
right: the second order method

4 Conclusions

In this paper, we extend previous work in [24] and design a third order fast sweeping algorithm
with linear computational complexity for solving two dimensional Eikonal equations. The
difficulties of solving a more complicated local nonlinear system and calculations of causality
information in the third order DG scheme are resolved. The algorithm is tested by various
numerical examples. We observe both a uniform third order accuracy in smooth regions of
the solution and the fast convergence speed (i.e., linear computational complexity) in the
numerical examples. In this paper, we focus on the algorithm development and tests. The
theoretical analysis of the algorithm has not been carried out and is still an open problem.
This important aspect will be one of our next studies and provide guidance in applications
of the algorithm. Extension of the algorithm to solve higher dimensional problems follows
similar procedures, and its implementation and numerical experiments will also be carried
out in our next research.

Acknowledgments We thank helpful discussions with Chi-Wang Shu and Hongkai Zhao on this project

Appendix: Detailed Formulae of the 6 × 6 Jacobian Matrix in Solving the Local
Nonlinear System

J (1, 1) = ∂ f1

∂φ
= l j (αl − αr)+ hi (αb − αt)

J (1, 2) = ∂ f1

∂u
= 8k ui j + l j (−αl − αr)

J (1, 3) = ∂ f1

∂v
= 8

k
vi j + hi (−αb − αt)

J (1, 4) = ∂ f1

∂a
= 32k

3
ai j + l j (αl − αr)+ 1

3
hi (αb − αt)

123

J Sci Comput

J (1, 5) = ∂ f1

∂b
= 32

3k
bi j + 1

3
l j (αl − αr)+ hi (αb − αt)

J (1, 6) = ∂ f1

∂c
= (

8k

3
+ 8

3k
) ci j

J (2, 1) = ∂ f2

∂φ
= l j (−αl − αr)

J (2, 2) = ∂ f2

∂u
= 16k

3
ai j + l j (αl − αr)+ 1

3
hi (αb − αt)

J (2, 3) = ∂ f2

∂v
= 8

3k
ci j

J (2, 4) = ∂ f2

∂a
= 16k

3
ui j + l j (−αl − αr)

J (2, 5) = ∂ f2

∂b
= 1

3
l j (−αl − αr)

J (2, 6) = ∂ f2

∂c
= 8

3k
vi j + 1

3
hi (−αb − αt)

J (3, 1) = ∂ f3

∂φ
= hi (−αb − αt)

J (3, 2) = ∂ f3

∂u
= 8k

3
ci j

J (3, 3) = ∂ f3

∂v
= 16

3k
bi j + 1

3
l j (αl − αr)+ hi (αb − αt)

J (3, 4) = ∂ f3

∂a
= 1

3
hi (−αb − αt)

J (3, 5) = ∂ f3

∂b
= 16

3k
vi j + hi (−αb − αt)

J (3, 6) = ∂ f3

∂c
= 8k

3
ui j + 1

3
l j (−αl − αr)

J (4, 1) = ∂ f4

∂φ
= l j (αl − αr)+ 1

3
hi (αb − αt)

J (4, 2) = ∂ f4

∂u
= 8k

3
ui j + l j (−αl − αr)

J (4, 3) = ∂ f4

∂v
= 8

3k
vi j + 1

3
hi (−αb − αt)

J (4, 4) = ∂ f4

∂a
= 32k

5
ai j + l j (αl − αr)+ 1

5
hi (αb − αt)

J (4, 5) = ∂ f4

∂b
= 32

9k
bi j + 1

3

(
l j (αl − αr)+ hi (αb − αt)

)
J (4, 6) = ∂ f4

∂c
= (

8k

9
+ 8

5k
) ci j

123

J Sci Comput

J (5, 1) = ∂ f5

∂φ
= 1

3
l j (αl − αr)+ hi (αb − αt)

J (5, 2) = ∂ f5

∂u
= 8k

3
ui j + 1

3
l j (−αl − αr)

J (5, 3) = ∂ f5

∂v
= 8

3k
vi j + hi (−αb − αt)

J (5, 4) = ∂ f5

∂a
= 32k

9
ai j + 1

3

(
l j (αl − αr)+ hi (αb − αt)

)
J (5, 5) = ∂ f5

∂b
= 32

5k
bi j + 1

5
l j (αl − αr)+ hi (αb − αt)

J (5, 6) = ∂ f5

∂c
= (

8k

5
+ 8

9k
) ci j

J (6, 1) = ∂ f6

∂φ
= 0

J (6, 2) = ∂ f6

∂u
= 1

3
hi (−αb − αt)

J (6, 3) = ∂ f6

∂v
= 1

3
l j (−αl − αr)

