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1 Introduction

Most applied research on asset pricing in continuous time assumes a linear structure for the stochastic

discount factor (SDF) or risk free interest rate. Researchers make this assumption since there are

closed form solutions for asset prices in this set up. However, it is known from the equity premium

literature that non-linear SDF are necessary to capture the dynamic behavior of the equity premium.1

In this paper we consider such asset pricing models in which the SDF and dividend process are

analytic. Using analytic methods we show that their solutions are analytic and quickly compute

polynomial approximations with precise error estimates.

An one-dimensional asset pricing model in continuous time is characterized by an ordinary dif-

ferential equation (ODE) whose solution is the price or return of the asset under study. There are

only a few examples of such models whose solution can be expressed in closed form. The most

general such models are those whose conditional expected SDF is linear in the state variable and the

conditional variance of this SDF is also linear in the state variable. They are called affine models

and their solutions are log-linear in the state variable.2 Observe for these simple asset pricing models

the linearity of the ODE coefficients leads to log-linear solutions.

Similarly, for general non-affine models analytic characteristics (SDF and dividend process),

which translate into analytic coefficients for the ODE of the model, lead to analytic solutions for the

price-dividend functions. An analytic asset pricing function f(x), defined on an open interval Ω in

R, has the desirable property that it can be represented by a Taylor series in some neighborhood of

each point x0 ∈ Ω.3 The radius of convergence is the largest number r such that the series converges
1Mehra and Prescott (1985). Constantinides (2002), Campbell and Viceira (2002), Mehra and Prescott (2003) and

Cochrane (2005, Chapters 20 and 21) provide recent exposition of this work.
2See Duffie and Kan (1996), Duffie, Pan, and Singleton (2000), and Dai and Singleton (2000). Duffie (1996, Chapter

7) and Shreve (2003, Chapter 10) discuss higher dimensional versions of these models which are not dealt with here.
The Heath, Jarrow and Morton (1992) model is based on the observed forward rates rather than the SDF. Their model
allows for higher polynomial functions but they do not provide a solution. Rather they use numerical methods to solve
the problem. Shreve (2003, Chapter 10) shows the relation between Heath, Jarrow and Morton and affine models.
More recently Gabaix (2007) develops a linear price-dividend function by engineering the dividend process to cancel
any non-linearity in the SDF.

3See CCCH and CCH (2008a) for a discussion of analyticity and how it applies to discrete time asset pricing models.
Throughout this paper we use CCCH to refer to Calin, Chen, Cosimano and Himonas (2005). In addition, CCH
(2008a), CCH (2008b), CCH (2008c) for Chen, Cosimano and Himonas (2008a), (2006b), and (2008c), respectively.
These papers show how to use analytic methods to solve discrete time asset pricing models.
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in the interval (x0− r, x0 + r). For a second order linear ODE with analytic coefficients near x0 and

non-zero coefficient of the second derivative term, the Cauchy-Kovalevsky Theorem states that its

initial value problem at x0 has a unique analytic solution in a neighborhood of x0. We find here

that most applied asset pricing models in one dimension yield an ODE with analytic coefficients,

as long as the conditional mean and standard deviation of the stochastic processes for the SDF and

the state variable are analytic. Thus, the Cauchy-Kovalevsky Theorem applies to most asset pricing

models in one dimension so that the equilibrium price-dividend function is analytic.

In this paper we provide the complete derivation of the solution to the Campbell and Cochrane

(1999) asset pricing model. We chose to solve this asset pricing model since its mathematical

complexity and economic interest seems to make it the most appropriate model for demonstrating

the analytic method. This model yields a second order linear ODE with analytic coefficients and

forcing term whose radius of convergence is r near the stationary point x0 of the stochastic process

for its state variable. This radius of convergence is large enough so that the interval (x0 − r, x0 + r)

includes all values of interest to investors. Applying the Cauchy-Kovalevsky Theorem we conclude

that the ODE for the Campbell and Cochrane model has a unique solution which is analytic about

the point x0. Furthermore, its radius of convergence r0 is at least equal to the smallest radius of

convergence of the two coefficients and the forcing term. The coefficients of the Taylor series for

the price-dividend ratio are quickly calculated using a recursive rule. Our numerical solution is the

nth order polynomial approximation of the price-dividend function in the interval (x0 − r0, x0 + r0).

Having established a uniform bound on the coefficients and forcing term on a circle with radius r < r0

in the complex plane, the Cauchy integral formula is used to determine a uniform bound on the error

between the numerical solution and the true price-dividend function for |x| < µr, where µ ∈ (0, 1).

The numerical solution can be made as accurate as one may desire by choosing sufficiently many

coefficients from the Taylor series. Having developed a numerical scheme to quickly and accurately

represent the price-dividend function for the Campbell and Cochrane model, below we catalog all

the steps necessary to apply the analytic method to most continuous time one-dimensional asset

pricing models.

