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1 Introduction

The long run risk model of Bansal and Yaron (BY 2004) and the external habit model of

Campbell and Cochrane (CC 1999) were developed to explain the statistical properties of

stock returns. Bansal, Gallant, and Tauchen (2007, Table 3) are able to match key observed

unconditional moments such as the equity premium for both models using quadratic approx-

imations of the discrete time version of these models.1 Subsequently, the debate over which

model best represents the stylized facts of stock returns has centered on time varying proper-

ties of consumption growth and stock returns, such as whether the price-dividend ratio helps

to predict consumption growth or stock returns.2

Here, we argue that both models require higher order polynomial approximations to accu-

rately represent the solution to these models given the observed variation in consumption or

dividend growth. In addition, the high order polynomial approximations influence the time

varying properties of stock returns. Chen, Cosimano and Himonas (CCH 2009) proved that

the price-dividend function for the continuous time version of the CC model is an analytic

function of CC’s state variable – the surplus consumption ratio. As a result, the price div-

idend function in the CC model is quickly and accurately computed by a high order Taylor

polynomial approximation. This approximation is displayed in Figure 13 from CCH 2009.3

The price-dividend function is used to find the expected return on stocks, solid line in Figure

14, and its standard deviation, the dotted line in Figure 14. Both, the expected return on

stocks and its standard deviation decline as the surplus consumption ratio falls, since the

price-dividend function is a concave function of the surplus consumption ratio. The concav-

1We show in CCH (2008a) that the discrete time model of CC does not have a solution in the space
of price-dividend functions which have a bounded growth rate. However, for the parameters estimated by
Bansal, Gallant and Tauchen (2007) the CC model does have such a solution. The main reason is that their
estimates imply a short term interest rate of about 2%, while CC use a 1% rate of return. We will see below
that the short term interest rate in the long run risk model also needs to be higher.

2See the debate between Beeler and Campbell (2009), and Bansal, Kiku, and Yaron (2009). Both papers
use low order polynomial approximations to represent the solution to the discrete time version of these models.

3The parameter values are those chosen by CC in their original paper, Campbell and Cochrane (1999),
rather than the parameters estimated by Bansal, Gallant, and Tauchen (2007). We do not know which param-
eters best represent the data since Bansal et al. base the choice of parameters on a quadratic approximation.
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ity (down) of the price dividend function helps one to explain why the CC model predicts

lower returns on stocks in the future when the current price-dividend ratio is high. Higher

consumption growth leads to a persistent increase in the surplus consumption ratio. Further-

more, this increase in the surplus consumption ratio leads to a higher price-dividend ratio

which persist for a long period of time. At the same time the expected return on stocks

and its standard deviation are low so that the future stock returns will be lower, as long as

the high surplus consumption ratio persists. Thus, the high order polynomial approximation

is necessary to accurately represent the solution to the CC model given the fluctuation in

consumption growth observed in the data. In addition, this approximation is necessary to

capture the time varying properties of stock returns in that a high current price-dividend

ratio helps to predict lower stock returns in the future.

BY argue that consumption and dividend growth are bombarded by shocks which persist

for a long period of time.4 As a result, the uncertainty in the common long term growth vari-

able has a significant impact on the pricing of various financial assets. Subsequently, Bansal,

Dittmar and Lundblad (2005) investigated the impact of this long run risk on the cross-section

of one-period stock returns, while Hansen, Heaton, and Li (2008) examine its implications for

pricing long-term cash flow risk. These authors demonstrate the importance of Epstein and

Zin’s (1989) recursive utility for the representative investor, so that the investor’s attitude

toward risk and intertemporal substitution of consumption may be separated. These authors

use lower order polynomial approximations (linear or quadratic) to represent the solution to

the long run risk model. In our work here we show that higher order approximations are

needed so as to accurately compute the solution to this model. In fact, this is one of the main

contributions of this paper.5

4For the BY parameters the half life of a shock to the long run risk variable is 38 months.
5The discrete time BY model also requires a high order polynomial approximation, since the integral

equation is more complicated than the Mehra-Prescott (1985,2003) model (see CCH (2008c)). Calin, et al.
(2005) and CCH (2008b) showed that the Mehra-Prescott model requires a ninth order Taylor polynomial
approximation to accurately represent the solution. Continuous time is used rather than discrete time since
the computer program is faster. The increase in spread results from the recursive procedure to solve for the
coefficients of the approximation in continuous time as opposed to the simultaneous equation system which
has to be solved to find the coefficients in discrete time.
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High order polynomial approximation influence the choice of the parameters one would

use in the long run risk model. The solution to the long run risk model in Figure 9 is convex

(concave up) in the long run risk variable when we use the parameters advocated by BY in

their original article in 2004. This price-dividend function does not capture some of the time

varying properties of stock returns. The convexity of the price-dividend function yields an

increasing expected return on stocks, the solid line in Figure 16 and its standard deviation,

the dotted line in Figure 16, so that both will be higher when the long run risk variable is

high. In this case a higher consumption growth leads to a persistent increase in the long run

risk variable so that the price-dividend ratio is high for a long period of time. At the same

time the expected return on stocks and its standard deviation are higher. Consequently, the

higher price-dividend ratio predicts that stock returns will be higher in the future which is

inconsistent with the time varying properties of stock returns. As a result, the parameters,

which will deliver the appropriate time varying properties of stock returns, are definitely

different than those chosen by Bansal and Yaron using a low order polynomial approximation

of their model. Thus, having a procedure that can quickly and accurately solve the long run

risk and the external habit model of asset prices, will inform the debate about the ability of

stock return data to discriminate between these models.

A continuous time version of BY’s model of consumption and dividend growth, which

was updated by Bansal, Kiku, and Yaron (BKY 2007), is used to solve the long run risk

model.6 To capture the empirical evidence of BY that the volatility of consumption growth is

negatively related to the price-dividend ratio, it is assumed that the variance of consumption

growth is a negatively sloped logistic function of the long run risk variable. This property

follows from the equilibrium price-dividend function being positively related to the long run

risk variable. The parameters of this variance function are chosen such that the slope of a

parametric plot of the standard deviation of consumption growth against the price-dividend

ratio matches this empirical evidence from BY (see their Table III).

6These parameter’s are also used in Bansal, Kiku, and Yaron (BKY 2009). Beeler and Campbell (2009)
use these parameters in their BKY case.
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In continuous time the investor’s recursive utility is the solution of a backward stochastic

differential equation which was developed by Duffie and Epstein (1992a, 1992b), and Duffie

and Lions (1992). All the long-run risk models use the Kreps-Porteus (1978) functional form

for the aggregator of future preferences in the recursive utility model. Following these works

the lifetime utility of the investor subject to the stochastic behavior of consumption and

dividend growth is the solution to a second order nonlinear ordinary differential equation

(ODE). The analytic method developed in CCH (2009) is also used to demonstrate that this

nonlinear ODE has an unique analytic solution so that the lifetime utility of the investor is

given by a power series in the long run risk variable within some interval of convergence.7 The

method in CCH (2009) to identify the radius of convergence for the power series representation

of this lifetime utility function cannot be used here since the ODE is nonlinear. However,

one can find a dominant power series with a known radius of convergence, which bounds

the power series of the lifetime utility function. As a result, an estimate of the relative

error between the polynomial approximation of the lifetime utility and its true solution is

determined. For the parameter values in BKY this relative error is less than 0.09% of the

investor’s lifetime utility. This estimate holds as long as the long run risk variable is bounded

by the radius of convergence, which is 7 times its standard deviations, when a 100th order

Taylor polynomial approximation is used. In addition, a comparison between a 90th and 100th

order Taylor polynomial yields a relative error of less than one in a 25 million within the region

of convergence. Also a 4th order Taylor polynomial approximation can yield an relative error

as high as 55%. Thus, a higher order Taylor polynomial is necessary to adequately represent

the solution to BY model over the wide range of the long run risk variable which is implied

by consumption data.

Duffie and Epstein (1992b) show how the lifetime utility of a representative agent can be

used to determine the state-pricing process, so that the price of any financial asset can be

7Duffie and Lions (1992) develop conditions to assure there is a unique solution to this equation for various
values of the parameters of the aggregator function. Fisher and Gilles (1998) rely on the Cauchy-Kovalevksy
theorem to prove analyticity of the solution, but they do not identify the radius of convergence or error in
the solution.
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determined once the stochastic process for the payoff from the security is known. This result

allows one to derive the linear ODE that yields the equilibrium price-dividend function of the

long run risk variable for the continuous time version of the BY model. As in CCH (2009)

this ODE is formulated as an initial value problem which determines the unique analytic

price-dividend function that matches the price-dividend ratio, the expected return on stocks,

and the volatility of the equity premium at the stationary point of the long run risk variable.

However, the risk free interest rate is about 2% too high. Following CCH (2009) the radius of

convergence for the price-dividend function is at least the smallest radius of convergence of the

coefficients and the forcing term of the ODE for the price-dividend function. These coefficients

and forcing term are dependent on the lifetime utility function such that the smallest radius

of convergence is equal to one third the radius of convergence of the lifetime utility function.

Consequently, the error analysis for the price-dividend function is not as precise as that of the

lifetime utility. Examination of the numerical solution to the price-dividend function shows

that the difference between a 90th and 100th order Taylor polynomial approximation of the

price-dividend function is less than one in 3 million for the long run risk variable within the

interval of convergence of the lifetime utility function.

As pointed out in CCH (2009), the analytic solutions to the ODEs for the lifetime utility

and price-dividend functions are unique when the initial conditions for the ODEs are given.

It is shown that the first initial condition for the lifetime utility and price-dividend functions

can be set to be consistent with the Feynman-Kac formula to each function at the risk

neutral stationary mean of the long run risk variable. It is also shown that the elasticity of

the lifetime utility and price-dividend functions can be related to the instantaneous expected

equity premium and its standard deviation. Thus, the second initial conditions can be set such

that the expected equity premium and its standard deviation are equal to financial market

data at the stationary mean of the long run risk variable. Finally, the risk free interest rate

at the stationary mean of the long run risk variable can be used to set the discount factor

for the representative individual or the price-dividend at the risk neutral stationary mean of

the long run risk variable. This trade-off between setting the price-dividend or the discount
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factor means that the risk free interest rate is too high by about 2% when one matches the

historic average price-dividend ratio. Thus, the risk free interest puzzle of Weil (1989) is still

present in the long run risk model but it is not as severe as in the Mehra and Prescott (1985,

2003) model of stock returns.

The analytic solution to the BY model is compared with the solution of the CC model from

CCH (2009). The main difference is that the price-dividend ratio is convex in the state (long

run risk) variable in the BY model using the BKY parameters, while the price-dividend ratio

is concave in the state variable (surplus consumption ratio) in the CC model using CC (1999)

parameters. Both state variables are designed to capture the cyclical and long term trends

in the economy, so that an expansion occurs when the state variable is high. In addition,

the increase in the state variable is designed to persist for a period of time. Consequently,

an increase in the state variable has predictable effects on stock returns. In particular, an

increase in the state variable leads to a higher price-dividend ratio, but eventually the state

variable reverts back towards its mean, so that the price-dividend ratio is predicted to fall

in the future. The implications of this mechanism for the time varying properties of stock

returns is dependent on the concavity (convexity) of the price-dividend function. When the

price-dividend ratio is concave (convex) in the state variable, the expected equity premium

and its standard deviation will be lower (higher) in an expansion. As a result the time series

properties of stock returns are fundamentally different between the BY and CC models.

Thus, these higher order polynomial approximations will significantly influence the choice of

parameters such that each model best represents the statistical properties of stock returns.

Finally, the long term risk properties of the BY model are examined and compared with

the analysis of Hansen and Scheinkman (2009). Hansen and Scheinkman develop an operator

method which identifies the long term rate of return for a financial asset, which they call the

asymptotic rate of return, rather than the typical focus on short term moments. They iden-

tify the asymptotic rate of return by solving a particular eigenvalue problem for a differential

equation. The solution to this eigenvalue problem must be consistent with the risk neutral sta-

tionary distribution of the state variable. In this paper the asymptotic rate of return is found
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as a by-product of the solution to the lifetime utility function for the representative investor

and standard asset pricing formulas. The representative investor’s lifetime utility determines

the state price process, so that the Feynman-Kac probabilistic (risk neutral) solution to the

price-dividend ratio is equivalent to the solution of the ODE modeling the price-dividend

function, see Duffie (2001). This probabilistic solution determines the stochastic process for

the long run risk variable such that the risk neutral formula for the price-dividend is true. If

one examines the discount factor for the risk neutral price-dividend ratio at the stationary

mean of the risk neutral mean of the stochastic process, then one obtains the asymptotic

rate of return for the price-dividend function.8 As in Hansen, Heaton and Li (2008) this

asymptotic rate of return consists of 1.) the risk free interest rate at the stationary mean of

the long run risk variable, 2.) the mean growth rate of dividends at the same point, and 3.)

an adjustment for risk. This adjustment for risk is dependent on a.) the correlation between

dividends and the long run risk variable, b.) the elasticity of the lifetime utility with respect

to the long run risk variable, and c.) the effect of lifetime utility on the state price process.

All these terms are evaluated at the stationary mean of the long run risk variable. In addition,

this new procedure provides all the characteristics of the rate of return on equity rather than

just the asymptotic properties.

The paper is structured as follows. The next section of the paper explains how the analytic

method is used to solve the long run risk model of BY. Section 3 states and proves all the

above properties of the long run risk model. Section 4 undertakes a simulation of the long run

risk model using the analytic method. In addition, the property of the BY model using the

BKY parameters is contrasted with the CC model using the CC (1999) parameters. Finally,

we examine the long run rate of return implied by the solution to the BY model. Section 5

provides a summary of the results.

8The long run rate of return for the long term risk free asset of Cochrane (2008) is also found using this
method.
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2 Asset Pricing Model

This work is based on the BY model in which C consumption, D dividends, and x the long

run risk variable follow the stochastic processes

d(ln C) = (x + x̄) dt + σ(x) dω̃1, (1)

d(ln D) = (φx + x̄) dt + ϕdσ(x) dω̃2, (2)

dx = −κx dt + ϕeσ(x) dω̃3. (3)

Here, x̄ > 0 is the given stationary point for the consumption and dividend growth processes.

The condition on the parameter φ > 1 allows the dividend growth to be more sensitive

to the long run risk variable, x. The stationary level of the long run risk variable is zero,

while the parameter κ > 0 determines the persistence of this variable. The probability

space (Ω,F , P ) is given together with a family {Ft : t ∈ [0,∞]} of σ-algebras which is a

filtration of the standard Brownian motion dω = (dω̃1, dω̃2, dω̃3). Assume that dω̃1 = dω1,

dω̃2 = ρcd dω1 +
√

1− ρ2
cd dω2 and dω̃3 = ρxc dω1 +

√
1− ρ2

xc dω3 where dω1, dω2 and dω3

are independent Brownian motions. As a result, the parameters ρcd and ρxc determine the

instantaneous correlation between consumption growth, and dividend growth or the long run

risk variable, respectively, while ρxcρcd is the correlation between dividend growth and the long

run risk variable.9 The parameters ϕd and ϕe determine the standard deviation of dividend

growth and the long run risk variable, respectively.

BY argue that the consumption growth volatility changes over time. In particular, they

find that the price-dividend ratio predicts future consumption growth volatility, σ, out to

five years. In addition, a higher price-dividend ratio leads to lower consumption growth

volatility. Based on this evidence they model the variance of consumption growth as a first

order autoregressive process. The current work captures this empirical property by making

variance a logistic function of the long run risk variable in which the variance falls when the

9BY allow for correlation between consumption an dividends, while Wachter (2002) and Bekaert, Engstrom,
and Xing (2009) find evidence of correlation between consumption and the long run risk variable.
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long run risk variable increases

σ2(x) = σ2
0

1 + a

a + ebx
, (4)

where a and b are positive parameters. We will show that the price-dividend ratio is an

increasing function of the long run risk variable. As a result, consumption volatility falls

when the price-dividend ratio is high in response to a high realization of the long run risk

variable. In addition, the persistence of shocks to the long run risk variable means that the

long run risk variable is high for a long period of time. Thus, our model of consumption

volatility captures the empirical evidence that consumption volatility increases when the

price-dividend ratio increases.

2.1 Lifetime Utility of Investor

The lifetime utility of the representative investor, Vt, follows the backward stochastic differ-

ential equation (SDE)

dVt = −f(C, V ) dt + σV (t) dωt (5)

given the terminal condition

VT = Γ(CT ),

which is the terminal utility of the investor. The instantaneous mean is given by

f(C, V ) =
β

ρ

Cρ − [αV ]ρ/α

[αV ]ρ/α−1
.

The standard deviation for the lifetime utility σV (t) is to be determined later (see footnote

10).