J (6, 4) = ∂ f6

∂a
= 16k

9
ci j

J (6, 5) = ∂ f6

∂b
= 16

9k
ci j

J (6, 6) = ∂ f6

∂c
= 16k

9
ai j + 16

9k
bi j + 1

3

(
l j (αl − αr)+ hi (αb − αt)

)

References

1. Boué, M., Dupuis, P.: Markov chain approximations for deterministic control problems with affine dynam-
ics and quadratic cost in the control. SIAM J. Numer. Anal. 36, 667–695 (1999)

2. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton–
Jacobi equations. J. Comput. Phys. 223, 398–415 (2007)

3. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc.
277, 1–42 (1983)

4. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)
5. Fomel, S., Luo, S., Zhao, H.: Fast sweeping method for the factored eikonal equation. J. Comput. Phys.

228, 6440–6455 (2009)
6. Helmsen, J., Puckett, E., Colella, P., Dorr, M.: Two new methods for simulating photolithography devel-

opment in 3D. Proc. SPIE 2726, 253–261 (1996)
7. Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton–Jacobi equations.

SIAM J. Sci. Comput. 20, 666–690 (1999)
8. Huang, L., Shu, C.-W., Zhang, M.: Numerical boundary conditions for the fast sweeping high order

WENO methods for solving the Eikonal equation. J. Comput. Math. 26, 336–346 (2008)
9. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput.

21, 2126–2143 (2000)
10. Kao, C.Y., Osher, S., Qian, J.: Lax–Friedrichs sweeping schemes for static Hamilton–Jacobi equations.

J. Comput. Phys. 196, 367–391 (2004)
11. Kao, C.Y., Osher, S., Qian, J.: Legendre-transform-based fast sweeping methods for static Hamilton–

Jacobi equations on triangulated meshes. J. Comput. Phys. 227, 10209–10225 (2008)
12. Li, F., Shu, C.-W., Zhang, Y.-T., Zhao, H.-K.: A second order discontinuous Galerkin fast sweeping

method for Eikonal equations. J. Comput. Phys. 227, 8191–8208 (2008)

123

J Sci Comput

13. Qian, J., Zhang, Y.-T., Zhao, H.-K.: Fast sweeping methods for Eikonal equations on triangular meshes.
SIAM J. Numer. Anal. 45, 83–107 (2007)

14. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton–Jacobi equations.
J. Sci. Comput. 31, 237–271 (2007)

15. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29,
867–884 (1992)

16. Serna, S., Qian, J.: A stopping criterion for higher-order sweeping schemes for static Hamilton–Jacobi
equations. J. Comput. Math. 28, 552–568 (2010)

17. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad.
Sci. USA 93, 1591–1595 (1996)

18. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations. Proc. Natl.
Acad. Sci. USA 98, 11069–11074 (2001)

19. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: theory
and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003)

20. Tan, S., Shu, C.-W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation
laws. J. Comput. Phys. 229, 8144–8166 (2010)

21. Tsai, Y.-H., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton–Jacobi
equations. SIAM J. Numer. Anal. 41, 673–694 (2003)

22. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40,
1528–1538 (1995)

23. Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fifth order fast sweeping WENO scheme for static
Hamilton–Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010)

24. Zhang, Y.-T., Chen, S., Li, F., Zhao, H., Shu, C.-W.: Uniformly accurate discontinuous Galerkin fast
sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33, 1873–1896 (2011)

25. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton–Jacobi equations on triangular
meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

26. Zhang, Y.-T., Zhao, H.-K., Chen, S.: Fixed-point iterative sweeping methods for static Hamilton–Jacobi
equations. Methods Appl. Anal. 13, 299–320 (2006)

27. Zhang, Y.-T., Zhao, H.-K., Qian, J.: High order fast sweeping methods for static Hamilton–Jacobi equa-
tions. J. Sci. Comput. 29, 25–56 (2006)

28. Zhao, H.-K.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)
29. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from

unorganized points using variational level set method. Comput. Vis. Image Underst. 80, 295–319 (2000)

123

	A Third Order Fast Sweeping Method with Linear Computational Complexity for Eikonal Equations
	Abstract
	1 Introduction
	2 A Third Order DG Fast Sweeping Method
	2.1 Initial Causality Determination
	2.2 The Local Solver
	2.2.1 Calculations of Local Causality Constants
	2.2.2 The Local Nonlinear System
	2.2.3 Update of Causality Arrays
	2.2.4 Initialization of the DG Local Solver and Boundary Conditions

	2.3 Algorithm Summary

	3 Numerical Examples
	4 Conclusions
	Acknowledgments
	Appendix: Detailed Formulae of the 6 times6 Jacobian Matrix in Solving the Local Nonlinear System
	References