The rest of the paper is structured as follows. Section 2 reviews the literature for one dimensional
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asset pricing models. Section 3 lays out the analytic method for solving one-dimensional asset pricing

models. Section 4 provides a complete analysis of the Campbell and Cochrane (1999) asset pricing

model. In addition, a menu is provided for accurately approximating most asset pricing models.

Section 5 carries out the simulation of the Campbell and Cochrane model using the polynomial

approximation method. Final comments are made in the last section.

2 Literature Review

One dimension asset pricing models are specified in either discrete or continuous time. The essential

components of the model are the stochastic discount factor (SDF)4, and the equation of motion for

the state variable. In discrete time models the solution is the equilibrium price-dividend function

which solves an integral equation. CCCH (2005) show how to use analytic methods to solve the

discrete time version of the Mehra and Prescott (1985) model. In this model the utility function

is assumed to be a constant relative risk averse utility, so that the SDF is an exponential function

with base consumption growth. The state variable consumption and/or dividend growth is assumed

to be a first order autoregressive (AR(1)) process. CCCH find that the analytic properties of these

essential components transfer to the equilibrium price-dividend function. As a result, they can

approximate the price-dividend function using an 9th order polynomial. Using the analytic property

of the price-dividend function, they establish a uniform bound on the price-dividend ratio for any

level of dividend growth of interest to financial economist. Thus, they are able to accurately represent

the price-dividend function for the Mehra and Prescott model with a higher order polynomial.

As is well known the Mehra and Prescott model leads to the equity premium puzzle in which

the return on stocks relative to bonds is too low compared to the observed equity premium. CCH

(2008a) use analytic methods to solve the discrete time version of Campbell and Cochrane’s (1999)

asset pricing model. To explain the equity premium Campbell and Cochrane introduce external

habits to capture the time variation in the risk aversion of investors. This external habit is rep-

resented by their surplus consumption ratio which measures the investor’s consumption relative to

her habitual level. The logarithm of the surplus consumption ratio is the state variable for the
4This is often refer to as the pricing kernel in finance
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model, and follows an AR(1) process. To vary the risk aversion of the investor the random shock to

this surplus consumption ratio is hit by normal random shocks to consumption growth, which are

amplified (dampen) by a sensitivity function, when consumption growth is low (high). CCH (2008a)

demonstrate that the price-dividend function simulated by Campbell and Cochrane is highly sen-

sitive to extreme negative levels of consumption growth. For example, the uniform bound on the

price-dividend function for consumption growth per month in the interval [x0 − 25%, x0 + 25%] is

about 20% below the price-dividend ratio reported by Campbell and Cochrane in their numerical

work. Here, x0 is the logarithm of the stationary surplus consumption ratio. This conclusion arises

because the amplification of the random shock for extreme negative consumption growth is un-

bounded, so that the integral equation places substantial weight on the value of the price-dividend

ratio at very low levels of consumption growth. Finally, CCH (2008b) solve the discrete time model

of Abel (1990) using the same methods. In Abel’s model the utility function is a constant relative

risk averse function in which utility is a function of consumption relative to a weighted average of

internal and external habits. The stochastic process for consumption growth is an AR(1) process.

For a coefficient of risk aversion of 3.25, and a fifty-fifty spilt between internal and external habits,

CCH (2008b) are able to match the historic equity premium with a higher order polynomial.

In summary, the solution to many discrete time asset pricing models can be accurately rep-

resented using higher order polynomial approximations within a range for the state variable that

includes any values of interest to investors.5 However, most of the applied work uses a low order

polynomial approximation in the neighborhood of the point x0, where x0 is usually the average value

of the state variable observed in the data set. Campbell (1993) solves a discrete time model with the

recursive utility of Epstein and Zin (1989, 1991).6 He uses a first order polynomial approximation

of the stochastic process for wealth, which is followed by a guess and verification that stock returns

have a log-normal distribution. In this case the logarithm of the price-dividend ratio is linear in
5Analytic methods may also use orthogonal polynomials. Judd (1992, 1996, 1998) and Stoer and Bulirsch (2002)

show how to use polynomial interpolation methods to represent such polynomials with orthogonal polynomials.
6CCH (2008c) show that an asset pricing model using recursive utility can be transformed into an integral equation

similar to that found in the Mehra and Prescott, and Abel models. Consequently, one would also approximate the
solution to these models with a higher order polynomial approximation.
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the state variable, consumption growth.7 This procedure for approximating the solution to asset

pricing models is now standard as evidence by Bansal and Yaron (2004), who use a model similar to

Campbell. Bansal and Yaron also consider a more general model in which the variance of the state

variable is an AR(1) process. This adds a second state variable, the current variance of the state

variable, to the linear function for the logarithm of the price-dividend ratio.8 This procedure would

be accurate for a small region of convergence around x0. Yet, the accuracy of these approximations

deteriorates as one considers the larger region of convergence around x0, which is observed in the

financial markets. Thus, empirical abnormalities obtained from these models could be the result of

approximation errors.