To interpret the SDE (5) consider the backward stochastic differential equation from Duffie

and Epstein (1992a,b) and Duffie and Lions (1992).

dVt =

[
−f̄(Ct, Vt)− 1

2
Ā(Vt)‖σV (t)‖2

]
dt + σV (t) dωt given VT = Γ(CT ), (6)

where σV (t) dωt is the instantaneous standard deviation of lifetime utility and ‖σV (t)‖2 is the
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quadratic variation in the lifetime utility.10 Following Kreps and Porteus (1978) it is assumed

that

(1) the immediate benefit to the investor is f̄(C(t), V (t)) ≡ β
ρ

Cρ−V ρ

V ρ−1 , where ψ = 1
1−ρ

is the

investor’s intertemporal rate of substitution.

(2) the investor’s response to uncertainty is Ā(V (t)) ≡ −1−α
V

, where 1 − α measures the

investor’s aversion to risk, and

(3) VT ≡ Γ(CT ) is the investor’s utility in the terminal period T which is assumed to be

ξ
α
ρ

α
Cα

T for simplicity.

Duffie and Epstein (1992) define the integrable semimartingale for lifetime utility V as the

stochastic process when it uniquely satisfies the integral equations

V T
t = E

[∫ T

t

(
f̄(Cs, Vs) +

1

2
Ā(Vs)‖σV (s)‖2

)
ds|Ft

]
a. s., t ∈ [0, T ]. (7)

The representative investor is assumed to live forever so that following Duffie and Epstein

(1992a, 1992b) define the infinite horizon lifetime utility process Vt as the pointwise limit,

limT→∞ V T
t . Following Duffie and Lions (1992) when the lifetime utility is well defined there

is a measurable function such that

Vt = J(Ct, xt), t ≥ 0. (8)

In addition, Duffie and Epstein (1992a, 1992b) and Duffie and Lions (1992) use the change

of variable

H(C) = ϕ (J(C)) , where ϕ(z) =
zα

α
, (9)

so that the equivalent aggregator is given by

f(C, V ) =
β

ρ

Cρ − [αV ]ρ/α

[αV ]ρ/α−1
and A(V ) = 0. (10)

10This standard deviation and quadratic variation are a by-product of Ito’s lemma. When Vt = V (C, x),
then σV (t) dωt = CVCσ(x) dω̃1 + Vxϕeσ(x) dω̃3. Here, Vj refers to the partial derivative of V with re-
spect to the variable j = C, x. In this case the quadratic variation in lifetime utility is ‖σV (t)‖2 =[
(CVC)2 σ2(x) + 2CVCVxϕeσ

2(x) + V 2
x ϕ2

eσ
2(x)

]
.
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Consequently, the stochastic differential equation (6) becomes

dVt = −f(C, V ) dt + σV (t) dωt given VT = Γ(CT ). (11)

As a result, the lifetime utility function of the investor satisfies the PDE

E [dV (C, x)] = −f(C, V (C, x)) dt, (12)

where the differential of lifetime utility is found using Ito’s Lemma.

Duffie and Epstein (1992b), Campbell and Viciera (2002), and Campbell, et al. (2004)

demonstrate that the solution to this differential equation (12) is of the separable form

V (C, x) = Cαv(x), (13)

using a homogeneity property of the aggregator (10) and the linear homogeneity of the optimal

consumption decision of the investor with respect to her wealth. This results in a highly

nonlinear ordinary differential equation in v(x). Following an insight from Fisher and Gilles

(1998), Campbell and Viciera (2002), and Campbell, et al. (2004) this nonlinear differential

equation can be simplified further by using the following change of variables

v(x) =
1

α
g(x)

α
ρ .11 (14)

Using these properties of the solution and Ito’s lemma one proves that g(x) solves the nonlinear

ODE

0 = β +

[
ρx + ρx̄ + αρ

σ2(x)

2
− β

]
g(x) +

[
−κx + σ2(x)ϕeρxcα +

(
α

ρ
− 1

)
ϕ2

eσ
2(x)

2

g′(x)

g(x)

]
g′(x)

+
ϕ2

eσ
2(x)

2
g′′(x), (15)

with a given terminal condition

g(xT ) = ξ.

The details of the derivation of this ODE are provided in the appendix.

11g(c(t), ψ(t)) in Fisher and Gilles is given by Cα 1
αg(x)

α
ρ . Note they also use ϕ(z) = zα−1

α which does not
effect our solution procedure.
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2.2 The Probabilistic Form of Lifetime Utility

Following Karatzas and Shreve (1988), and Revuz and Yor (1991) as summarized by Duffie

(2001, Appendix D and E), define the differential operator associated with (15) as

Dg(x) = µg(x)g′(x) +
ϕ2

eσ
2(x)

2
g′′(x), (16)

where

µg(x) =

[
−κx + σ2(x)ϕeρxcα +

(
α

ρ
− 1

)
ϕ2

eσ
2(x)

2

g′(x)

g(x)

]
. (17)

By Girsanov’s Theorem (Duffie (2001, p.337-338)) the long run risk variable follows the

stochastic differential equation (SDE)

dx = µg(x)dt + ϕeσ(x)dω̂3, (18)

where the twisted Brownian motion is

dω̂3 = dω̃3 − µg(x) + κx

ϕeσ(x)
dt. (19)

The SDE (18) induces a new probability distribution for x in which the stationary mean of x

has been changed from x = 0 to x = xg where xg is the x such that µg(xg) = 0. Call xg the

risk neutral stationary mean of x under g(x).

The Feynman-Kac formula for (15) is given by

g(x) = lim
T→∞

Ex,g

[∫ T

t

βg
t,s(xs)βds + βg

t,T (xT )ξ

]
= βEx,g

[∫ ∞

t

βg
t,s(xs)ds

]
, (20)

where

βg
t,s(x) = exp

[
−

∫ s

t

rg (xτ ) dτ

]
= exp

[
−(β − ρx̄)(s− t) +

∫ s

t

[
ρxτ + αρ

σ2(xτ )

2

]
dτ

]
. (21)

Ex,g denotes the expectation condition on x being the solution to the SDE (18) given initial

condition xt = x. Duffie (2001) refers to g(x) as the probabilistic solution of the ODE. He also

provides conditions on µg(x), σg(x), rg(x) for a unique solution to the Cauchy problem (15)

in the Feynman-Kac form (20). These conditions deal with Lipschitz and growth properties

on these functions such that the integrals in (20) and (21) exist.
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The main problem is whether the solution g(x) exists. Since β > 0 the Monotone Con-

vergence Theorem (Folland (1984, p.49)) assures that the limit in (20) exists as long as the

transversality condition

lim
T→∞

Ex

[
βg

t,T

]
= 0 (22)

is satisfied. There are two properties of the Feyman-Kac solution which must be addressed

so as to evaluate this limit. First, what is the property of rg (x) for x ∈ R. Second, what

is the probability distribution of x induced by the SDE (18). For the first property β > ρx̄

assures that the deterministic term in (21) converges to zero as s →∞. This condition places

a restriction on the preference parameters of the representative investor, since x̄ is the long

term growth of consumption for the economy. In this case, the existence of

lim
T→∞

Ex

[
exp

[∫ T

t

[
ρxτ + αρ

σ2(xτ )

2

]
dτ

]]
(23)

is sufficient for the transversality condition (22) to hold. The main problem is that the proba-

bility distribution of x induced by the SDE (18) is unknown, since it is dependent on the risk

adjustment by the investor’s with respect to the long run risk variable,
(

α
ρ
− 1

)
ϕ2

eσ2(x)
2

g′(x)
g(x)

.

As a result, Monte Carlo methods suggested by Duffie (2001, Chapter 12) cannot be used

directly to approximate a solution. Thus, solving for the lifetime utility of the investor is

subject to a chicken and egg dilemma.

2.3 Approximating the Investor’s Lifetime Utility

Our approach to solving for the investor’s lifetime utility is to formulate the ODE (15) as an

initial value problem, IVP, where g(0) = g0 and g′(0) = g1. x0 = 0 is the stationary mean

of the SDE (3).12 The choice of g1

g0
will be related to the equity premium and its standard

deviation such that one obtains the lifetime utility of the representative investor consistent

with financial market data (see section 2.7). Given this value for g1

g0
, g0 is chosen to satisfy

12The risk neutral stationary mean of the SDE (18) cannot be used since it is not known until one knows
the solution g(x). Of course one can bootstrap on our solution, since our solution identifies accurate values
for g(x) and g’(x) at the new stationary mean of the SDE (18).
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the Feynman-Kac formula (20) at the risk neutral stationary mean, xg, for the long run risk

variable.

In the next section the analytic method of Cauchy-Kovalevsky is used to show that this

nonlinear IVP has an analytic solution with a some radius of convergence, rg > 0. An analytic

solution near the point x0 = 0 can be represented by its Taylor series, that is

g(x) =
∞∑

k=0

g(k)(x0)

k!
xk, |x| < rg. (24)

The method in CCH (2009) cannot be used to find the radius of convergence for the represen-

tative investor’s lifetime utility, since the ODE (15) is nonlinear. As a result, an alternative

method is developed for estimating the radius of convergence rg which is at least as big as

7ϕeσ0 for BKY’s parameters. In the next section, an algorithm is developed to approximate

the analytic solution with a Taylor polynomial approximation

Tg,n(x) =
n∑

k=0

gk(x− x0)
k. (25)

Here the gn are determined by a recursive rule that satisfy ODE (15). The algorithm yields a

lower bound for the radius of convergence rg of the analytic solution (24). Also this method

gives an estimate of the approximation errors

max
|x−x0|≤rg

|g(x)− Tg,n(x)| and max
|x−x0|≤νrg

|g′(x)− T ′
g,n(x)| for some ν < 1. (26)

Thus, the mathematical properties of the solution is determined for |x| < rg so that an

accurate approximation for the lifetime utility of the investor can be calculated within the

interval of convergence.

Whether or not this solution to the IVP satisfies the Feynman-Kac formula (20) for the

investor’s problem (15) needs to be checked. The first issue is that the solution to the IVP

is known for the long run risk variable, x, within the interval [−rg, rg], while the probability

distribution of x induced by the SDE (18) is defined on R. Given g(x) for |x| < rg, an
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extension on R is chosen as follows:13

g(x) =

{
g(x∗) for x ≤ x∗ = −rg ,
g(x∗) for x ≥ x∗ = rg

(27)

g′(x) is defined at every point except x∗ and x∗, however these values will not influence the

value of (20). It is straightforward then to evaluate the drift (17) and the discount rate r (xτ )

in (21) to determine whether or not the conditions (Duffie (2001, p. 345)) for the uniqueness

of the Feynman-Kac solution (20) are satisfied. The Lipschitz and growth conditions are

satisfied for the volatility of consumption growth (4) since it was chosen to be bounded on R.

2.4 State Price Process

Given the properties of the lifetime utility of the representative investor the state price process

for the continuous time BY model can be found using Duffie and Epstein (1992b). Duffie and

Epstein (1992b) demonstrate that the state price process for a representative investor satisfies

the SDE
dΛ

Λ
= fV (C, V ) dt +

DfC(C, V )

fC(C, V )
, (28)

where DfC(C, V ) is determined by Ito’s Lemma. The state price vector at a given time t is

found by integrating (28)

Λt(Ct, Vt) = exp

[∫ t

0

fV (Cs, Vs) ds

]
fC(Ct, Vt)

Λ0

fC(C0, V0)
, (29)

where it is assumed that fC(C0, V0) = Λ0.
14 As a result, risk premium for financial assets

vary because of

(1) the marginal utility of current consumption fC(C, V ) = βCρ−1

(αV )ρ/α−1 and

(2) the rate at which the future is discounted fV (C, V ) = −β
ρ

[
(ρ−α)Cρ

(αV )ρ/α + α
]
.

13Such an extension of the analytic solution is implicit in the approximate solution of Benzoni, Collin-
Dufresne, and Goldstein (2005), since the Campbell and Shiller (1988) approach uses a first order Taylor
polynomial without knowing the accuracy of such an approximation.

14Also see Duffie, Schroder, Skiadas (1997), Duffie and Skiadas (1994) for a discussion of using the state
price process to value securties in the stochastic differential utility framwork.
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When α = ρ the second effect disappears, so that in this constant relative risk averse case

there is less fluctuation in the risk premium for financial assets.

By using the Kreps-Porteus functional form (10), the separation of variables (13), and

the change of variable (14), the application of Ito’s Lemma using the stochastic processes for

consumption growth (1) and the long run risk variable (3) yields the stochastic process for

the state price process.

dΛ

Λ
= µΛ(x) dt + σ(x)(α− 1) dω̃1 +

σ(x)ϕe(α− ρ)

ρ

g′(x)

g(x)
dω̃3, (30)

where

µΛ(x) =−Rb(x) = (ρ− 1)x + (ρ− 1)x̄− β +
σ2(x)

2
(αρ− 2α + 1)

+ ρxcϕeσ
2(x)

ρ− α

ρ

g′(x)

g(x)
+

ϕ2
eσ

2(x)

2

ρ− α

ρ

(
g′(x)

g(x)

)2

. (31)

Here, Rb(x) is the return on the risk free bond, since there would be no exposure to the

fundamental shocks to consumption growth, σ(x)dω̃1 or long term risk variable, σ(x)ϕedω̃3 .

The pricing of other financial assets is dictated by the correlation of the asset with fluctuations

in consumption growth σ(x)(α− 1) which is the risk exposure found in the constant relative

risk aversion case, i.e., α = ρ. The exposure to the standard deviation of the long run

risk variable (α−ρ)
ρ

g′
g

is only relevant under recursive utility in which α 6= ρ.15 This new

exposure to risk is the product of the elasticity of lifetime utility with respect to the long run

risk variable, 1
V (C,x)

∂V
∂x

= α
ρ

g′(x)
g(x)

, and the effect of lifetime utility on the state price process

∂Λ
∂V

= α−ρ
α

. Thus, the pricing of risk is dependent on knowing an accurate solution to the

representative investor’s lifetime utility Cαg(x)
α
ρ .

2.5 Pricing Equity under Stochastic Differential Utility and Long
Run Risk

Duffie and Epstein (1992b) show that an asset promising dividends D has a price given by

P (t) = Et

[∫ ∞

t

Λs

Λt

D(s) ds

]
for t ≥ 0. (32)

15See Hansen, Heaton and Li (2008) for a further discussion of this point.
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In the long run risk model the dividends for a share of stock following (2) is given by

D(s) = D(t) exp

{∫ s

t

[
φxτ + x̄ +

ϕ2
dσ

2(xτ )

2

]
dτ + ϕd

∫ s

t

σ(xτ ) dω̃2(τ)

}
, (33)

so that an individual stock or portfolio of stocks as in Bansal, Dittmar, Lundblad (2005),

Bansal, Dittmar, Kiku (2007), Lettau and Wachter (2007), and Hansen, Heaton and Li (2008)

can be captured by variation in the cash flow relative to the long run risk variable, φ, or

the volatility of dividends ϕd. One can also account for various models of cointegration

between consumption and dividend by restricting these parameters and placing an additional

parameter on the stationary mean of dividend growth φ1x̄.

Duffie and Epstein (1992b) demonstrate the relation between the stock price process (32)

and the differential equation

0 =
D

P
dt + Et

(
dΛ

Λ
+

dP

P
+

dΛ

Λ

dP

P

)
=

(
D

P
−Rb

)
dt + Et

(
dP

P
+

dΛ

Λ

dP

P

)
. (34)

In the appendix this relation is used to derive the ODE for the price-dividend ratio p ≡ P
D

which is given by

1 +

{
φx + x̄ +

σ2(x)

2
ϕ2

d + σ2(x)ϕdρcd

[
α− 1 +

ϕeρxc(α− ρ)

ρ

g′(x)

g(x)

]
−Rb(x)

}
p(x)

+

{
σ2(x)ϕeρxc(α− 1 + ϕdρcd)− κx +

(
α

ρ
− 1

)
ϕ2

eσ
2(x)

2

g′(x)

g(x)

}
p′(x)

+
σ2(x)

2
ϕ2

ep
′′(x) = 0 (35)

subject to p(x(T )) = pT .

2.6 The Probabilistic Form of the Price-Dividend Ratio

The probabilistic solution to the price-dividend function can also be found as in the case of

the lifetime utility function. The differential operator for the price-dividend ratio is

Dp(x) = µp(x)p′(x) +
ϕ2

eσ
2(x)

2
p′′(x), (36)
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where

µp(x) =

[
−κx + σ2(x)ϕeρxc(α− 1 + ϕdρcd) +

(
α

ρ
− 1

)
ϕ2

eσ
2(x)

2

g′(x)

g(x)

]

= µg(x) + σ2(x)ϕeρxc(ϕdρcd − 1). (37)

The extra effect on the instantaneous mean of the twisted long run risk variable, σ2(x)ϕeρxc(ϕdρcd−
1), comes from the correlation between dividend growth and the price-dividend ratio, and the

correlation between consumption growth and the state price process.