One difficulty with discrete time models is that the coefficients of the polynomial approximation

must be solved simultaneously, so that the computational cost may be quite large. In particular,

the coefficients are found by substituting the hypothesized polynomial into the integral equation

for the price-dividend function. One then manipulates the equation until it consists of the addition

and subtraction of polynomials in the state variable. The final step is to equate the coefficients for

each monomial. Each of these equations are linear in all the coefficients of the polynomial, so that

the system must be solved simultaneously. A second difficulty with discrete time models is that the

integral equation must be true over the whole range of the state variable allowed by its stochastic

process. In both the Abel (1990), and Campbell and Cochrane (1999) model the assumed normality

of the random shocks to dividend growth means that the price-dividend function must be evaluated

over a range in which the price-dividend function is not well defined.9 To overcome these difficulties

this paper shows how to use analytic methods to solve continuous time asset pricing models in one

dimension.
7Wang (1994), and Lo and Wang (2006) use a constant absolute risk aversion utility function with a normally

distributed state variable, so that the price-dividend ratio is linear in the state variable.
8Bansal and Yaron also use Judd’s projection method to represent the solution of the model, which they say is

”quite close to” the first order approximation. Yet, they do not say the order of the polynomial approximation used
in the projection method. In Croce, Lettau, and Ludvigson (2007), and Lettau, Ludvigson, and Wachter (2008),
models similar to Bansal and Yaron are solved with alternative information structure. Croce, Lettau, and Ludvigson
use a third order polynomial for their model with one state variable and second order for their model with two state
variables. They do not provide an estimate for the error in their approximation.

9Samuelson (1970) first recognized this issue. See also Jin and Judd (2002) for a discussion of this issue when using
the perturbation method. Geweke (2001) also encounters such problems.
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Solving a continuous time asset pricing problem in one dimension boils down to finding the

price-dividend function, p(x), that solves the following initial value problem (IVP):

p′′(x) + a(x)p′(x) + b(x)p(x) = g(x), p(x0) = p0, p′(x0) = p1, (2.1)

where the coefficients a(x), b(x), and the forcing function, g(x), are analytic near the point x0.

Comprehensive derivation of such IVP for the Campbell and Cochrane (1999) model is provided

below. For now the important point is that the coefficients are determined by the assumed functional

form for the SDF, and the instantaneous mean and standard deviation of the stochastic process for

the state variable.

Up to now most of the asset pricing models in continuous time assume affine stochastic discount

factors, so that the coefficients in the ODE (2.1) are affine as well.10 Cochrane (2005, Chapter

19) demonstrates how affine models are generalizations of earlier work by Vasicek (1977), and Cox,

Ingersoll and Ross (1985). Wang (1993) uses a constant absolute utility function with an Ohnstein-

Uhlembech process for the state variable.11 These assumptions lead to a linear price-dividend

function. Menzly, Santos, and Veronesi (2004) modify a continuous time version of Campbell and

Cochrane’s (1999) external habit model by using logarithmic preferences, and a linear sensitivity

function, so that the price-consumption ratio is linear in the state variable. In each of these models

researchers have been able to guess and verify solutions to these models. Constantinides (1990, 1992)

is one exception to this rule, yet he is also able to guess and verify a closed form solution. Cochrane,

Longstaff, and Santa-Clara (2008) solve a two tree version of Lucas’s (1979) asset pricing model with

logarithmic preferences and stochastic process for the state variable (the relative size of shares in the

two trees) with quadratic coefficients for the instantaneous mean and standard deviations. In this

more general case, they are also able to guess and verify the functional form of the price-dividend

ratio. Martin (2007) generalizes this model by allowing for constant relative risk averse utility, many

assets, and dividend growth that is subject to a Poisson process. He uses a Fourier transformation

to represent the price-dividend functions as an integral, which can be evaluated numerically. In each

of these models the price-dividend function turns out to be an analytic function.
10See Duffie and Kan (1996), Duffie, Pan, and Singleton (2000), and Dai and Singleton (2000).
11Ohnstein-Uhlembech process is a continuous time version of an AR(1) stochastic process.

6



The state of the literature for continuous time asset pricing models begs the question as to

whether asset pricing models can be solved using analytic methods. In this paper we answer this

question in the affirmative. In particular, most asset pricing models can be represented as a second

order linear ODE (2.1) with analytic coefficients, and forcing function. These differential equations

can be represented as initial value problems in which the two initial conditions, p(x0) = p0, and

p′(x0) = p1, are determined by the average price-dividend ratio, and the equity premium in the

data. In this case one can represent the solution to these differential equations as a power series

within the interval of convergence (x0 − r, x0 + r), where r is at least as large as the smallest

radius of convergence for the coefficients and the forcing function. As a result, the solution may

be represented by a polynomial within a range for the state variable which includes all values of

interest to investors. One can also calculate a uniform bound on the approximation error, when

the state variable lies within the radius of convergence for the power series solution. In addition,

the coefficients for this polynomial approximation are determined by a recursive rule starting with

the first two coefficients determined by the two initial conditions. Consequently, only the local

properties of the price-dividend ratio is used to determine the price-dividend ratio over the range

of interest for the state variable. Thus, an accurate approximation of the price-dividend function

can be calculated quickly relative to the discrete time models.12 Finally, the extreme values of the

state variable do not influence the accuracy of the numerical approximation. To demonstrate how

the analytic method is used to solve continuous time asset pricing models all the details necessary

to solve the continuous time version of Campbell and Cochrane’s (1999) asset pricing model are

provided.13 Campbell and Cochrane’s model is solved since it has proven to be the most challenging

to solve in discrete time. Thus, the analytic method can be used to quickly and accurately solve

most one dimensional continuous time asset pricing models.
12For example, a 20th order polynomial approximation takes 20 minutes for the discrete time Campbell and Cochrane

model, while a 110th order polynomial takes 10 seconds for the continuous time version of the same model. Both
programs were run in Maple on a PC with a duo core 2.66 GHz processor.

13The continuous time version of their model is contained in their 1994 working paper. They do not provide a
solution to the continuous time model.
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3 Analytic Properties of Asset Pricing Models

In this section, the analytic method for solving IVP problems (2.1) is explained. Recall that a

function f(x) is analytic near a point x0 if it can be represented by its Taylor series, that is

f(x) =
∞∑

k=0

f (k)(x0)
k!

(x− x0)k, (3.1)

as long as |x− x0| < r, where r is the radius of convergence.

The solution to the IVP (2.1) is analytic at x0. This is a special case of the well known Cauchy-

Kovalevsky Theorem. While this theorem holds for both linear and non-linear differential equations

in one and several variables, here it is stated for second order linear differential equations of the form

(2.1). For simplicity we shall also assume x0 = 0, since otherwise it can be reduced to this case by

a simply change of variable (translation).

Theorem 3.1. The initial value problem (2.1) has a unique solution p(x) near x0 = 0, which is

analytic with radius of convergence, r0, equal to at least the smallest radius of convergence of the

coefficients and the forcing term.

The proof of this well-known theorem can be found in many ODE books.14 However, for com-

pleteness sake, the proof is presented in the Appendix, including a useful error estimate.

This theorem qualifies the radius of convergence of the solution to be “at least” equal to the

smallest radius of convergence of the coefficients and the forcing term. To see why consider the

following example.

Example. The solution to the initial value problem

y′′ − 1
x− 1

y′ = 0, y(0) =
1
2
, y′(0) = −1,

is given by y(x) = 1
2(x− 1)2. It is an analytic function with radius of convergence equal to infinity.

However, Theorem 3.1 asserts only that its radius of convergence is greater or equal to 1.

There are two benefits of the proof of Theorem 3.1. First, it points to a procedure for solving

the IVP (2.1). This procedure begins with a formal power series expansion for the solution to the
14See for example Coddington (1961) or Simmons (1991).
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IVP of the following form

p(x) =
∞∑

k=0

pkx
k, (3.2)

where pk are to be determined. Substituting this together with the known Taylor series for the

coefficients and the forcing function into the IVP, and manipulating the result using the operational

rules for power series one obtains a recurrence relation for the coefficients of the solution, pk. Then

assuming that the Taylor series of the coefficients, and the forcing function has radius of convergence

at least r (which is taken to be the optimal), and using the recurrence relation, one can show that the

coefficients pk satisfy appropriate estimates. Consequently, the radius of convergence of the power

series (3.2) is at least r. Thus, the formal power series solution (3.2) provides an honest power series

solution to the IVP (2.1).