The long run risk variable now follows the stochastic differential equation (SDE)

dx = µp(x)dt + ϕeσ(x)dω̂3, (38)

where the twisted Brownian motion is

dω̂3 = dω̃3 − µp(x) + κx

ϕeσ(x)
dt. (39)

The Feynman-Kac solution to (35) is given by

p(x) = lim
T→∞

Ex,p

[∫ T

t

βp
t,sds + βp

t,T pT

]
= Ex,p

[∫ ∞

t

βp
t,sds

]
, (40)

where

βp
t,s = exp

[
−

∫ s

t

rp (xτ ) dτ

]

= exp

{∫ s

t

[
φxτ + x̄ +

ϕ2
dσ

2(xτ )

2
−Rb(xτ ) + σ2(xτ )ϕdρcd

(
α− 1 +

ϕeρxc(α− ρ)

ρ

g′(xτ )

g(xτ )

)]
dτ

}
.

(41)

Ex,p denotes the expectation condition on x being the solution to the SDE (38) given initial

condition xt.

The price-dividend ratio (40) has two components to it. The first is the traditional Gordon

growth model which bases the price-dividend ratio on the future growth rate of dividends

φxτ + x̄ +
ϕ2

dσ2(xτ )

2
relative to the future risk free interest rate Rb(xτ ). The second component

is the future discount for risk σ2(xτ )ϕdρcd

[
α− 1 + ϕeρxc(α−ρ)

ρ
g′(xτ )
g(xτ )

]
which is the correlation

between dividend growth and the lifetime utility of the investor.
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Given the solution to the lifetime utility function g(x) one could use the Monte Carlo

method suggested by Duffie (2001) to approximate the price-dividend function (40). However,

the accuracy of the solution is not known. Instead the approach of CCH (2009) is used

in the next section to approximate the price-dividend function with a Taylor polynomial

approximation for a given radius of convergence, rp. In this case (35) is viewed as an IVP

whose solution is dependent on p(0) = p0 and p′(0) = p1. Following Theorem 3.1 in CCH

(2009) the ODE (35) has a unique analytic solution p(x) near the point x0 = 0 with with

radius of convergence, rp, equal to at least the smallest radius of convergence of the coefficients

and the forcing term. In this particular case the radius of convergence of the coefficients and

forcing terms is rg

3
. Consequently, the radius of convergence of the lifetime utility determines

where the price-dividend function is analytic. Thus, we can represent the solution to (35) by

a power series

p(x) =
∞∑

k=0

pkx
k for |x| < rp, (42)

in which the coefficients, pk, are determined by a recursive rule following the ODE (35).

To complete the numerical solution to the long run risk model with stochastic differential

utility the analytic solution is represented as a Taylor polynomial approximation

pn(x) =
n∑

k=0

pkx
k for |x| < νrp with 0 < ν < 1. (43)

Finally, Corollary 3.2 of CCH (2009) is used to determine the error in the Taylor series

remainder.

Rn(x) = p(x)− pn(x) =
∞∑

k=n+1

pkx
k. (44)

2.7 Initial Condition

The last step is to develop initial conditions. Here the initial conditions are related to financial

market data and the Feynman-Kac equations for the lifetime utility (20) and the price-

dividend ratio (40). Following the same procedure as in CCH (2009) the SDE for the equity
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premium is given by

d
[
Re(x)−Rb(x)

]
=

[
Et[R

e(x)]−Rb(x)
]
dt + ϕdσ(x)dω̃2 + ϕeσ(x)

p′(x)

p(x)
dω̃3. (45)

The instantaneous expected equity premium is given by

Et[R
e(x)]−Rb(x) =− Et

[
dΛdp

Λp
+

dΛdD

ΛD

]
(46)

=σ2(x)

[
ϕeρxc(1− α) +

ϕ2
e(ρ− α)

ρ

g′(x)

g(x)

]
p′(x)

p(x)

+ σ2(x)ϕdρcd

[
1− α +

ϕeρxc(ρ− α)

ρ

g′(x)

g(x)

]
.

The instantaneous variance for the equity premium is

Σ2(x) = σ2(x)ϕ2
d + 2σ2(x)ϕeϕdρxcρcd

p′(x)

p(x)
+ σ2(x)ϕ2

e

[
p′(x)

p(x)

]2

. (47)

The equity premium and its volatility are functions of the elasticities of the lifetime utility

g′(x)
g(x)

and the price-dividend ratio p′(x)
p(x)

. To implement the analytic procedure one needs the

value of these elasticities at the stationary mean of the long run risk variable x = 0. Following

CCH (2009) historic observations can be used to determine estimates of Et[R
e(0)] − Rb(0)

and Σ2(0) at the stationary mean x = 0. First, the volatility of stock returns Σ2(0) is used

to set the elasticity of the price-dividend ratio at the stationary mean for the long run risk

variable using (47).

p′(0)

p(0)
=
−σ0ϕdρxcρcd +

√
σ2

0ϕ
2
dρ

2
xcρ

2
cd + Σ2

0 − σ2
0ϕ

2
d

σ0ϕe

. (48)

Given the elasticity of the price-dividend ratio at this stationary mean, the elasticity of the

lifetime utility can be found from (46).

g′(0)

g(0)
=

ρ{Rb(0)− Et[R
e(0)]} − σ2

0ρ(α− 1)(ϕeρxc
p′(0)
p(0)

+ ϕdρcd)

σ2
0ϕe(α− ρ)(ϕe

p′(0)
p(0)

+ ϕdρxcρcd)
. (49)

The next initial condition is a value for the lifetime utility function g(0) = g0 at the

stationary mean x = 0. This is accomplished by using the Feynman-Kac solution for the
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lifetime utility (20) to estimate g(0). First, the risk neutral stationary mean, xg, of the

stochastic process (18) is found such that µg(xg) = 0. This takes two steps in the computer

algorithm:

(1) Use the analytic method to approximate g(x) with (25) given g(0) from (20) when

x = 0.16 With this solution for lifetime utility the instantaneous mean of the risk

neutral probability, xg is given by the zero of (17), i.e., µ(x) = 0.

(2) Approximate (20) at the risk neutral stationary point xg so that g(0) can be calculated

using the Feynman-Kac equation (20). Set g0 = g(0). Further iterations on this algo-

rithm did not change g0, since the elasticity of the lifetime utility (49), and the mean

of the risk neutral probability (17) are set independent of g0.

The final initial condition is the price-dividend function p(x) at the stationary point x = 0.

Again the Feynman-Kac formula (40) is used to estimate p(0). In this case only one step is

necessary, since the elasticity of lifetime utility (48) is already known. As a result, the risk

neutral stationary mean, xp, for the price-dividend function can be found as the zero of

the instantaneous mean for the risk neutral distribution for the price-dividend function (37),

i.e., µp(xp) = 0. The initial value for the price-dividend function p(0) = p0 is given by

approximating (40) at the risk neutral stationary point xp. Thus, all the initial conditions are

available to apply the analytic method to solve the representative investor’s lifetime utility

and the price-dividend function.

16To illustrate the argument (21) is evaluated at the specific point so that g(0) = 1.432968906 can be
calculated at this specific point. The same approximation is made for the price-dividend ratio. A more
accurate value for g(0) can be found by using the Monte Carlo method suggested by Duffie (2001). If T is
broken up into 100, 000 intervals and the integral over x in (20) is approximated by the trapezoidal rule than
g(0) = 1.433835331. The Matlab program takes 437 seconds. This value does not change out to 16 digits
when 70, 000 intervals were used. Only a few numbers in this paper change at the fourth digit so that this
approximation does not material effect the results.
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3 Results

In this section, all the claims made in the outline are proved starting with the analyticity

of the lifetime utility function. For this it is worth recalling one of the most general, and

powerful results in PDE theory.

Theorem 3.1. [Cauchy-Kovalevsky] The IVP for the following mth order nonlinear partial

differential equation in Rn+1

∂m
t u =F

(
x, t, {∂α

x ∂j
t u}|α|+j≤m, j<m

)
(50)

∂j
t u(x, 0) =uj(x), 0 ≤ j ≤ m− 1, x ∈ Rn, t ∈ R, (51)

has a unique solution in the space of analytic functions near zero in Rn+1, if all uj are analytic

near zero in Rn, and F is analytic near (0, 0, {pα
xuj(0)}|α|+j≤m, j<m).

Here ∂α
x = ∂α1

x1
∂α2

x2
· · · ∂αn

xn
is the multi-index with α = (α1, α2, · · · , αn) ∈ Nn.

The idea of the proof of this theorem is very simple. First, one can determine the coeffi-

cients of a formal power series solution

u(x, t) =
∑

α∈Nn
0 , j≥0

cα,jx
αtj, (52)

uniquely by deriving the recurrence relation for the coefficients. Then, one finds a simpler

“dominant” IVP which can be solved explicitly to show that its solution is analytic in a

neighborhood of zero. This implies that the formal power series solution to the given IVP is

also analytic in the same neighborhood of zero. The size of this neighborhood (t1, x1, · · · , xn)

is difficult to determine and has to be estimated for the particular case under consideration.

In the Appendix this idea is implemented in the special case of second-order linear partial

differential equations in R2 with analytic coefficient. Part of the motivation for this choice is

that such equations arise in asset pricing theory. They are derived by using Ito’s Lemma as

in (15) and (35).
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3.1 Solving the Investor’s Lifetime Utility

The ODE for the lifetime utility of the representative investor (15) together with the initial

conditions g(0) = g0 and g′(0) = g1, given by (49), is a special case of the IVP (50), so

that it has a unique solution in the space of analytic functions near zero in R. The main

problem is showing that its radius of convergence is large enough such that g(x) is analytic

for reasonable values for the long run risk variable, x. In this subsection a recursive rule is

found for determining the coefficients gk. This rule is then used to find a dominant power

series whose radius of convergence can be estimated from the data. Thus, all the ingredients

necessary to find an accurate Taylor polynomial approximation (25) are established for the

investor’s lifetime utility.

One problem with regards to the ODE (15) is the small value of the variance of the long

run risk variable φeσ
2(x) which multiplies the second derivative of the lifetime utility function,

g′′(x). As a result, the recursive rule would involve division by a small number which would

reduce the accuracy of the approximation. To avoid this problem one introduces the change

of variable

x = εϕeσ0s, where ε > 1.

Making this change of variable and substituting the logistic formula (4) for the variance of

consumption growth,

σ2(x) = σ2
0

1 + a

a + ebx
,

yields

g(s)g′′(s) =A0(g
′(s))2 + (B2se

Bs + B1s + B0)g(s)g′(s)+

(C3se
Bs + C2e

Bs + C1s + C0)g
2(s) + (D1e

Bs + D0)g(s)

g(0) = g0 and g′(0) = εσ0ϕeg1. (53)
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The constants in (53) are as follows:

A0 = 1− α/ρ B0 = −2εσ0ρxcα B1 = 2ε2κa/(1 + a)
B2 = 2ε2κ/(1 + a) C0 = 2ε2(β − ρx̄)a/(1 + a)− ε2σ2

0αρ C1 = −2ε3σ0ϕeρa/(1 + a)
C2 = 2ε2(β − ρx̄)/(1 + a) C3 = −2ε3σ0ϕeρ/(1 + a) D0 = −2ε2βa/(1 + a)

D1 = −2ε2β/(1 + a) B = bεσ0ϕe

(54)

Following the procedures laid out in CCH (2009) the power series representation of the

lifetime utility (24) and its derivatives are substituted into (53). After equating the coefficients

of the terms of degree n one finds the following recursive rule

g0g2 = A0g
2
1 + B0g0g1 + (C2 + C0)g

2
0 + (D1 + D0)g0, (55)

and for all n ≥ 1.

(n + 1)(n + 2)g0gn+2

= −
n−1∑

k=0

(k + 1)(k + 2)gk+2gn−k + A0

n∑

k=0

(k + 1)(n− k + 1)gk+1gn−k+1

+ B2

n−1∑

k=0

k∑
r=0

(r + 1)gr+1gk−r
Bn−k−1

(n− k − 1)!
+ B1

n−1∑

k=0

(k + 1)gk+1gn−k−1

+ B0

n∑

k=0

(k + 1)gk+1gn−k + C3

n−1∑

k=0

k∑
r=0

grgk−r
Bn−k−1

(n− k − 1)!
+ C2

n∑

k=0

k∑
r=0

grgk−r
Bn−k

(n− k)!

+ C1

n−1∑

k=0

gkgn−k−1 + C0

n∑

k=0

gkgn−k + D1

n∑

k=0

gk
Bn−k

(n− k)!
+ D0gn (56)

To develop a dominant power series define g̃n = n2L(gn/g0) for all integers n ≥ 1, where

24



L ≥ 1 is a constant to be determined later. For all n ≥ 3,

g̃n+2 =
n + 2

n + 1

{
− 1

L

n−1∑

k=0

(k + 1)g̃k+2g̃n−k

(k + 2)(n− k)2
+

A0

L

n∑

k=0

g̃k+1g̃n−k+1

(k + 1)(n− k + 1)

+
B2

L

n−1∑

k=1

k−1∑
r=0

g̃r+1g̃k−r

(r + 1)(k − r)2

Bn−k−1

(n− k − 1)!
+

B1

L

n−2∑

k=0

g̃k+1g̃n−k−1

(k + 1)(n− k − 1)2

+
B0

L

n−1∑

k=0

g̃k+1g̃n−k

(k + 1)(n− k)2
+

C3

L

n−1∑

k=2

k−1∑
r=1

g̃rg̃k−r

r2(k − r)2

Bn−k−1

(n− k − 1)!

+
C2

L

n∑

k=2

k−1∑
r=1

g̃rg̃k−r

r2(k − r)2

Bn−k

(n− k)!
+

C1

L

n−2∑

k=1

g̃kg̃n−k−1

k2(n− k − 1)2
+

C0

L

n−1∑

k=1

g̃kg̃n−k

k2(n− k)2

+
D1

g0

n∑

k=1

g̃k

k2

Bn−k

(n− k)!
+

D0

g0

g̃n

n2
+ B2

n−1∑

k=0

g̃k+1

k + 1

Bn−k−1

(n− k − 1)!
+ B1

g̃n

n
+ B0

g̃n+1

n + 1

+ C3L
Bn−1

(n− 1)!
+ 2C3

n−1∑

k=1

g̃k

k2

Bn−k−1

(n− k − 1)!
+ C2L

Bn

n!
+ 2C2

n∑

k=1

g̃k

k2

Bn−k

(n− k)!

+2C1
g̃n−1

(n− 1)2
+ 2C0

g̃n

n2
+

D1L

g0

Bn

n!

}
. (57)

There exist a real number L ≥ 1 and an integer N ≥ 3 such that for all n ≥ N ,

n + 2

n + 1

{
1

L

n−1∑

k=0

k + 1

(k + 2)(n− k)2
+
|A0|
L

n∑

k=0

1

(k + 1)(n− k + 1)

+
|B2|
L

n−1∑

k=1

k−1∑
r=0

1

(r + 1)(k − r)2

|B|n−k−1

(n− k − 1)!
+
|B1|
L

n−2∑

k=0

1

(k + 1)(n− k − 1)2

+
|B0|
L

n−1∑

k=0

1

(k + 1)(n− k)2
+
|C3|
L

n−1∑

k=2

k−1∑
r=1

1

r2(k − r)2

|B|n−k−1

(n− k − 1)!

+
|C2|
L

n∑

k=2

k−1∑
r=1

1

r2(k − r)2

|B|n−k

(n− k)!
+
|C1|
L

n−2∑

k=1

1

k2(n− k − 1)2
+
|C0|
L

n−1∑

k=1

1

k2(n− k)2

+
|D1|
|g0|

n∑

k=1

1

k2

|B|n−k

(n− k)!
+
|D0|
|g0|

1

n2
+ |B2|

n−1∑

k=0

1

k + 1

|B|n−k−1

(n− k − 1)!
+
|B1|
n

+
|B0|
n + 1

+ |C3|L |B|n−1

(n− 1)!
+ 2|C3|

n−1∑

k=1

1

k2

|B|n−k−1

(n− k − 1)!
+ |C2|L |B|

n

n!
+ 2|C2|

n∑

k=1

1

k2

|B|n−k

(n− k)!

+
2|C1|

(n− 1)2
+

2|C0|
n2

+
|D1|L
|g0|

|B|n
n!