The second benefit of the proof of Theorem 3.1 is that it yields an accurate estimate of the

difference between the power series solution (3.2) and its Taylor’s polynomial approximation. More

precisely, if

pn(x) =
n∑

k=0

pkx
k (3.3)

is the nth order polynomial approximation of the power series solution (3.2), then the error is

Rn(x) = p(x)− pn(x) =
∞∑

k=n+1

pkx
k. (3.4)

This error, Rn(x), can be estimated in terms of the coefficients a(x) and b(x), the forcing function,

g(x), and the initial data p0 and p1. For this write

a(x) =
∞∑

k=0

akx
k, b(x) =

∞∑

k=0

bkx
k, and g(x) =

∞∑

k=0

dkx
k, (3.5)

and choose r such that 0 < r < r0 , where r0 is as in Theorem 3.1. Since r is smaller than the radius

of convergence a(x), b(x), and g(x), there exists non-negative constants Ma, Mb, and Mg such that

|ak| ≤ Ma

rk
, |bk| ≤ Mb

rk
, and |dk| ≤ Mg

rk
, k = 0, 1, 2, . . . . (3.6)

With this information in mind, the following corollary provides a uniform bound for the error Rn(x).
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Corollary 3.2. The error Rn(x) between the solution p(x) and its nth order Taylor approximation

is estimated as follows

|Rn(x)| ≤ 1
2

[Mg + |p1|(1 + r)M + |p0|M ]
∞∑

k=n+1

k−1∏

l=2

[
l − 1

r(l + 1)
+ M

l + r

(l + 1)l

]
(µr)k, |x| < µr,

where M = max{Ma,Mb} and 0 < µ < 1.

Thus, by adding a sufficient number of coefficients to the polynomial approximation (3.3), we obtain

an accurate enough numerical solution.

Before considering how to use the analytic method to solve IVP like (2.1) its relationship with

existing approximation methods is discussed. Judd (1998) shows how to use projection methods to

approximate IVP problems using orthogonal polynomials.15 In the projection method orthogonal

polynomials are used since the collocation method chooses the coefficients such that the IVP problem

holds exactly at the roots of the orthogonal polynomial. Orthogonal polynomials are useful since

a uniform bound on approximation error between an orthogonal polynomial and the true solution

within a given interval exists, when the solution is known to have continuous derivatives of order

k, and there is a bound on the kth order derivative within the same interval.16 However, little

guidance is provided concerning when and where the solution is k times differentiable, and when

the conditions for a uniform bound are satisfied. As a result, Judd recommends using relative errors

to judge the accuracy of the approximation error in the projection method.17 The main benefit of

the Cauchy-Kovalevsky Theorem 3.1 in one dimension is that analyticity can be used to establish

a uniform bound on the approximation error (3.4) between a polynomial approximation and the

actual solution for |x| < µr.

The other advantage of the analytic method is that the coefficients of the polynomial approxima-

tion (3.3) are calculated recursively. This speeds up the calculation of the polynomial approximation

relative to the projection method, which typically simultaneously solves the residual equations for

the coefficients of the orthogonal polynomial using a metric such as mean square error. This metric is
15Orthogonal polynomials could be used to represent the polynomial approximation (3.3). For details see Stoer

and Bulirsch. However, this was not necessary for the Campbell and Cochrane model, since the coefficients of this
polynomial approximation are solved using a recursive rule. As a result the numerical problem is not ill conditioned.

16See Judd (1998, p. 214).
17Santos (1991, 1992, 1993, 1999, 2000) provides bounds on this relative error in discrete time economic models.
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measured over the whole range of the approximated function, so that the coefficients solve a system

of equations. Consequently, the calculation of the coefficients is quicker under the analytic method.

In addition, the whole system of equations must be solved when one adds coefficients, while only

the additional coefficients have to be solved under the analytic method. Thus, the analytic method

provides a uniform bound to determine the accuracy of this approximation, and the calculation of

the solution is quicker.

4 Campbell and Cochrane’s asset pricing model.

In this paper we consider continuous time asset pricing models with one state variable. The repre-

sentative agent is assumed to choose equity so that the intertemporal Euler condition is

0 = Λ(t)D(t)dt + Et [d [Λ(t)P (t)]] .18 (4.1)

Here, Λ(t) is the stochastic discount factor (SDF) for the valuation of an investment, D(t) is the

dividend payment from the equity per unit of time, and P (t) is the price of equity. This euler

condition is the limit as the change in time tends to zero of the typical Euler condition in which the

investor compares the marginal loss of utility today from purchasing the stock with the expected

marginal gain from the future utility of consumption from the dividends and the possible sale of the

security. The first term in (4.1) is the marginal value of the future dividend, while the second term

is the expected change in the marginal value of the stock price.

In Campbell and Cochrane’s (1999) asset pricing model the SDF is designed to capture the time

variation in equity premium observed in the historical data.19 It depends on the consumption of

the investor, C(t), and the surplus consumption ratio, S(t) = C(t)−X(t)
C(t) , which measures how close

consumption is to past habits, X(t). More precisely, it is of the following form

Λ = e−βt [SC]−γ . (4.2)
18See Duffie (1996), Cochrane (2005) and Campbell and Viceira (2002). Strictly speaking a representative agent is

not necessary. The absence of arbitrage opportunities is sufficient for the existence of a positive pricing kernel so that
this condition is satisfied. See Cox, and Huang (1989).

19Cochrane (2005 Chapter 20) provides a recent analysis of the empirical facts, while Chapter 21 explains how the
Campbell and Cochrane model captures these concepts.
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Following Campbell and Cochrane, we use the new variables defined by

C = ex, and S = es,

so that both consumption and the surplus consumption ratio are always positive. Then, the con-

sumption growth, dx, is assumed to be a random walk with drift x̄ of the form

dx = x̄dt + σdω, (4.3)

where the random shock to consumption growth, dω, is a standard Brownian motion.20 Conse-

quently, consumption growth is not a state variable for the price-dividend function. The only state

variable in the model is the surplus consumption ratio, which follows the stochastic process

ds = (φ− 1)(s− s̄)dt + λ(s− s̄)σdω. (4.4)

Here s̄ is the logarithm of the stationary surplus consumption ratio, and the sensitivity function

λ(s− s̄) is defined by

λ(s− s̄) =

{ (√
1− 2(s− s̄)

)
/S̄ − 1 if s < s̄ + 1−(S̄)2

2 ,

0 if s > s̄ + 1−(S̄)2

2 ,
(4.5)

where

S̄ = σ

√
φγ

1− φ− b
γ

.21

This sensitivity function is designed to increase the standard deviation of the surplus consumption

ratio by multiplying the random shocks to consumption growth σdω. Also, it is chosen so that the

investor’s habits are only dependent on the consumption level of others. Furthermore, it assures that

random shocks are magnified during bad times and minimized during prosperous times.22 Finally,

the sensitivity function leads to a risk free rate, which is a linear function of the surplus consumption

ratio.
20To conserve on space the discussion of the underlining Brownian motion is limited, since the focus of the paper is

on solving the resulting IVP which represent these asset pricing models. Arnold (1993), Duffie (1996) or Shreve (2003)
are good sources for the derivation of these differential equations as well as the vast literature on this subject.

21In the Campbell and Cochrane paper they set b = 0, while b 6= 0 in the Wachter (2002, 2006) models.
22The steady state distribution of the surplus consumption ratio is derived below.
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The first step in the derivation of the IVP is to derive the stochastic process for the SDF. In this

derivation use is made of Ito’s lemma. First, let x ∈ Rn follow the stochastic process,

dx = f(x, u)dt + S(x, u)dW, (4.6)

where u ∈ Rq are control variables. f(x, u) is the instantaneous mean of the state variable x ∈ Rn.

dW is an k × 1 vector of Brownian motion, so that the n × k matrix, S(x, u), provides the

instantaneous impact of these random shocks on the state variable. Consequently, Σ(x, u) =

S(x, u)Et

(
dWdW T

)
S(x, u)T is the instantaneous variance-covariance matrix for the state variables.

Since Ito’s Lemma will be used repeatedly in the derivation of the ODE for the Campbell and

Cochrane model, we recall it here for the convenience of the reader.

Lemma 4.1. Suppose F (x, t) is C2 for x ∈ X ⊆ Rn and C1 in t. Then

dF =
(

∂F

∂t
+

∂F

∂x

T

f(x, u) +
1
2
tr

(
∂2F

∂x∂x′
Σ(x, u)

))
dt +

∂F

∂x

T

dW.23 (4.7)

Also, the following multiplication rules are true: dWdW T = Idt, dWdt = 0 and dtdt = 0.

The SDF (4.2) in the Campbell and Cochrane model is a C2 function of two state variables

consumption growth (4.3), and the surplus consumption ratio (4.4). In the appendix Ito’s lemma is

used to derive the stochastic process for the SDF in Campbell and Cochrane’s model,

dΛ
Λ

=
[
γ(1− φ)s− β − γx̄ +

γ2σ2

2
(1 + λ(s))2

]
dt− γσ (1 + λ(s))2 dω . (4.8)

Note that in (4.8) s stands for s − s̄. Also, observe that the instantaneous mean and standard

deviation of (4.8) are analytic whenever the sensitivity function λ(s) is analytic. Following Cochrane

(2005, p. 29), we use the basic pricing relation (4.1) together with (4.8), and the definition of λ(s)

(4.5) to obtain

Rb(s) = −Et

[
dΛ
Λ

]
= γ(φ− 1)s + β + γx̄− γ2σ2

2
(1 + λ(s))2 = rb − bs , (4.9)

where

rb = β + γx̄− 1
2

(γ(1− φ)− b) .

23See Chow (1997), and Shreve (2003). The superscript T mean the transpose of a column vector, and tr(A) refers
to the trace of the matrix A.