}
≤ Bσ(N, L) < 1, (58)
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where

Bσ(N, L) =
N + 2

N + 1

[
π2

6L
+
|A0|
L

UN+2 +
|B0|
L

UN+1 +
|B1|+ |C0|

L
UN +

|C1|
L

UN−1

+
|B2|+ |C2|+ |C3|

L
U1e

|B| + (|B2|+ 2|C2|+ |D1/g0|)U |B|
N + 2|C3|U |B|

N−1

+ (|C2|+ |D1/g0|)L |B|
N

N !
+ |C3|L |B|N−1

(N − 1)!

+
2|C0|+ |D0/g0|

N2
+

2|C1|
(N − 1)2

+
|B0|

N + 1
+
|B1|
N

]
. (59)

The next two lemmas, whose proof is provided in the Appendix, are used in the error

analysis.

Lemma 3.2. If a, b, c, and d are integers such that a ≥ 0, b ≥ 0, a + c > 0, b + d > 0, and

c + d ≥ 0, then
n−b∑

k=a

1

(k + c)(n− k + d)
≤ Un+c+d, (60)

where Uk = 2[1 + ln(k + 1)]/k for k = 1, 2, 3, . . . .

Lemma 3.3. Let B ≥ 0 be a real number. If b and d are integers such that b ≥ 0, d ≥ 0, and

b + d > 0, then
n∑

k=b

1

k + d
· Bn−k

(n− k)!
≤ UB

n+d, (61)

where UB
k = [(1 + 2BeB) + 2BeB ln(k + 1)]/k for k = 1, 2, 3, . . . .

To obtain the bounds for the coefficients of the dominant power series one proceeds as

follows. First, pick a real number Mg ≥ 1 such that |g̃n| ≤ Mn
g for 1 ≤ n ≤ N + 1. Then

apply the following algorithm to construct a sequence {Gn} of nonnegative real numbers.

1. Use the recurrence relation (56) and the initial values g0, g1 to calculate gn, where

2 ≤ n ≤ N + 1.

2. Calculate Gn = n2L|gn/g0| for 1 ≤ n ≤ N + 1.

3. Calculate the remaining terms Gn+2, with n ≥ N , by the recurrence relation:
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Gn+2 =
n + 2

n + 1

{
1

L

n−1∑

k=0

(k + 1)Gk+2Gn−k

(k + 2)(n− k)2
+
|A0|
L

n∑

k=0

Gk+1Gn−k+1

(k + 1)(n− k + 1)

+
|B2|
L

n−1∑

k=1

k−1∑
r=0

Gr+1Gk−r

(r + 1)(k − r)2

|B|n−k−1

(n− k − 1)!
+
|B1|
L

n−2∑

k=0

Gk+1Gn−k−1

(k + 1)(n− k − 1)2

+
|B0|
L

n−1∑

k=0

Gk+1Gn−k

(k + 1)(n− k)2
+
|C3|
L

n−1∑

k=2

k−1∑
r=1

GrGk−r

r2(k − r)2

|B|n−k−1

(n− k − 1)!

+
|C2|
L

n∑

k=2

k−1∑
r=1

GrGk−r

r2(k − r)2

|B|n−k

(n− k)!
+
|C1|
L

n−2∑

k=1

GkGn−k−1

k2(n− k − 1)2
+
|C0|
L

n−1∑

k=1

GkGn−k

k2(n− k)2

+
|D1|
|g0|

n∑

k=1

Gk

k2

|B|n−k

(n− k)!
+
|D0|
|g0|

Gn

n2
+ |B2|

n−1∑

k=0

Gk+1

k + 1

|B|n−k−1

(n− k − 1)!
+ |B1|Gn

n
+ |B0|Gn+1

n + 1

+ |C3|L |B|n−1

(n− 1)!
+ 2|C3|

n−1∑

k=1

Gk

k2

|B|n−k−1

(n− k − 1)!
+ |C2|L |B|

n

n!
+ 2|C2|

n∑

k=1

Gk

k2

|B|n−k

(n− k)!

+2|C1| Gn−1

(n− 1)2
+ 2|C0|Gn

n2
+
|D1|L
|g0|

|B|n
n!

}
. (62)

Next by mathematical induction, one can show that

n2L|gn/g0| ≤ Gn ≤ Mn
g or |gn| ≤ |g0|

L

Mn
g

n2
for all n ≥ 1. (63)

Applying the root test for convergence, the lifetime utility can be represented as a convergent

power series. Thus, the following is true.

Theorem 3.4. Choose a real number L ≥ 1 and an integer N ≥ 3 such that B(N,L) < 1

and set

Mg = max{1, n
√

n2L|gn/g0| : 1 ≤ n ≤ N + 1} and rg =
εσ0ϕe

Mg

. (64)

The power series solution of the initial value problem (53)

g(x) =
∞∑

n=0

gn

(εσ0ϕe)n
xn (65)

converges in the interval −rg ≤ x ≤ rg, where the gn’s are determined by the recurrence

relation given in (56).
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The estimate of the error in the Taylor polynomial approximation (26) follows immediately.

Corollary 3.5. Let Tg,n(x) =
∑n

k=0[gk/(εσ0ϕe)
k]xk be the nth order Taylor polynomial of

g(x). For any positive number ν < 1, we have

max
|x|≤rg

|g(x)− Tg,n(x)| ≤
∞∑

k=n+1

|g0|
L
· 1

k2
≤ |g0|

L

∫ ∞

n

dλ

λ2
≤ |g0|

nL
(66)

and

max
|x|≤νrg

|g′(x)− T ′
g,n(x)| ≤ Mg|g0|

εϕeσ0L

∞∑

k=n

νk

k + 1
≤ Mg|g0|

εϕeσ0L(n + 1)

νn

1− ν
. (67)

3.2 Solving the Price-dividend Ratio

Having establish that the lifetime utility of the representative investor is an analytic function

(65) which converges in the interval −rg ≤ x ≤ rg, the solution to the initial value problem

for the price-dividend function (35) subject to the initial conditions p(0) = p0 and p′(0) = p1,

see (48), can be addressed now. The results in Theorem 3.1 of CCH (2009) directly apply

here since the ODE (35) is linear with analytic coefficients. Consequently, the price-dividend

function (42) is also an analytic function of the long run risk variable. Recall that in this case

the radius of convergence for p(x) is at least as big as the smallest radius of convergence for the

coefficients and the forcing term of the ODE (35). Below it is shown that the smallest radius

of convergence of the coefficients and the forcing term is at least rp = rg

3
. Thus, restricting

x to the smaller interval of convergence −νrp < x < νrp, we can estimate the error of the

Taylor polynomial approximation of p(x).

Again to avoid division with small numbers we make the change of variables x = εϕeσ0
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and obtain the following IVP.

g(s)p′′(s) = [(A2se
Bs + A1s + A0)g(s) + B0g

′(s)]p′(s)

+ [(C3se
Bs + C2e

Bs + C1s + C0)g(s) + (D1e
Bs + D0)

+ (E2se
Bs + E1s + E0)g

′(s)− g′′(s)]p(s)

+ (F1e
Bs + F0)g(s) subject to

p(0) = p0 and p′(0) =

[
−σ0ϕdρxcρcd +

√
σ2

0ϕ
2
dρ

2
xcρ

2
cd + Σ2

0 − σ2
0ϕ

2
d

]
εp0. (68)

The constants in the above ODE are given by

A0 = −2εσ0ρxc(α− 1 + ϕdρcd), A1 = 2ε2κa/(1 + a), A2 = 2ε2κ/(1 + a),

B0 = 2(ρ− α)/ρ,
C0 = 4ε2(β − ρx̄)a/(1 + a)− ε2σ2

0×
[ϕ2

d + 2ϕdρcd(α− 1) + 2αρ− 2α + 1],
C1 = −2ε3σ0ϕeρa/(1 + a),

C2 = 4ε2(β − ρx̄)/(1 + a), C3 = −2ε3σ0ϕeρ/(1 + a), D0 = −2ε2βa/(1 + a),

D1 = −2ε2β/(1 + a),
E0 = −2εσ0ρxc [ρα + ρ−

α + ϕdρcd(α− ρ)] /ρ,
E1 = 2ε2κa/(1 + a),

E2 = 2ε2κ/(1 + a), F0 = −2ε2a/(1 + a), F1 = −2ε2/(1 + a).
(69)

Equation (68) is a second order linear ODE with analytic coefficients and forcing term

and therefore the linear Cauchy-Kovalevsky Theorem in the form stated in Theorem 3.1 of

CCH (2009) is applicable.

In this case the recurrence relation for the coefficients in the price-dividend function (42)

is given by:

g0p2 = (A0g0 + B0g1)p1 + [(C2 + C0)g0 + D1 + D0 + E0g1 − g2] p0 + (F1 + F0)g0, (70)
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and for n ≥ 1

(n + 1)(n + 2)g0pn+2 = −
n−1∑

k=0

(k + 1)(k + 2)gn−kpk+2

+ A2

n−1∑

k=0

k∑
r=0

(r + 1)gk−rpr+1
Bn−k−1

(n− k − 1)!
+ A1

n−1∑

k=0

(k + 1)gn−k−1pk+1 + A0

n∑

k=0

(k + 1)gn−kpk+1

+ B0

n∑

k=0

(k + 1)(n− k + 1)gn−k+1pk+1 + C3

n−1∑

k=0

k∑
r=0

gk−rpr
Bn−k−1

(n− k − 1)!
+ C2

n∑

k=0

k∑
r=0

gk−rpr
Bn−k

(n− k)!

+ C1

n−1∑

k=0

gn−k−1pk + C0

n∑

k=0

gn−kpk + D1

n∑

k=0

pk
Bn−k

(n− k)!
+ D0pn

+ E2

n−1∑

k=0

k∑
r=0

(k − r + 1)gk−r+1pr
Bn−k−1

(n− k − 1)!
+ E1

n−1∑

k=0

(n− k)gn−kpk + E0

n∑

k=0

(n− k + 1)gn−k+1pk

−
n∑

k=0

(n− k + 1)(n− k + 2)gn−k+2pk + F1

n∑

k=0

gk
Bn−k

(n− k)!
+ F0gn (71)

3.3 Convergence and error analysis

We begin by writing the second order linear differential equation (68) in the standard form:

p′′ −
[
(A2se

Bs + A1s + A0) + B0
g′(s)
g(s)

]
p′

−
[
(C3se

Bs + C2e
Bs + C1s + C0) + (D1e

Bs + D0)
1

g(s)

+ (E2se
Bs + E1s + E0)

g′(s)
g(s)

− g′′(s)
g(s)

]
p = F1e

Bs + F0 (72)

Next we find a power series for the functions appearing in the coefficients in the ODE (72)

1

g(s)
=

∞∑
n=0

c(0)
n sn,

g′(s)
g(s)

=
∞∑

n=0

c(1)
n sn,

g′′(s)
g(s)

=
∞∑

n=0

c(2)
n sn,

eBs

g(s)
=

∞∑
n=0

c(3)
n sn,

eBsg′(s)
g(s)

=
∞∑

n=0

c(4)
n sn. (73)

We need to construct estimates for the coefficients in the ODE (72) to find an estimate of the

error for the price-dividend function. First, the following estimates for c
(0)
n , c

(1)
n , c

(2)
n , c

(3)
n , and
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c
(4)
n are provided in the Appendix

|c(0)
n | ≤ (1/|g0|)(3Mg)

n, |c(1)
n | ≤ (3Mg)(3Mg)

n, |c(2)
n | ≤ (9M2

g )(3Mg)
n,

|c(3)
n | ≤ e|B|/(2Mg)

|g0| (3Mg)
n, |c(4)

n | ≤ [3Mge
|B|/(3Mg)](3Mg)

n, (74)

where Mg ≥ 1 is given by Theorem 3.4.

We can now establish bounds for each of the coefficients in the ODE (72). The power

series representation for the coefficient of p′ is given by

−
(
A0 + B0c

(1)
0

)
−

(
A2 + A1 + B0c

(1)
1

)
s−

∞∑
n=2

[
A2

Bn−1

(n− 1)!
+ B0c

(1)
n

]
sn. (75)

The power series representation for the coefficient of p is given by

−
(
C2 + C0 + D1c

(3)
0 + D0c

(0)
0 + E0c

(1)
0 − c

(2)
0

)

−
(
C3 + BC2 + C1 + D1c

(3)
1 + D0c

(0)
1 + E2c

(4)
0 + E1c

(1)
0 + E0c

(1)
1 − c

(2)
1

)
s

−
∞∑

n=2

[
C3

Bn−1

(n− 1)!
+ C2

Bn

n!
+ D1c

(3)
n + D0c

(0)
n + E2c

(4)
n−1 + E1c

(1)
n−1 + E0c

(1)
n − c(2)

n

]
sn. (76)

The values of c
(j)
i are given in the following table:

c
(0)
0 = 1/g0 c

(0)
1 = −g1/g

2
0

c
(1)
0 = g1/g0 c

(1)
1 = 2g2/g0 − g2

1/g
2
0

c
(2)
0 = 2g2/g0 c

(2)
1 = 6g3/g0 − 2g1g2/g

2
0

c
(3)
0 = 1/g0 c

(3)
1 = B/g0 − g1/g

2
0

c
(4)
0 = g1/g0

When n ≥ 2, we can estimate the coefficient of sn in (75) as follows:
∣∣∣∣A2

Bn−1

(n− 1)!
+ B0c

(1)
n

∣∣∣∣ ≤
[ |A2|(e|B| − 1)

9M2
g

+ 3Mg|B0|
]

(3Mg)
n (77)

Also, when n ≥ 2, we can estimate the coefficient of sn in (76) as follows:
∣∣∣∣C3

Bn−1

(n− 1)!
+ C2

Bn

n!
+ D1c

(3)
n + D0c

(0)
n + E2c

(4)
n−1 + E1c

(1)
n−1 + E0c

(1)
n − c(2)

n

∣∣∣∣

≤
[
(|C3|+ |C2|)(e|B| − 1)− |BC2|

9M2
g

+

∣∣∣∣
D1

g0

∣∣∣∣ e|B|/(2Mg) +

∣∣∣∣
D0

g0

∣∣∣∣

+ |E2|e|B|/(3Mg) + |E1|+ 3Mg|E0|+ 9M2
g

]
(3Mg)

n. (78)
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Now, defining

C1 = |A0 + B0c
(1)
0 |,

C2 = |A2 + A1 + B0c
(1)
1 |/(3Mg),

C3 =
|A2|(e|B| − 1)

9M2
g

+ 3Mg|B0|, (79)

C4 = |C2 + C0 + D1c
(3)
0 + D0c

(0)
0 + E0c

(1)
0 − c

(2)
0 |,

C5 = |C3 + BC2 + C1 + D1c
(3)
1 + D0c

(0)
1 + E2c

(4)
0 + E1c

(1)
0 + E0c

(1)
1 − c

(2)
1 |/(3Mg),

C6 =
(|C2|+ |C3|)(e|B| − 1)− |BC2|

9M2
g

+

∣∣∣∣
D1

g0

∣∣∣∣ e|B|/(2Mg) +

∣∣∣∣
D0

g0

∣∣∣∣
+ |E2|e|b|/(3Mg) + |E1|+ 3Mg|E0|+ 9M2

g

and proceeding as in the proofs of Theorem 3.1 and Corollary 3.2 in the appendix of CCH

(2009) we obtain the following result.

Theorem 3.6. Let rp = εσ0ϕe/(3Mg) and M = max{ C1, C2, C3, C4, C5, C6 }. Then the power

series solution of the initial value problem (68)

p(x) =
∞∑

n=0

pn

(εσ0ϕe)n
xn (80)

converges in the open interval −rp < x < rp, where the pn’s are determined by the recurrence

relation given in (71).

Corollary 3.7. Let Tp,n(x) be the nth order Taylor polynomial of the price-dividend function

p(x), that is

Tp,n(x) =
n∑

k=0

[
pk

(εσ0ϕe)k

]
xk.

Then, for any positive number ν < 1, the Taylor’s series remainder p(x) − Tp,n(x) satisfies

the estimate

max
|x|≤νrp

|p(x)− Tp,n(x)|

≤ 1

2

{
M̃ + [(1 + rp)|p1|+ |p0|]M

} ∞∑

k=n+1

k−1∏

l=2

[
l − 1

rp(l + 1)
+

l + rp

l(l + 1)
M

]
|νrp|k, (81)

where M̃ = max{|F0 + F1|, |F1|(e|B|/(3Mg) − 1)} and M = max{C1, C2, C3, C4, C5, C6}.
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4 Simulation

In this section the analytic method is implemented for the continuous time long run risk model

of BY. The parameters are based on the data in Bansal, Kiku, and Yaron (2007), which are

chosen to match annual data over the time period 1930 to 2002. As in Bansal and Yaron

(2004) they calibrate their model at monthly frequency such that the time-aggregated annual

data match the empirical observations. Here, we convert the parameters from the discrete

time of BY to the continuous time, considered here, using the method of Bergstrom (1984),

Campbell and Kyle (1993) and Campbell, et al. (2004). In these papers the discrete data is

assumed to be generated by an underlying continuous time model such as (1), (2), and (3).