13



Thus, the risk free interest rate is a linear function of the surplus consumption ratio.

The second step is to write the Euler condition (4.1) in terms of the price-dividend ratio p = P
D

using Ito’s Lemma 4.1.

1
p

dt + Et

(
dΛ
Λ

+
dp

p
+

dD

D
+

dΛdp

Λp
+

dDdp

Dp
+

dΛdD

ΛD

)
= 0 . (4.10)

In equilibrium, it is assumed that C = D, so that the stochastic process for consumption growth

(4.3) determines the stochastic process for dividend growth. The final stochastic process needed is

the price-dividend function, which is assumed to be a C2 function of the surplus consumption ratio,

p(s), in the interval (−∞, 1−(S̄)2

2 ). As a result, Ito’s Lemma 4.1 is used to find the stochastic process

for the price-dividend ratio.

dp =
(

p′(s)(φ− 1)s +
1
2
p′′(s)λ(s)2σ2

)
dt + p′(s)λ(s)σdω. (4.11)

Once the solution to the price-dividend function p(s) is found, this stochastic process will represent

the behavior of the price-dividend ratio over time.

In the appendix the stochastic processes for consumption growth (4.3), the surplus consumption

ratio (4.4), the SDF (4.8), and the price-dividend function (4.11) are substituted into (4.10). Ap-

plying the multiplication rules in Ito’s Lemma 4.1 leads to the following second order linear ODE

for the price-dividend function, p(s),

c2(s)p′′(s) = c1(s)p′(s) + c0(s)p(s)− 1 , 24 (4.12)

where

c2(s) =
σ2(1 + S̄2)

2S̄2
− σ2

S̄2
s− σ2

S̄
r(s),

c1(s) =
σ2(S̄2 + γ)

S̄2
+

K1S̄
2 − 2γσ2

S̄2
s− σ2(1 + γ)

S̄
r(s),

and

c0(s) =
2K0S̄

2 − σ2γ2 − σ2S̄2

2S̄2
+

σ2γ2 − γK1S̄
2

S̄2
s +

σ2γ

S̄
r(s).

24Wachter (2005) derives this ODE for the Campbell and Cochrane model using no arbitrage techniques as in Duffie
(Chapter 6 and 10) rather than equilibrium arguments as in Lucas (1978), which is used here.
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Here, K0 = β + (γ − 1)x̄ > 0, K1 = (1− φ) > 0, and

r(s) .= S̄
(
λ(s) + 1

)
=

{ √
1− 2s if s < 1−S̄2

2 ,

S̄ if s ≥ 1−S̄2

2 .
(4.13)

The normal form of equation (4.12) is

p′′(s) + a(s)p′(s) + b(s)p(s) = g(s) , (4.14)

where

a(s) = −c1(s)
c2(s

, b(s) = −c0(s)
c2(s)

, and g(s) = − 1
c2(s)

. (4.15)

To apply the Cauchy-Kovalevsky Theorem for equation (4.14) the radius of convergence of the

coefficients and forcing term needs to be determined. Looking at the definitions of these coefficients,

two conditions must be imposed. First, c2(s) must be positive, which is true when

|s| < 1− S̄2

2
.

Second, r(s) must be analytic. Since 1 − S̄2 < 1 r(s) is analytic if s < (1 − S̄2)/2, and the radius

of convergence of its power series about s = 0 is equal to (1 − S̄2)/2. Since r(s) and 1
r(s) have the

same radius of convergence about 0, the radius of convergence of the coefficients a(s), b(s), and the

forcing term g(s) is

r0 =
1− S̄2

2
. (4.16)

Finally, applying Theorem 3.1, the solution for the price-dividend function p(s) of the Campbell and

Cochrane model is analytic near zero, and its Taylor series

p(s) =
∞∑

j=0

pjs
j , (4.17)

has radius of convergence at least r0 given by (4.16).

Recursive rule for coefficients of power series. Next, the recurrence relation for determining

the coefficients pj is derived. For this relation, write the Taylor series for the functions c0(s), c1(s)

and c2(s). Observe that each of these coefficients has the functional form

c(a0, a1, a2, s) = a0 + a1s + a2r(s), (4.18)
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for some (a0, a1, a2) ∈ R3, so that the derivatives of these coefficients are dependent on the derivatives

of r(s). These derivatives are given by

r(n)(s) =





r(s) if n = 0,
− 1

1−2sr(s) if n = 1,

− (2n−3)!!
(1−2s)n r(s) if n > 2

and r(n)(0) =





1 if n = 0,
−1 if n = 1,

−(2n− 3)!! if n > 2.