The stochastic processes are then integrated over the discrete time period which is a month for

Bansal, Kiku, and Yaron’s (2007) data. Finally, we match the estimated monthly parameters

with the associated parameters from the continuous time processes. These calculations yield

the parameters x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042,

ρcx = 0.2328, and ρcd = 0.2465.17

The volatility parameters a = 10.9, and b = 175.33 in (4) are set so that the volatility

(standard deviation) of consumption growth matches the empirical evidence from Bansal and

Yaron (2004, Table III). The volatility of consumption growth,
√

σ2(0)σ2(0)b/(a+1), matches

the value for its standard deviation in BY σw = 0.23×10−5 at the stationary mean of the long

run risk variable. In addition, Bansal and Yaron (2004, Table III) report that a 1% change in

the price-dividend function leads to a 0.11 decline in the volatility of consumption growth for

a two year horizon. This information is also used to set the parameters a and b for the logistic

form of the variance of consumption growth (4). In particular, Figure 1 is a parametric plot

of the volatility of consumption growth versus the price-dividend ratio as the long run risk

variable varies in the interval [−7ϕeσ, 7ϕeσ]. Consequently, the model for the variance of

consumption growth (4) in the BY model implies that the volatility of consumption growth

decreases as the price-dividend ratio increases. In addition, Figure 2 graphs the derivative of

17See Chen, Cosimano, Himonas and Kelly (2009) for details.
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the volatility of consumption growth with respect to the logarithm of the price-dividend ratio.

The parameters a and b are chosen so that this derivative is near −0.11 on average, which

is the value found in the empirical work by Bansal and Yaron (2004). Thus, the variance of

consumption growth (4) is chosen so that it matches the empirical properties of consumption

volatility, found in Bansal and Yaron (2004).

Given the choice of the parameters above, the rate of discount per month for the repre-

sentative investor,

β =Rb(0) + (ρ− 1)x̄ +
σ2

2
(αρ− 2α + 1)

+ ρxcφeσ
2
0

ρ− α

ρ

g′(0)

g(0)
+

φ2
eσ

2
0

2

ρ− α

ρ

(
g′(0)

g(0)

)2

= 0.0006903, (82)

is chosen so that the risk free interest rate, given by equation (31), matches the historic

average in Bansal, Kiku and Yaron (2007), see our Table 1, at the stationary mean for the

long run risk variable x = 0.

4.1 Lifetime Utility

The lifetime utility of the representative investor is approximated using a 100th order Taylor

polynomial approximation (25).18 The initial conditions are g0 = 1.4330 and g1 = 0.03527.

The first initial condition is an estimate of g(0) using (20) evaluated at the risk neutral

stationary mean of the long run risk variable, xg = −0.0005892 so that µg(xg) = 0. This

value of the long run risk variable is over two standard deviations below the actual stationary

mean of the long run risk variable x = 0, see Figure 3. The discount rate for the lifetime

utility is estimated using rg(x) in (21), see Figure 4, evaluated at the risk neutral stationary

mean, rg(xg) = 0.06591. This risk neutral discount rate places less weight on the future then

the actual rate of discount β = 0.0006903. Consequently, the risk neutral adjustment lowers

the expected lifetime utility. The second initial condition g′(0) is chosen as in (49). Thus,

18The simulations and graphs in this paper are calculated in 27 seconds using Maple on a PC with an Intel
Core2 Duo CPU with speed 2.66 GHz.
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the equity premium and its standard deviation from Bansal, Kiku, and Yaron (2007), see our

Table 1, are matched at the stationary mean of the long run risk variable.

The accuracy of the Taylor polynomial approximation for the analytic solution to the

investor’s lifetime utility (65) in Figure 6 is determine by applying Theorem 3.4 and Corollary

3.5. The radius of convergence of the lifetime utility is at least rg = 0.001583 so that the

lifetime utility is analytic over the interval [−7ϕeσ, 7ϕeσ]. The error of the 100th order Taylor

polynomial approximation (3.5) is at most 0.001303 which is 0.09091% of g0. In addition,

Figure 6 graphs the relative error between the 90th and 100th order Taylor polynomial which is

always less than one in 25 million. However, the errors are as large as 55% when one uses only

a fourth order Taylor polynomial approximation over the same interval. Thus, a high order

Taylor polynomial is needed to accurately portray the lifetime utility of the representative

investor.

The risk neutral mean of the distribution of the long run risk variable µg(x) for the repre-

sentative investor’s lifetime utility, given in (17), is portrayed in Figure 3. This mean along

with the standard deviation ϕeσ(x) determines the probability distribution in the Feynman-

Kac formula of the lifetime utility (20). The existence of a solution is dependent on the present

value of a unit payoff (21) over a given time interval. The property of this present value is

examined using Figure 3. At the stationary mean of the risk neutral probability distribution

for the long run risk variable xg = −0.0005892 the rate of discount is rg(xg) = 0.06591 on

a monthly basis. Thus, the adjustment to the investor’s lifetime utility for risk lowers the

mean value of the long run risk variable x by 2.6 standard deviations. In addition, the rate

of discount is higher than the true rate of discount β − ρx̄ = 0.0004379 so that the present

value of lifetime utility is lower as a consequence of risk adjustment.

For the lifetime utility (20) to exist the rate of discount rg(x) in (21) must be positive for

almost all random draws of the long run risk variable. From Figures 3 and 4 one sees that

the long run risk variable such that the rate of discount is positive, is x ∈ [−7ϕeσ, 6.4ϕeσ]

which goes from 4.4 standard deviations below the risk neutral stationary mean of the long

run risk variable to 9 standard deviations above it. In addition, the mean of the long run
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risk variable in (17) and the discount rate in (21) satisfy the bound and Lipschitz conditions

of Duffie (2001, p. 345), since the function g(x) is extended by (27). Both of these functions

are determined by the elasticity of the lifetime utility function α
ρ

g′(x)
g(x)

which is the solid line

in Figure 7. As a result, the distribution of the risk neutral long run risk variable would kill

off random shocks over any finite period of time in which the discount rate could possibly go

positive. Consequently, the probabilistic solution (20) to the investor’s lifetime utility exists

and the analytic solution (65) is the unique representation of the investor’s lifetime utility for

the radius of convergence, rg = 7ϕeσ.

One can use the lifetime utility to portray the consumption to wealth ratio of the repre-

sentative investor as in Figure 8. Using the optimal consumption decision from Schroder and

Skiadas (1998), Campbell and Viceira (2002, p. 146) and Campbell et al. (2004, p. 2212),

Fisher and Gilles (1998), and Benzoni, Collin-Dufresne and Goldstein (2005) show how to use

the state price process to determine the consumption to wealth ratio in the same context as

the current paper. Here, the consumption to wealth ratio is given by

C

W
= β

1
1−ρ (αv(x))

ρ
α(ρ−1) = β

1
1−ρ (g(x))−

1
(1−ρ) . (83)

As a result, the lifetime utility function of the representative investor can be converted into

units of consumption per wealth. Figure 8 graphs the consumption to wealth ratio on an

annual basis which is 0.01267% and is determined mainly by 12β
1

1−ρ = 0.02176%, which is

significantly smaller than the value used in Campbell et al. and Bansal and Yaron (2004).19 In

addition, this consumption to wealth ratio is significantly different from the rule of thumb used

by investment advisors.20 Thus, there is a conflict in the model between the β = 0.06903%

per month implied by the historic risk free interest rate and the β = 0.33% or 0.5% per

month consistent with recommendations by financial advisors or the value used in research,

respectively.

19Most researchers take 12β = 0.06 which corresponds to a 6% rate of discount so that 12∗β
1

1−ρ = 0.4243%.
20For example Vanguard’s web site uses a 4% consumption to wealth ratio for calculating expected income

for retired investors.
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4.2 Financial Market Implications

Having identified an analytic solution to the lifetime utility in the Duffie and Epstein (1992a,

1992b) model within the interval of convergence [−rg, rg], the price-dividend ratio is also

an analytic solution (80) with radius of convergence rp = rp

3
thanks to Theorem 3.6. Us-

ing Corollary 3.7 the Taylor’s series remainder for a 100th order Taylor polynomial is at

most 1.71745 × 10−08 for ν = 0.05, so that the long run risk variable is in the interval

[−0.35ϕeσ, 0.35ϕeσ]. As a result, a significant increase in the Taylor polynomial order is nec-

essary to increase this interval towards its maximum. This smaller interval can be attributed

to the imprecise bounds (79) on the coefficients of the ODE for the price-dividend function

(72), which in turn are based on the estimates (74). Numerical evidence on the accuracy

of the price-dividend solution is provided in Figure 10 which compares the 90th and 100th

order Taylor polynomial. In this case the relative error between these polynomials is one in 3

million over the interval [−7ϕeσ, 7ϕeσ]. Consequently, the numerical evidence suggests that

the price-dividend ratio is accurate for a larger interval relative to the theorectical estimate

of this interval.

The initial conditions are p0 = 617.23 and p1 = 228.24. The first initial condition p(0) is

chosen by estimating the Feynman-Kac risk neutral value of the price-dividend function (40).

As a result, the price-dividend ratio p(0) = 51.44 on an annual basis is significantly above its

historic value 27.94 in Table 1. The reason is that the rate of discount implied by the risk free

interest rate is too low. For the price-dividend ratio the rate of discount, rp(xp) = 0.01944,

following (41), is calculated at the risk neutral mean of the stationary distribution for the

long run risk variable. Here the long run risk variable is implied by the price-dividend ratio,

i.e. xp = −0.0008685 such that µp(xp) = 0 using (37). In this case the risk neutral mean for

the long run risk variable is below the value implied by the lifetime utility function, which can

be seen by comparing Figure 3 with Figure 11. However, this is necessary for the existence of

the Feynman-Kac form of the price-dividend ratio (40), since the rate of discount implied by

the price-dividend function, see Figure 12, is lower than that implied by the lifetime utility
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function, see Figure 4. Thus, the risk neutral distirbution of the long run risk variable has to

on average be lower so that the integral in the Feynman-Kac formula (40) exists. The second

initial condition p′(0) is chosen so that the elasticity of the price-dividend function (48) is

consistent with the standard deviation of the equity premium. Thus, the analytic solution

to the lifetime utility function and price-dividend function can be found such that the mean

and standard deviation of the equity premium matches the historic values at the stationary

mean of the long run risk variable as well as the risk free interest rate.

The main problem with the analytic solution to the BY model is the low rate of discount

for the price-dividend ratio. This problem can be removed if the rate of discount β is increased

so that the representative individual places less weight on the future.21 For example in Table

1 column 3 the risk free rate is increased by two standard deviation to 2.8%, so that the

price-dividend ratio is now 28.68 per year without affecting most of the other properties of

the moments for the financial market data.22 A possible explanation for this result is that the

short term Treasury Bill rate is lower because of liquidity effects which are not incorporated

in the long run risk model.23

Matching the first two moments of the equity premium is no longer sufficient to distinguish

among asset pricing models. For example Table 2 reproduces the results from CCH for the

analytic solution of the Campebell and Cochrane model, which does as well as the BY model

in matching the mean and standard deviation of the equity premium. As a result, Beeler and

Campbell (2009) examine alternative properties such as higher order autocorrelation, as well

as the ability of the price-dividend ratio to forecast expected future returns.

Here, the properties of stock returns are examined with regards to the long run risk variable

21This problem is also present in other asset pricing models. Weil (1989) pointed out that the risk free
interest rate would be too high when the equity premium is matched in the Mehra-Prescott model. CCH
(2008) also find that the low real risk free rate limits the range in which the solution to the CC model exists.

22It is also possible to lower the price-dividend ratio by raising ρ to 0.9. However, this would increase the
intertemporal rate of substitution to ψ = 10. There is already substantial questions about this elasticity of
substitution, see Beeler and Campbell (2009), so that raising this parameter does not appear to be a viable
option.

23Wachter (2006) finds real interest rates increase by 1.05%, when going from 1 to 12 month yield to
maturity for data from 1952 to 2004.
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in the BY model. These properties are compared with the analytic solution of the CC (1999)

model, found in CCH (2009), with regards to their surplus consumption variable S which

measures the deviation of consumption from its habitual level.24 The key difference is that

the BY model yields a convex price-dividend function with respect to its state variable, see

Figure 9, while in Figure 13 the CC price-dividend function is concave in its state variable. As

a result, the mean and standard deviation of the equity premium behave differently over time

between the two models. During expansions in the economy both the long run risk variable

of BY and the surplus consumption ratio of CC increase so that the price-dividend ratio

increases. However, the mean and standard deviation of the equity premium increases in the

BY model, see Figure 16, while they decrease in the CC model, see Figure 14. Consequently,

a high price-dividend ratio predicts higher returns in the BY model and lower returns in the

CC model following (45). These results suggest that a detailed statistical analysis of these

two analytic solutions should be undertaken now that a quick and accurate procedure has

been established to solve these models.

4.3 Long Term Risk

Hansen, Heaton and Li (2008) emphasize the long term implications of asset pricing models

by identifying and approximating an asymptotic rate of return using techniques developed

by Hansen and Scheinkman (2009). This asymptotic rate of return is equal to the sum of

the mean of the stochastic discount factor, the mean of the growth rate for the cash flows,

and an adjustment for long term risk. Here, we argue that this asymptotic rate of return

is conceptually similar to risk neutral discount factor rp(x) evaluated at the risk neutral

stationary mean for the long run risk variable xp implied by the financial asset.

Hansen and Scheinkman (2009) develop a method to decompose the present value of cash

flows such as (40) into three parts 1.) a deterministic trend, 2.) a martingale, and 3.) the

transitory effects of changes in the long run risk variable. They call the deterministic trend

24One may argue that the differences arise because of the use of a more recent time period for the financial
market data. However, the convexity of the price-dividend function does not change when the financial market
data of CC is used to calibrate the BY model.
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the asymptotic rate of return for the asset. Applying their method to the stock price problem

involves the solution to the eigenvalue problem

νe(x) = rp(x)e(x) +De(x), (84)

where the differential operator is given by (36).25 They want to find the smallest eigenvalue ν

for problem (84) which is consistent with the stationary distribution implied by (38). Rather

than solving the eigenvalue problem (84) the asymptotic rate of return can be found using

the Feyman-Kac formula (40) and the stochastic process (38).

Hansen and Scheinkman want to know a deterministic rate of return which can be factored

out of the probabilistic solution for the price-dividend ratio. Given the solution to the price-

dividend function the Feynman-Kac formula (40) has a deterministic trend which is given by

the risk neutral discount factor evaluated at xp:

rp(xp) = φxp + x̄ +
ϕ2

dσ
2(xp)

2
−Rb(xp) + σ2(xp)ϕdρcd

(
α− 1 +

ϕeρxc(α− ρ)

ρ

g′(xp)

g(xp)

)
. (85)

Given a shock to the long run risk value the discount factor eventually returns to this value,

so that this term can be factored out of (40) and only transitory deviations of the discount

factor from this stationary value is left within the expectations, i.e.,

p(x) = Ex,p

[∫ ∞

t

e−rp(xp)(s−t) exp

[
−

∫ s

t

{rp (xτ )− rp(xp)} dτ

]
ds

]
. (86)

The stationary point in Figure 11 is xp = −0.0008685 and the long term discount factor

is rp(xp) = 1.944% on an annual basis. Under the higher interest rate of 2.8% the long

term discount factor is rp(xp) = 3.487% on an annual basis, which is much closer to the

equity premium.26 This discount factor has three components as in Hansen, Heaton, and

Li (2008): 1.) The mean of the stochastic discount factor Rb(xp), 2.) the mean of the

growth rate for the cash flows (dividends) φxp + x̄, and 3.) an adjustment for long term risk

ϕ2
dσ2(xp)

2
+ ϕeρxc(α−ρ)

ρ

g′(xp)

g(xp)
. In addition, this risk neutral discount factor is consistent with the

25The operator D is the extended generator of Hansen and Scheinkman. Intuitively, this generator is the
expected derivative of the price-dividend ratio.

26Note that p(0) = 1
rp(xp) is the long term price-dividend ratio.
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risk neutral stochastic process for the long run risk variable (38). However, this discount factor

was not arrived at using the operator method of Hansen and Scheinkman (2009). Hansen

and Scheinkman set up the eigenvalue problem (84) whose solution directly leads to their

asymptotic rate of return. The asymptotic rate of return arrived at here was found by solving

the ODE for the lifetime utility and using this solution in standard asset pricing formulas.

This procedure also provides the discount factor for all possible values of the long run risk

variable, see Figure 12, as well as the stochastic process for the long run risk variable, see

Figure 11 for the mean of this process, which characterizes the behavior of this discount factor

over time.

The solution of the lifetime utility function can also be used to find the long term mean

and variance of other financial asset such as Cochrane (2008)’s long run risk free asset. In

continuous time he defines the long run mean of any payoff {xt}∞t=0 as

E(x) = βE

[∫ ∞

0

e−βtxtdt

]
. (87)

Consequently, we can price the long term risk free asset which promises the same real payout

each period xt = 1 for all t. Using the state price process (30) and the consumption growth

process (3), the price of the long term risk free asset solves the ODE

1−Rb(x)k(x) +

(
−κx +

ϕ2
eσ

2(x)(α− ρ)

ρ

g′(x)

g(x)

)
k′(x) +

ϕ2
eσ

2(x)

2
k′′(x) = 0, (88)

where

k(x) =
1

β
E

(
Λs

Λt

)
= E

[∫ ∞

t

Λs

Λt

ds

]
.

The Feynman-Kac solution to (88) is given by

k(x) = lim
T→∞

Ex,k

[∫ T

t

βk
t,sds + βk

t,T kT

]
= Ex,p

[∫ ∞

t

βk
t,sds

]
, (89)

where

βk
t,s = exp

[
−

∫ s

t

Rb(xτ )dτ

]
. (90)

Following Cochrane (2008) the risk free yield is given by yf (x) = 1
k(x)

.
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To define the risk neutral conditional expectations Ex,k [·], introduce the differential oper-

ator for the long run risk free asset

Dk(x) = µk(x)k′(x) +
ϕ2

eσ
2(x)

2
k′′(x), (91)

where

µk(x) =

[
−κx +

ϕ2
eσ

2(x)(α− ρ)

ρ

g′(x)

g(x)

]

= µg(x) + σ2(x)ϕeρxcα−
(

α

ρ
− 1

)
ϕ2

eσ
2(x)

2

g′(x)

g(x)
. (92)

The long run risk variable now follows the stochastic differential equation (SDE)

dx = µk(x)dt + ϕeσ(x)dω̂3, (93)

where the twisted Brownian motion is

dω̂3 = dω̃3 − µk(x) + κx

ϕeσ(x)
dt. (94)

Following the logic of Hansen and Scheinkman (2009) and Hansen, Heaton, and Li (2008)

one can define the stationary point of the risk neutral distribution for the long term risk

free asset as xk such that µk(xk) = 0. Figure 17 plots the instantaneous mean of the risk

neutral stochastic process for x under k(x) so that xk = −0.0007814 = −3.5ϕeσ. Thus, the

long term rate of return at this stationary point Rb(xk) = 0.3497% on an annual basis which

again reflects the low value of the rate of discount β (82). In particular, for the case in which

Rb(0) = 2.8% the long term risk free rate of return at the stationary point is Rb(xk) = 2.390%

on an annual basis, while the risk neutral discount factor for equity is rp(xp) = 3.487%.

5 Conclusion

This paper finds the analytic solution to the continuous time version of Bansal and Yaron’s

long run risk model. As a result the lifetime utility, price-dividend ratio, the consumption to

wealth ratio, the expected equity premium, its standard deviation and the risk free interest
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rate are power series in the long run risk variable near its stationary mean. The radius of

convergence for the lifetime utility is at least seven standard deviations of the long run risk

variable, while the radius of convergence for the price-dividend function is one third of this

value. This allows these functions to be accurately represented by Taylor polynomials within

the radius of convergence. In addition, a comparison between the 90th and 100th order Taylor

polynomial approximation yields a relative error smaller than one in 25 million for the lifetime

utility and one in 3 million for the price-dividend ratio, as long as the long run risk variable

stays within the radius of convergence for the lifetime utility. On the other hand these errors

can be as high as 55% when only a fourth order approximation is used. Thus, a higher order

polynomial approximation needs to be used to accurately represent the solution to the long

run risk model.

The Bansal and Yaron model assumes recursive preferences introduced by Epstein and

Zin (1989, 1990, 1991). In continuous time Duffie and Epstein (1992a, 1992b), and Duffie

and Lions (1992) show that the lifetime utility under recursive preferences is the solution of a

backward stochastic differential equation (6), which involves solving a second order nonlinear

differential equation (15). In order to solve the long run risk model the analytic methods

in CCH (2009) had to be extended to handle a second order nonlinear differential equation.

While the Cauchy-Kovalevsky Theorem 3.1, which was used by CCH (2009) to show the

price-dividend function is analytic near the mean of the state variable, holds for nonlinear

and higher dimensional differential equations, it does not provide much information about the

radius of convergence for solutions to nonlinear differential equations. To find a good estimate

for the radius of convergence (see Theorem 3.4) one must choose a dominant convergent power

series carefully. Subsequently, the estimate for the radius of convergence is at least the radius

of convergence of this dominant power series. For the Bansal and Yaron model this radius

of convergence is at least seven standard deviations of the long run risk variable around the

stationary mean of the long run risk variable. The procedure of CCH (2009) is then used

in Theorem 3.6 to show that the price-dividend function is an analytic function near this

stationary mean with radius of convergence at least one third the radius of convergence for
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the lifetime utility.

For the Cauchy-Kovalevsky Theorem to yield the unique analytic solution to a second

order initial value problem one must provide two initial conditions for the ODE of the lifetime

utility (15) and the price-dividend ratio (35), i.e. the value of the function and its derivative

at a particular point. Duffie (2001) determines conditions under which the solution to these

ODEs have solutions given by the Feynman-Kac formulas (20) and (40), respectively. As

a result, the first initial conditions for the lifetime utility function g(0) and price-dividend

function p(0) are chosen to be consistent with the Feynman-Kac formulas (20) and (40) at

the stationary mean of the long run risk variable x = 0. Next it was shown that the elasticity

of the lifetime utility (49) and the price-dividend function (48) are uniquely determine by

the expected equity premium and its standard deviation. In addition, the discount factor β

can be chosen using the risk free interest rate (82). Consequently, this information is used to

set the second initial conditions for the lifetime utility function g′(0) and the price-dividend

function p′(0). Thus, the initial conditions can be chosen so that the representative investor

has behavior consistent with financial market data.

We found that the long run risk model is subject to the risk free interest rate problem

identified by Weil (1989). In particular, the value of β influences the discount factor for the

price-dividend function (41), as well as the price-dividend solution using the Feynman-Kac

formula (40). For the Bansal and Yaron parameters the risk free rate has to be about 2%

higher than its historic average for the stationary value of the price-dividend ratio to equal its

historic average. Thus, the risk free interest rate is too low relative to its theorectical value

consistent with the price-dividend ratio.

The paper concludes with an examination of the short term and long term properties of

the expected returns on stocks in the long run risk model. After matching the average values

for key financial variables within the data, we focused on the time series properties of the

expected equity premium and its standard deviation. Over time, these moments depend on

the convexity of the price-dividend function. An increase in the long run risk variable, which

is expected to persist for a half life of 38 months, means that the price-dividend function

44



would increase and then slowly revert toward its stationary mean. Consequently, we find

predictable moments in stock prices. The convexity of the price-dividend function, when we

use the parameters of Bansal, Kiku and Yaron (2007) means that both the expected equity

premium and its standard deviation increase during expansions. This is contrary to the result

found in CCH (2009) for the Campbell and Cochrane model using their parameters. Finally,

the asymptotic rate of return on stocks (82) for the Bansal and Yaron model, as in Hansen,

Heaton and Li (2008), is found without using the procedure of Hansen and Scheinkman (2009).

This asymptotic rate of return includes the mean of the stochastic discount factor, the mean

of the growth rate of dividends and an adjustment for long term risk. Finally, this procedure

is used to price the long run risk free asset of Cochrane (2008), as well as its risk free rate of

return.

These results for the high order polynomial approximations for the solutions of the long run

risk model and the external habit model suggest that the debate over the properties of these

models will be altered when these approximations are used to estimate the underlying pa-

rameters. Consequently, future research should implement the simulated method of moment

estimation for these models, following Bansal, Gallant and Tauchen (2007), in which the high

order polynomial approximations replace the quadratic approximations to these models. The

Nonparametric simulation estimation of Bansal, Gallant, Hussey, and Tauchen (1993, 1995)

can be undertaken since the simulated data from the high order polynomial approximations

can be obtained in less than a minute.27 Thus, one can merge the quick and accurate poly-

nomial approximations of the long run risk model and external habit model, developed here

and in CCH (2009), with an estimation method which can discriminate effectively between

these models.

27This speed compares favorably with the speed reported in Bansal, Gallant, Hussey, and Tauchen (1993).
See Gallant and Tauchen (2009) for a survey of these methods.
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Table 1. Comparison of BY Model Relative to Data
Statistic BY BY Bansal, Kiku

low Et(R
b) high Et(R

b) Yaron Data
Et(R

e) 0.083 0.083 0.083
σ(Re) 0.20 0.20 0.20
Et(R

b) 0.008 0.028 0.008
Et(R

e −Rb) 0.075 0.055 0.075
Sharpe 0.375 0.275 0.0375
p 51.44 28.68 27.94

Notes : Re is the real return on stocks and Rb is the real return on bonds, and p is the price-dividend
ratio. Et is the conditional expectation operator and σ is the standard deviation. The statistics
for the theoretical solutions are evaluated at the stationary mean of the long run risk variable. The
parameters for BY model are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816,
ϕe = 0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters
are α = −9, ρ = 1

3 and β = 0.0006902. The initial conditions for the low interest rate case are
g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The initial conditions for the higher
interest rate case are g0 = 1.1034, g1 = 0.01864, p0 = 344.16, and p1 = 127.26. The data for BY
model is taken from Bansal, Kiku, and Yaron (2007) their Table 1 and 5.

Table 2. Comparison of Campbell and Cochrane Model Relative to Data
Statistic Campbell Campbell

Cochrane Cochrane Data
Et(R

e) 0.075 0.076
σ(R) 0.133 0.157
Et(R

b) 0.009 0.009
Et(R

e −Rb) 0.066 0.067
Sharpe 0.56 0.34
P 18.3 24.7

Notes : Re is the real return on stocks and Rb is the real return on bonds, and P is the price-dividend
ratio. Et is the conditional expectation operator and σ is the standard deviation. The statistics for
the theoretical solutions are evaluated at the historic average for the state variable. The parameters
for Campbell and Cochrane’s model from CCH are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2,
σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76, S̄ = 0.0448 and µr = 0.32. The data for Campbell
and Cochrane is taken from their Table 4. We use the Postwar Sample from 1947 to 1995 for the
U.S.
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Figure 1 displays a parametric plot of the standard deviation of consumption growth

relative to the price-dividend ratio for the BY model. The parameters are x̄ = 0.0007573,

σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328, ρcd = 0.2465,

a = 10.9, and b = 175.33. The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902.

The initial conditions for the low interest rate case are g0 = 1.4340, g1 = 0.03527, p0 =

617.23, and p1 = 228.24. The x-axis gives the price-dividend ratio and the y-axis records the

standard deviation of consumption growth. The long run risk variable varies over the interval

[−7ϕeσ, 7ϕeσ].

Figure 1 Figure 2

Figure 2 plots the derivative of the standard deviation of consumption growth with re-

spect to the logarithm of the price-dividend ratio as the long run risk variable changes. The

parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042,

ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The initial conditions are g0 = 1.4340,

g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The x-axis gives the long run risk variable in

the interval [−7ϕeσ, 7ϕeσ]. The y-axis records the derivative of the consumption growth with

respect to the logarithm of the price-dividend ratio.
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Figure 3 displays the risk neutral mean of the long run risk variable µg(x) for the investor’s

lifetime utility. of the representative investor for the BY model. The parameters are x̄ =

0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328,

ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions for the low interest rate case are g0 = 1.4340,

g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The x-axis gives the long run risk variable on the

interval [−7ϕeσ, 7ϕeσ]. The y-axis records the risk neutral mean of the long run risk variable.

Figure 3 Figure 4

Figure 4 displays the rate of discount for the lifetime utility of the representative investor.

The parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe =

0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The initial conditions are

g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The x-axis gives the long run risk

variable in the interval [−7ϕeσ, 7ϕeσ]. The y-axis records discount rate for the lifetime utility

for the representative investor.

48



Figure 5 displays the lifetime utility of the representative investor for the BY model. The

parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042,

ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are α = −9,

ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527, p0 = 617.23,

and p1 = 228.24. The x-axis gives the long run risk variable on the interval [−7ϕeσ, 7ϕeσ].

The y-axis records the lifetime utility.

Figure 5 Figure 6

Figure 6 displays the relative error between a 90th order and 100th order Taylor polynomial

for the representative investor’s lifetime utility in the BY model. The parameters are x̄ =

0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328,

ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and

p1 = 228.24. The x-axis gives the long run risk variable in the interval [−7ϕeσ, 7ϕeσ]. The

y-axis records the lifetime utility for the representative investor.
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Figure 7 displays the elasticity of the investor’s lifetime utility for the BY model. The

parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042,

ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are α = −9,

ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527, p0 = 617.23,

and p1 = 228.24. The x-axis gives the long run risk variable on the interval [−7ϕeσ, 7ϕeσ].

The y-axis records the elasticity of the lifetime utility.

Figure 7 Figure 8

Figure 8 displays the consumption-wealth ratio for the representative investor in the BY

model. The parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816,

ϕe = 0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters

are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527,

p0 = 617.23, and p1 = 228.24. The x-axis gives the long run risk variable in the interval

[−7ϕeσ, 7ϕeσ]. The y-axis records the consumption to wealth ratio for the representative

investor.
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Figure 9 displays the price-dividend ratio for the BY model. The parameters are x̄ =

0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328,

ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and

p1 = 228.24. The x-axis gives the long run risk variable on the interval [−7ϕeσ, 7ϕeσ]. The

y-axis records the price-dividend ratio

Figure 9 Figure 10

Figure 10 displays the relative error between a 90th order and 100th order Taylor polynomial

for the price-dividend ratio in the BY model. The parameters are x̄ = 0.0007573, σ0 =

0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9,

and b = 175.33. The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902. The initial

conditions are g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The x-axis gives the

long run risk variable in the interval [−7ϕeσ,−7ϕeσ]. The y-axis records the price-dividend

ratio.
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Figure 11 displays the risk neutral mean of the long run risk variable µp(x) for the price-

dividend ratio for the BY model. The parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3,

ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33.

The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions for

the low interest rate case are g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The

x-axis gives the long run risk variable on the interval [−7ϕeσ, 7ϕeσ]. The y-axis records the

risk neutral mean of the long run risk variable for the price-dividend ratio.

Figure 11 Figure 12

Figure 12 displays the rate of discount for the price-dividend ratio for the BY model. The

parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042,

ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The initial conditions are g0 = 1.4340,

g1 = 0.03527, p0 = 617.23, and p1 = 228.24. The x-axis gives the long run risk variable in the

interval [−7ϕeσ, 7ϕeσ]. The y-axis records discount rate for the price-dividend ratio.
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Figure 13 displays the price-dividend function in the Campbell and Cochrane model. The

parameter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 =

219.60, p1 = 111.76, S̄ = 0.0448 and µr = 0.32 come from CCH. The x-axis gives the surplus

consumption ratio on the support of the distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061].

The y-axis records the price-dividend ratio.
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Figure 13 Figure 14

Figure 14 portrays the equity premium and standard deviation of equity in the continuous

time model of Campbell and Cochrane. The parameter values are rb = 0.00078, x̄ = 0.00157,

φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76, S̄ = 0.0448 and µr = 0.32

comes from CCH. The x-axis gives the surplus consumption ratio on the support of the

distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061]. The y-axis records the equity premium and

standard deviation. The equity premium line is the solid line, while the dotted line represents

the standard deviation.
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Figure 15 displays the risk interest rate for the BY model. The parameters are x̄ =

0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe = 0.042, ρcx = 0.2328,

ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527, p0 = 617.23, and

p1 = 228.24. The x-axis gives the long run risk variable on the interval [−4ϕeσ, 4ϕeσ]. The

y-axis records the risk free interest rate.

Figure 15 Figure 16

Figure 16 portrays the equity premium and standard deviation of equity premium for the

BY model. The parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816,

ϕe = 0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters

are α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, g1 = 0.03527,

p0 = 617.23, and p1 = 228.24. The x-axis gives the long run risk variable on the interval

[−4ϕeσ, 4ϕeσ]. The y-axis records the equity premium (solid line) and the standard deviation

(dash line) for the equity premium.
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Figure 17 displays risk neutral mean of x for the long run risk free asset for the BY model.

The parameters are x̄ = 0.0007573, σ0 = 0.005385, φ = 2.3, ϕd = 3.8, κ = 0.01816, ϕe =

0.042, ρcx = 0.2328, ρcd = 0.2465, a = 10.9, and b = 175.33. The preference parameters are

α = −9, ρ = 1
3

and β = 0.0006902. The initial conditions are g0 = 1.4340, and g1 = 0.03527.

The x-axis gives the long run risk variable on the interval [−6ϕeσ, 6ϕeσ]. The y-axis records

the risk free interest rate.

Figure 17
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6 Appendix

Derivation of lifetime utility ODE (15). By the stochastic process (1) and Ito’s lemma,

we have

dC =

[
x + x̄ +

σ2(x)

2

]
C dt + σ(x)C dω̃1, (95)

where C̄ = ex̄ is the steady state consumption. The long run risk variable x follows the

stochastic process (3). Base on (3), (95), and the change of variable which leads to the

equivalent aggregator (10), the lifetime utility follows the backward stochastic differential

equation (12).

By (12), the lifetime utility satisfies

E[dV ] = −f(C, V ) dt. (96)

Duffie and Lions (1992) assume that the lifetime utility is a function of consumption. We

will make the same assumption that V = V (C, x), where x is included in the lifetime utility

function because it is a driving force of consumption. Use Ito’s lemma to compute E[dV (C, x)]

and equate this with −f(C, V ) to get the differential equation.

dV (C, x) =
∂V

∂t
dt +

∂V

∂C
dC +

∂V

∂x
dx +

1

2

∂2V

∂C2
(dC)2 +

∂2V

∂C∂x
(dC)(dx) +

1

2

∂2V

∂x2
(dx)2 (97)

After plugging in (3) and (95), setting the expression equal to −f(C, V ), and dividing through

by dt, one arrives at the line below.

0 = f(C, V ) +

[
x + x̄ +

σ2(x)

2

]
CVC − κxVx

+
σ2(x)

2
C2VCC + σ2(x)ϕeρxcCVCx +

σ2(x)

2
ϕ2

eVxx. (98)

Recall (13) V (C, x) = Cαv(x) so that

f(C, V (C, x)) = Cαf(1, v(x)). (99)

Compute the second order partial derivatives of V .

VC = αCα−1v, Vx = Cαv′, (100)
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VCC = α(α− 1)Cα−2v, VCx = αCα−1v′, Vxx = Cαv′′. (101)

The equation (98) is equivalent to

0 =
β

ρ
(αv)1−ρ/α +

[
α(x + x̄) +

σ2(x)

2
α2 − αβ

ρ

]
v + [σ2(x)ϕeρxcα− κx]v′ +

σ2(x)

2
ϕ2

ev
′′.

(102)

Next use the change of variable (14) so that

v′(x) =
1

ρ
g(x)α/ρ−1g′(x) (103)

and

v′′(x) =
1

ρ

(
α

ρ
− 1

)
g(x)α/ρ−2g′(x)2 +

1

ρ
g(x)α/ρ−1g′′(x). (104)

Substitute these results into (102) to get the ODE (15)

0 =
β

g
+

[
ρx + ρx̄ +

σ2(x)

2
αρ− β

]
+

[
σ2(x)ϕeρxcα− κx

] g′

g

+
σ2(x)

2
ϕ2

e

(
α

ρ
− 1

)(
g′

g

)2

+
σ2(x)

2
ϕ2

e

g′′

g
. (105)

Derivation of SDE for state prices (30). The SDE (30) follows from (28). To find the

differential in (28) first recall (97). Plugging in the partial derivatives of V (100) and (101),

and dividing the result by V , one arrives at

dV

V
= α

dC

C
+

v′

v
dx +

1

2
α(α− 1)

(
dC

C

)2

+ α
v′

v

(
dC

C

)
(dx) +

1

2

v′′

v
(dx)2

=

{
αx + αx̄ +

σ2(x)

2
α2 + [σ2(x)ϕeρxcα− κx]

v′

v
+

σ2(x)

2
ϕ2

e

v′′

v

}
dt

+ σ(x)α dω̃1 + σ(x)ϕe
v′

v
dω̃3. (106)

Remember that

f(C, V ) =
β

ρ

Cρ − (αV )ρ/α

(αV )ρ/α−1
. (107)

This implies that

fV (C, V ) = −β

ρ

[
(ρ− α)Cρ

(αV )ρ/α
+ α

]
= −β

ρ

[
ρ− α

(αv)ρ/α
+ α

]
(108)
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and

fC(C, V ) = β
Cρ−1

(αV )ρ/α−1
= β

Cα−1

(αv)ρ/α−1
. (109)

Now take the partial derivatives of fC(C, V ) which will be used in the computation of dΛ,

and then evaluate using the functional form V (C, x) = Cαv(x).

The first order partial derivatives of fC(C, V ) are

∂fC

∂C
(C, V ) = β(ρ− 1)

Cρ−2

(αV )ρ/α−1
=

ρ− 1

C
fC(C, V ),

∂fC

∂V
(C, V ) = β(α− ρ)

Cρ−1

(αV )ρ/α
=

α− ρ

αV
fC(C, V ). (110)

The second order partial derivatives of fC(C, V ) are

∂2fC

∂C2
(C, V ) = β(ρ− 1)(ρ− 2)

Cρ−3

(αV )ρ/α−1
=

(ρ− 1)(ρ− 2)

C2
fC(C, V ),

∂2fC

∂C∂V
(C, V ) = β(α− ρ)(ρ− 1)

Cρ−2

(αV )ρ/α
=

(α− ρ)(ρ− 1)

αCV
fC(C, V ),

∂2fC

∂V 2
(C, V ) = βρ(ρ− α)

Cρ−1

(αV )ρ/α+1
=

ρ(ρ− α)

α2V 2
fC(C, V ). (111)

By Ito’s lemma, the pricing kernel Λ follows the stochastic process

dΛ = exp

[∫ t

0

fV (Cs, Vs) ds

] [
fV fC dt +

∂fC

∂C
dC +

∂fC

∂V
dV

+
1

2

∂2fC

∂C2
(dC)2 +

∂2fC

∂C∂V
(dC)(dV ) +

1

2

∂2fC

∂V 2
(dV )2

]

= Λ

[
fV dt + (ρ− 1)

dC

C
+

α− ρ

α

dV

V
+

(ρ− 1)(ρ− 2)

2

(
dC

C

)2

+
(α− ρ)(ρ− 1)

α

(
dC

C

) (
dV

V

)
+

ρ(ρ− α)

2α2

(
dV

V

)2 ]
. (112)

Divide the equation (112) by Λ to get

dΛ

Λ
=

{
(α− 1)x + (α− 1)x̄− αβ

ρ
+

σ2(x)

2
(α− 1)2 − β(ρ− α)

ρ(αv)ρ/α

+

[
κ(ρ− α)

α
x− σ2(x)ϕeρxc

(ρ− α)(α− 1)

α

]
v′

v

+
σ2(x)

2

ϕ2
eρ(ρ− α)

α2

(
v′

v

)2

+
σ2(x)

2

ϕ2
e(α− ρ)

α

v′′

v

}
dt

+ σ(x)(α− 1) dω̃1 +
σ(x)ϕe(α− ρ)

α

v′

v
dω̃3. (113)
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Apply the substitution described in (14), (103), and (104).

dΛ

Λ
=

{
(α− 1)x + (α− 1)x̄− αβ

ρ
+

σ2(x)

2
(α− 1)2 − β(ρ− α)

ρg

+

[
κ(ρ− α)

ρ
x− σ2(x)ϕeρxc

(ρ− α)(α− 1)

ρ

]
g′

g

+
σ2(x)

2

ϕ2
e(ρ− α)(2ρ− α)

ρ2

(
g′

g

)2

+
σ2(x)

2

ϕ2
e(α− ρ)

ρ

g′′

g

}
dt

+ σ(x)(α− 1) dω̃1 +
σ(x)ϕe(α− ρ)

ρ

g′

g
dω̃3

= µΛ(x) dt + σ(x)(α− 1) dω̃1 +
σ(x)ϕe(α− ρ)

ρ

g′

g
dω̃3. (114)

Rewrite the differential equation (15) for the lifetime utility function as

σ2(x)

2

ϕ2
e(ρ− α)

ρ

(
g′

g

)2

=
β

g
+

[
ρx + ρx̄ +

σ2(x)

2
αρ− β

]
− [κx− σ2(x)ϕeρxcα]

g′

g

+
σ2(x)

2
ϕ2

e

g′′

g
. (115)

Substitute this result into (114) to get a new expression for the instantaneous mean of Λ.

µΛ(x) = (2ρ− 1)x + (2ρ− 1)x̄− 2β +
σ2(x)

2
(2αρ− 2α + 1) +

β

g(x)

+

[
σ2(x)ϕeρxc

αρ + ρ− α

ρ
− κx

]
g′(x)

g(x)
+

σ2(x)

2
ϕ2

e

g′′(x)

g(x)
(116)

The rate of return for the risk-free bonds is determined by

Rb(Ct) dt = −Et [dΛt/Λt] = −µΛ(xt) dt. (117)

This completes the derivation of the SDE for the state prices (30) and its mean (31).

Derivation of price-dividend ratio ODE (35). The differential equation for the stock

price (34) is equivalent to

Λ(t)D(t) dt + Et [d(Λ(t)p(t)D(t))] = 0. (118)

By Ito’s lemma

d(ΛpD)

ΛpD
=

dΛ

Λ
+

dp

p
+

dD

D
+

dΛdp

Λp
+

dDdp

Dp
+

dΛdD

ΛD
. (119)
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Consequently, (118) is equivalent further to

dt

p
+ Et

[
dΛ

Λ
+

dp

p
+

dD

D
+

dΛdp

Λp
+

dDdp

Dp
+

dΛdD

ΛD

]
= 0. (120)

The dividend growth is found by applying Ito’s lemma to (2) so that

dD

D
=

[
φx + x̄ +

σ2(x)

2
ϕ2

d

]
dt + σ(x)ϕd dω̃2. (121)

The price-dividend ratio function p = p(x) is assumed to be dependent on the long run

risk variable, since it is the only variable impacting dividend growth (33) or the state price

process (30). By Ito’s Lemma

dp = p′(x)dx +
1

2
p′′(x)(dx)2. (122)

The stochastic process (3) for the long run risk implies (dx)2 = σ2(x)ϕ2
e dt.

dp =

[
−κxp′(x) +

σ2(x)

2
ϕ2

ep
′′(x)

]
dt + σ(x)ϕep

′(x) dω̃3 (123)

Calculate Et[dΛ/Λ], Et[dp/p], Et[dD/D], Et[dΛdp/Λp], Et[dDdp/Dp], and Et[dΛdD/ΛD].

Et

[
dΛ

Λ

]
= F (x)dt,

Et

[
dp

p

]
=

[
−κx

p′(x)

p(x)
+

σ2(x)

2
ϕ2

e

p′′(x)

p(x)

]
dt,

Et

[
dD

D

]
=

[
φx + x̄ +

σ2(x)

2
ϕ2

d

]
dt,

Et

[
dΛdp

Λp

]
= σ2(x)

[
ϕeρxc(α− 1) +

ϕ2
e(α− ρ)

ρ

g′(x)

g(x)

]
p′(x)

p(x)
dt,

Et

[
dDdp

Dp

]
= σ2(x)ϕeϕdρxcρcd

p′(x)

p(x)
dt,

Et

[
dΛdD

ΛD

]
= σ2(x)ϕdρcd

[
α− 1 +

ϕeρxc(α− ρ)

ρ

g′(x)

g(x)

]
dt.

(124)

By (120), one obtains the ordinary differential equation

1 +

{
µΛ(x) + φx + x̄ +

σ2(x)

2
ϕ2

d + σ2(x)ϕdρcd

[
α− 1 +

ϕeρxc(α− ρ)

ρ

g′(x)

g(x)

]}
p

+

{
σ2(x)ϕeρxc(α− 1 + ϕdρcd)− κx + σ2(x)

ϕ2
e(α− ρ)

ρ

g′(x)

g(x)

}
p′

+
σ2(x)

2
ϕ2

ep
′′ = 0. (125)

60



Finally, use the expression for µΛ(x) in (31) to find the final form of the differential

equation for the price-dividend ratio function.

1 +

{
ρx + 2ρx̄− 2β +

σ2(x)

2
[ϕ2

d + 2ϕdρcd(α− 1) + 2αρ− 2α + 1] +
β

g(x)

+

[
σ2(x)ϕeρxc

ρ
(ρα + ρ− α + ϕdρcd(α− ρ))− κx

]
g′(x)

g(x)
+

σ2(x)

2
ϕ2

e

g′′(x)

g(x)

}
p

+

{
σ2(x)ϕeρxc(α− 1 + ϕdρcd)− κx + σ2(x)

ϕ2
e(α− ρ)

ρ

g′(x)

g(x)

}
p′

+
σ2(x)

2
ϕ2

ep
′′ = 0. (126)

Derivation of long term risk free asset ODE (88). The differential equation for the

long term risk free asset (34) is equivalent to

(
dt

k
−Rb

)
dt + Et

[
dk

k
+

dΛdk

Λk

]
= 0, (127)

since dividends is always one unit of consumption D(t) = 1.

The price of the long term risk free asset k = k(x) is assumed to be dependent on the long

run risk variable, since it is the only variable impacting the state price process (30). By Ito’s

Lemma

dk = k′(x)dx +
1

2
k′′(x)(dx)2. (128)

The stochastic process (3) for the long run risk implies (dx)2 = ϕ2
eσ

2(x) dt so that

dk

k
=

[
−κx

k′(x)

k(x)
+

ϕ2
eσ

2(x)

2

k′′(x)

k(x)

]
dt + σ(x)ϕe

k′(x)

k(x)
dω̃3 (129)

As a result,

Et

[
dΛdk

Λk

]
=

ϕ2
eσ

2(x)(α− ρ)

ρ

g′(x)

g(x)

k′(x)

k(x)
dt. (130)

Substituting (129) and (130) into (127) yields (88).

Proof of The Cauchy-Kovalevsky Theorem in R2. Consider the initial value problem

(IVP) for second-order linear partial differential equation of the form

∂2u

∂t2
= A(x, t)

∂2u

∂x2
+ B(x, t)

∂2u

∂x∂t
+ C(x, t)

∂u

∂x
+ D(x, t)

∂u

∂t
+ E(x, t)u + g(x, t) (131)
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u(x, 0) = u0(x), and
∂u

∂t
(x, 0) = u1(x), (132)

where the coefficients are analytic functions about (x, t) = (0, 0).

Theorem 6.1. There is a unique analytic solution u(x, t) to the initial value problem (131)–

(132) near (0, 0). If the coefficients A, B, C, D, E and the force term g are analytic in

the square {(x, t) ∈ R2 : |x| < r, |t| < r}, and furthermore the coefficients are bounded in

absolute value by M and the force term g is bounded in absolute value by L, then the region

of analyticity of the solution contains the set
{

(x, t) ∈ R2 : |x + ρt| < r

(
1− M(ρ + 1)

ρ2

)}
, (133)

where ρ > 1 and large enough so that M(ρ + 1)/ρ2 < 1.

Proof: This proof is written along the lines of the proof in the book of Mizohata (1973),

in which the Cauchy-Kovalevsky Theorem is proved for general linear PDE. Letting

a1(x, t,
∂

∂x
) = B(x, t)

∂

∂x
+ D(x, t) (134)

and

a0(x, t,
∂

∂x
) = A(x, t)

∂2

∂2x
+ C(x, t)

∂

∂x
+ E(x, t) (135)

equation (131) can be written as

∂2u

∂t2
= a1(x, t,

∂

∂x
)
∂u

∂t
+ a0(x, t,

∂

∂x
)u + g(x, t) (136)

Now, making the following change of the dependent variable

ũ(x, t) = u(x, t)− u1(x)t− u0(x), or u(x, t) = ũ(x, t) + u1(x)t + u0(x) (137)

equation (136) becomes

∂2ũ

∂t2
= a1(x, t,

∂

∂x
)
∂ũ

∂t
+ a0(x, t,

∂

∂x
)ũ + f(x, t)

where

f(x, t) = g(x, t) + a1(x, t,
∂

∂x
)u1(x) + a0(x, t,

∂

∂x
)[u1(x)t + u0(x)]. (138)
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Also, we have

ũ(x, 0) = 0 and
∂ũ

∂t
(x, 0) = 0.

Thus, after dropping the the “tildes” the initial value problem (131)–(132) takes the form

∂2u

∂t2
= a1(x, t,

∂

∂x
)
∂u

∂t
+ a0(x, t,

∂

∂x
)u + f(x, t) (139)

u(x, 0) = 0, and
∂u

∂t
(x, 0) = 0, (140)

We are looking for a solution which is analytic near the origin. Therefore it should have a

series expansion of the form:

u(x, t) =
∞∑

k,j=0

ck,jx
ktj. (141)

Since the initial data are zero, we must have

u(x, 0) =
∞∑

k,j=0

ck,0x
k = 0, and

∂u

∂t
(x, 0) =

∞∑

k=0

ck,1x
k = 0,

which gives

ck,0 = 0 and ck,1 = 0, for all k = 0, 1, 2, · · · .

Therefore the solution is of the form:

u(x, t) =
∞∑

k=0, j=2

ck,jx
ktj. (142)

Next, letting t = 0 in PDE (139) and using the data u(x, 0) = 0 and ∂u
∂t

(x, 0) = 0, gives

∂2u

∂t2
(x, 0) =

(
a1(x, t,

∂

∂x
)
∂u

∂t
(x, t) + a0(x, t,

∂

∂x
)u(x, t) + f(x, t)

)∣∣∣
t=0

= f(x, 0). (143)

Since
∂2u

∂t2
(x, t) =

∞∑

k=0, j=2

j(j − 1)ck,jx
ktj−2,

in terms of power series the last relation reads as

∞∑

k=0

2!ck,2x
k =

∞∑

k=0

cf
k,0x

k,
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or

ck,2 =
1

2!
cf
k,0, k = 0, 1, 2, · · · . (144)

Next, differentiating PDE (139) with respect to t gives

∂3u

∂t3
(x, t) = a1(x, t,

∂

∂x
)
∂2u

∂t2
(x, t) + a0(x, t,

∂

∂x
)
∂u

∂t
(x, t) +

∂f

∂t
(x, t)

+
∂a1

∂t
(x, t,

∂

∂x
)
∂u

∂t
+

∂a0

∂t
(x, t,

∂

∂x
)u

Evaluating both sides of this equation at t = 0 and using the zero-initial data and relation

(143) gives
∂3u

∂t3
(x, 0) = a1(x, t,

∂

∂x
)f(x, t)

∣∣∣
t=0

+
∂f

∂t
(x, t)

∣∣∣
t=0

,

or
∂3u

∂t3
(x, 0) = B(x, t)

∂f

∂x
(x, t)

∣∣∣
t=0

+ D(x, t)f(x, t)
∣∣∣
t=0

+
∂f

∂t
(x, t)

∣∣∣
t=0

, (145)

which in terms of power series reads as follows:

∞∑

k=0

3!ck,3x
k =

( ∞∑

k=0

cB
k,0x

k
)( ∞∑

k=1

k cf
k,0x

k−1
)

+
( ∞∑

k=0

cD
k,0x

k
)( ∞∑

k=0

cf
k,0x

k
)

+
∞∑

k=0

cf
k,1x

k

(146)

After, multiplying and equating the coefficients of same powers we obtain the relation

ck,3 =
1

3!

{ k∑

`=0

(cB
k−`,0 · (` + 1) cf

`+1,0 + cD
k−`,0c

f
`,0) + cf

k,1

}
, k = 0, 1, 2, · · · . (147)

Continuing this way its easy to see that for any fixed j ≥ 2 we have that the coefficients of

the solution ck,j are determined uniquely. Also, each ck,j is expressed as a polynomial Qk,j

with positive coefficients and with variables the coefficients of cA
m,`, cB

m,`, cC
m,`, cD

m,`, cE
m,` and

cf
m,` with m ≤ k + 2 and ` < j. That is,

ck,j = Qk,j(c
A
m,`, c

B
m,`, c

C
m,`, c

D
m,`, c

E
m,`, c

f
m,`)m≤k+2, `<j. (148)

64



Next, let us assume that all coefficients and the force function are analytic in the square

defined by |x| ≤ r and |t| ≤ r. Also, assume that the coefficients are bounded in abulute

value by M and the function f by L. Then, using the Cauchy’s integral formula in C2

h(z1, z2) =
1

(2πi)2

∫

|ζ1|=r

∫

|ζ2|=r

h(ζ1, ζ2)

(z − ζ1)(z − ζ2)
dζ1dζ2

for a holomorphic function h(z1, z2) on the polydisc D2 = {(z1, z2) ∈ C2 : |z1| ≤ r, |z2| ≤ r}
it follows that

∂k+jh

∂zk
1∂zj

2

(z1, z2) =
k!j!

(2πi)2

∫

|ζ1|=r

∫

|ζ2|=r

h(ζ1, ζ2)

(z − ζ1)k+1(z − ζ2)j+1
dζ1dζ2.

If |h(z1, z2)| ≤ M on the polydisc then at the origin this relation gives

| ∂k+jh

∂zk
1∂zj

2

(0, 0)| ≤ M
k!j!

rk+j
. (149)

Using inequality (149) we see that the the coefficients of the power series of the function

H(z1, z2) =
M

(1− z1/r)(1− z2/r)
(150)

dominate the coefficients of the power series of the function h(z1, z2) in the polydiss D2.

Therefore, the power series of the coefficients of our PDE are dominated by the power

series of the function M/[(1− z1/r)(1− z2/r)] and the power series of the force term f(x, t)

is dominated by the power series of the function L/[(1 − z1/r)(1 − z2/r)]. Furthermore,

observe that the power series of 1/[(1− z1/r)(1− z2/r)] is dominated by the power series of

1/[1− (z1 + z2)/r)]. Also, for any ρ > 1 the power series of 1/[1− (z1 + z2)/r)] is dominated

by the power series of 1/[1− (z1 + ρz2)/r)]. Therefore, the following holds:

(I) The power series of the coefficients A(x, t), B(x, t), C(x, t), D(x, t) and E(x, t) of our PDE

(139) are dominated by the power series of:

M

1− (x + ρt)/r
, for

∣∣x + ρt

r

∣∣ < 1, (151)

and
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(II) The power series of the force term f(x, t) is dominated by the power series of:

L

1− (x + ρt)/r
, for

∣∣x + ρt

r

∣∣ < 1. (152)

Replacing all the coefficients of the PDE (139) with M/[1− (x+ρt)/r] and the force term

f(x, t) with L/[1− (x + ρt)/r] we obtain the following “dominant” PDE

∂2w

∂t2
= ã1(x, t,

∂

∂x
)
∂w

∂t
+ ã0(x, t,

∂

∂x
)w + f̃(x, t) (153)

ã1(x, t,
∂

∂x
) =

M

1− (x + ρt)/r

[ ∂

∂x
+ 1

]
, (154)

ã0(x, t,
∂

∂x
) =

M

1− (x + ρt)/r

[ ∂2

∂x2
+

∂

∂x
+ 1

]
, (155)

and

f̃(x, t) =
L

1− (x + ρt)/r
. (156)

Look for a solution w(x, t) to (153) of the form

w(x, t) = ϕ(
x + ρt

r
), (157)

where ϕ(s) is a function of a single variable, then PDE (153) reduces to the following ODE:

(ρ

r

)2

ϕ′′ =
1

1− s

(
Mρ

r2
ϕ′′ +

Mρ

r
ϕ′ +

M

r2
ϕ′′ +

M

r
ϕ′ + Mϕ + L

)
. (158)

Solving for ϕ′′ the last equation gives

[(1− s)ρ2 −M(ρ + 1)]ϕ′′ = Mr(ρ + 1)ϕ′ + Mr2ϕ + Lr2,

or

ϕ′′ =
1/ρ2

1−M(ρ + 1)/ρ2 − s
[Mr(ρ + 1)ϕ′ + Mr2ϕ + Lr2]. (159)

Using the analyticity theorem for ODE (presented in CCH) one finds that no matter what are

the initial conditions at zero differental equation (159) has an analytic solution with radius

of convergence given by:

|s| < 1− M(ρ + 1)

ρ2
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which gives the following (x, t)-region of convergence for the solution w of the partial differ-

ential equation (153)

|x + ρt| < r

(
1− M(ρ + 1)

ρ2

)
.

The constant ρ > 1 should be chosen so that

M(ρ + 1)

ρ2
< 1.

In fact, it should be chosen in a way that makes the region of convergence:

{
(x, t) ∈ R2 : |x + ρt| < r

(
1− M(ρ + 1)

ρ2

)}
,

largest.

Finally, choosing initial data ϕ(0) ≥ 0 and ϕ′(0) ≥ 0 and using equation (159) one finds

that

ϕ′′(0) =
1/ρ2

1−M(ρ + 1)/ρ2
[Mr(ρ + 1)ϕ′(0) + Mr2ϕ(0) + Lr2] ≥ 0. (160)

Differentiating equation (159) repeatedly and using previous information it follows that

dkϕ

dsk
(0) ≥ 0, for all k = 0, 1, 2, · · · .

Thus the coefficients of the power series of ϕ(s) are non-negative. Therefore, the coefficients

of the power series of the initial data

w(x, 0) =
1

r
ϕ(x/r), and

∂w

∂t
(x, 0) =

ρ

r
ϕ′(x/r), (161)

are nonegative. Therefore, the coefficients of the solution to the initial value problem (153)-

(161) dominate those of the solution to the initial value problem (139)–(140), since they are

both expressed by the same universal polynomial Qj,k, described in (148). Thus, the PDE

(131) has a unique analytic solution near zero with region of convergence containing the set

described in (133).

¤
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Remark. To obtain the largest region of convergence for the solution one should begin with

the largest region of congergence for the coeefficients the force function and the data. That

could be more complicated than a square, at least it could be a rectangle. Also, one should

use the least upper bound for the coeeficients M . Finally, one should use the “best”

dominant PDE and should try to solve it explicitly or find the best estimate for the region

of analyticity of its solution. The PDE’s encountered in financial and economics models are

special and one could do better analysis for them as in illustrated by the analysis in section

4 of (15).

Proof of Lemmas 3.2 and 3.3. The proof of Lemma 3.2 and Lemma 3.3 follows:

Proof: The sequence {∑n
k=1(1/k)− ln(n + 1)}∞n=1 is an increasing sequence and converges

to the Euler-Mascheroni constant γ ≈ 0.5772. So
∑n

k=1
1
k
≤ γ + ln(n + 1) for n = 1, 2, 3, . . . .

n−b∑

k=a

1

(k + c)(n− k + d)
=

1

n + c + d

n−b∑

k=a

(
1

k + c
+

1

n− k + d

)
≤ 2

n + c + d

n+c+d∑

k=1

1

k

≤ 2[1 + ln(n + c + d + 1)]

n + c + d
= Un+c+d

¤

Proof: Recall that Uk = 2[1 + ln(k + 1)]/k for k = 1, 2, 3, . . . .

n∑

k=b

1

k + d
· Bn−k

(n− k)!
=

1

n + d
+

n−1∑

k=b

1

k + d
· Bn−k

(n− k)!

=
1

n + d
+ B

n−1∑

k=b

1

(k + d)(n− k)
· Bn−k−1

(n− k − 1)!

≤ 1

n + d
+ BeBUn+d =

1

n + d
+

2BeB[1 + ln(n + d + 1)]

n + d

=
(1 + 2BeB) + 2BeB ln(n + d + 1)

n + d
= UB

n+d

¤

Power Series Representations and Their Coefficients Suppose that the coefficients of

an invertible power series f(x) =
∑∞

n=0 Anxn satisfy the inequalities:

|An/A0| ≤ Mn for n = 0, 1, 2, . . . (162)

68



where M is a fixed positive number. Find the power series representations around the origin

for the functions 1/f(x), f ′(x)/f(x), f ′′(x)/f(x), eBx/f(x), and eBxf ′(x)/f(x), where B is a

constant, and then estimate the coefficients of these power series.

f ′(x) =
∞∑

n=0

(n + 1)An+1x
n , f ′′(x) =

∞∑
n=0

(n + 1)(n + 2)An+2x
n ,

(1) Let g(x) = f(x)/A0 =
∑∞

n=0(An/A0)x
n. Find the power series representation around the

origin for the function 1/g(x).

Write 1/g(x) =
∑∞

n=0 Bnxn.

1 =

( ∞∑
n=0

An

A0

xn

)( ∞∑
n=0

Bnxn

)
=

∞∑
n=0

(
n∑

k=0

An−k

A0

Bk

)
xn

n∑

k=0

An−k

A0

Bk = δn,0; B0 = 1, Bn = −
n−1∑

k=0

An−k

A0

Bk for n = 1, 2, . . .

Verify that |Bn| ≤ (2M)n for n = 0, 1, 2, 3, . . . .

Proof. The inequality holds when n = 0. Suppose that |Bk| ≤ (2M)k for 0 ≤ k ≤ n− 1.

|Bn| ≤
n−1∑

k=0

∣∣∣∣
An−k

A0

∣∣∣∣ |Bk| ≤
n−1∑

k=0

Mn−k(2M)k = Mn

n−1∑

k=0

2k = (2n − 1)Mn ≤ (2M)n

By mathematical induction, we have |Bn| ≤ (2M)n for n = 0, 1, 2, . . . .

1

f(x)
=

1

A0g(x)
=

∞∑
n=0

Bn

A0

xn

(2) Write the power series representation around the origin for f ′(x)/f(x) as
∑∞

n=0 Cnxn.

f ′(x)

f(x)
=

( ∞∑
n=0

(n + 1)An+1x
n

)( ∞∑
n=0

Bn

A0

xn

)
=

∞∑
n=0

(
n∑

k=0

(k + 1)
Ak+1

A0

Bn−k

)
xn

Cn =
n∑

k=0

(k + 1)
Ak+1

A0

Bn−k for n = 0, 1, 2, . . .

Verify that |Cn| ≤ (3M)n+1 for n = 0, 1, 2, . . . .
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Proof. The inequality holds when n = 0. Suppose that |Ck| ≤ (3M)k+1 for 0 ≤ k ≤ n− 1.

Note that
∑n

k=0(k + 1)2n−k ≤ 3n+1 for n = 0, 1, 2, . . . .

|Cn| ≤
n∑

k=0

(k + 1)

∣∣∣∣
Ak+1

A0

∣∣∣∣ |Bn−k|

≤
n∑

k=0

(k + 1)Mk+1(2M)n−k

= Mn+1

n∑

k=0

(k + 1)2n−k

≤ (3M)n+1

By mathematical induction, we have |Cn| ≤ (3M)n+1 for n = 0, 1, 2, . . . .

(3) Write the power series representation around the origin for f ′′(x)/f(x) as
∑∞

n=0 Dnxn.

f ′′(x)

f(x)
=

( ∞∑
n=0

(n + 1)(n + 2)An+2x
n

)( ∞∑
n=0

Bn

A0

xn

)
=

∞∑
n=0

(
n∑

k=0

(k + 1)(k + 2)
Ak+2

A0

Bn−k

)
xn

Dn =
n∑

k=0

(k + 1)(k + 2)
Ak+2

A0

Bn−k for n = 0, 1, 2, . . .

Verify that |Dn| ≤ (3M)n+2 for n = 0, 1, 2, . . . .

Proof. The inequality holds when n = 0. Suppose that |Dk| ≤ (3M)k+2 for 0 ≤ k ≤ n− 1.

Note that
∑n

k=0(k + 1)(k + 2)2n−k ≤ 3n+2 for n = 0, 1, 2, . . . .

|Dn| ≤
n∑

k=0

(k + 1)(k + 2)

∣∣∣∣
Ak+2

A0

∣∣∣∣ |Bn−k|

≤
n∑

k=0

(k + 1)(k + 2)Mk+2(2M)n−k

= Mn+2

n∑

k=0

(k + 1)(k + 2)2n−k

≤ (3M)n+2

By mathematical induction, we have |Dn| ≤ (3M)n+2 for n = 0, 1, 2, . . . .
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(4) Write the power series representation around the origin for eBx/f(x) as
∑∞

n=0 Enx
n.

eBx

f(x)
=

( ∞∑
n=0

Bn

n!
xn

)( ∞∑
n=0

Bn

A0

xn

)
=

∞∑
n=0

(
n∑

k=0

Bk

k!

Bn−k

A0

)
xn

En =
1

A0

n∑

k=0

Bk

k!
Bn−k

|En| ≤ 1

|A0|
n∑

k=0

|B|k
k!
|Bn−k|

≤ 1

|A0|
n∑

k=0

|B|k
k!

(2M)n−k

=
(2M)n

|A0|
n∑

k=0

1

k!

( |B|
2M

)k

≤ e|B|/(2M)

|A0| (2M)n.

(5) Write the power series representation around the origin for eBxf ′(x)/f(x) as
∑∞

n=0 Fnxn.

eBxf ′(x)

f(x)
=

( ∞∑
n=0

Bn

n!
xn

) ( ∞∑
n=0

Cnx
n

)
=

∞∑
n=0

(
n∑

k=0

Bk

k!
Cn−k

)
xn

Fn =
n∑

r=0

Bk

k!
Cn−k

|Fn| ≤
n∑

k=0

|B|k
k!
|Cn−k|

≤
n∑

k=0

|B|k
k!

(3M)n−k+1

= (3M)n+1

n∑

k=0

1

k!

( |B|
3M

)k

= e|B|/(3M)(3M)n+1
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