25

Therefore, the derivatives of any of the coefficients c(a0, a1, a2, s) are

c(n)(a0, a1, a2; s) =





a0 + a1s + a2r(s) if n = 0,

a1 + a2r
(1)(s) if n = 1,

a2r
(n)(s) if n > 2.

As a result,

c(n)(a0, a1, a2; 0) =





a0 + a2 if n = 0,
a1 − a2 if n = 1,

−a2(2n− 3)!! if n > 2.

So

c(n)(a0, a1, a2) =





a0 + a2 if n = 0,
a1 − a2 if n = 1,

−a2(2n−3)!!
n! if n > 2.

Here the abbreviation c
(n)
j (a0, a1, a2) = 1

n!c
(n)
j (a0, a1, a2; 0) is used for j = 0, 1, 2 and n = 0, 1, 2, . . . .

In the appendix the power series (4.17) for p(s), its first two derivatives, and the power series

for the coefficients c0(s), c1(s), and c2(s) are substituted into the ODE (4.12) to find the following

recurrence relation for the coefficients of this power series.

2c
(0)
2 p2 = c

(0)
1 p1 + c

(0)
0 p0 − 1, and

(j + 1)(j + 2)c(0)
2 pj+2 =

j∑

k=2

[
c
(j−k)
0 + kc

(j−k+1)
1 − (k − 1)kc

(j−k+2)
2

]
pk

+ (j + 1)(c(0)
1 − jc

(1)
2 )pj+1 + (c(j−1)

0 + c
(j)
1 )p1 + c

(j)
0 p0 .

(4.19)

Initial conditions. To determine pj recursively from the formulas (4.19) one needs to know the

initial conditions p(0) = p0 and p′(0) = p1. The first initial condition is chosen to be p0 = 18.3×12 =

219.60, so that the price-dividend ratio would be the same as in Campbell and Cochrane (1999).

To choose the second initial condition the equity premium is related to the first derivative of the

price-dividend function. The return on equity is given by

Re(s) dt =
dP

P
+

Ddt

P
=

dt

p
+

dp

p
+

dC

C
+

dCdp

Cp
. (4.20)

25The super script (n) refers to the nth order derivative. The notation !! means 7!! = 7 · 5 · 3 · 1.
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The second equality follows from Ito’s Lemma 4.1, and the equality between consumption and

dividends. In the appendix the stochastic processes for consumption growth (4.3), and the price-

dividend (4.11) are substituted into the return on equity to yield

dRe(s) = Et [Re(s)] dt + Σ(s) dω , (4.21)

where the instantaneous expected return on equity is

Et [Re(s)] = x̄ +
1
2
σ2 +

(φ− 1)sp′(s) + σ2

2 λ(s)2p′′(s) + σ2λ(s)p′(s) + 1
p(s)

, (4.22)

and the instantaneous standard deviation for the return on equity is

Σ(s) =
(

λ(s)p′(s)
p(s)

+ 1
)

σ. (4.23)

In addition, the risk free return on bonds is given by equation (4.9). Consequently, the Sharpe ratio

is given by

S(s) =
Et [Re(s)]− [

rb + bs
]

Σ(s)
. (4.24)

In the appendix, the risk free interest rate (4.9), the return on equity (4.20) together with the Euler

condition (4.10) are used to find a relation between the equity premium, and the first derivative of

the price-dividend function which is given by

p′(s) =
{Et[Re(s)]−Rb(s)− σ2γ(1 + λ(s))}p(s)

γσ2λ(s)(1 + λ(s))
. (4.25)

Then evaluating (4.25) at s = 0 determines the second initial condition

p1 = p′(0) =

{
Et[Re(0)]− rb − γσ2

S̄

}
p0

γσ2

S̄

(
1
S̄
− 1

) . (4.26)

The value of p1 is found by replacing Et [Re(0)]− rb with the average equity premium in Campbell

and Cochrane’s data. In the simulation this initial condition is used to set p1 = 111.8. Thus, the

equity premium at a particular point can be used to determine the second initial condition in the

IVP problem (2.1). Once the price-dividend function is found over the entire range of the surplus

consumption ratio, equation (4.22) is used to determine the return on equity over the range of the

surplus consumption ratio.
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Thus, the historic average price-dividend ratio, and equity premium in the economy are used to

establish the necessary conditions for the Cauchy-Kovalevsky Theorem 3.1 to hold. Consequently,

the equilibrium price-dividend ratio for the Campbell and Cochrane model is the Taylor series around

s = 0 with radius of convergence at least equal to r = 0.4990. In addition, the instantaneous mean

and standard deviation for stock returns, given by (4.22) and (4.23), are analytic within the same

interval of convergence.

Condition (4.25) is akin to the condition for the state-price beta model in the consumption

CAPM developed by Duffie (1996, pp. 101-108 and pp. 227-230). This condition also satisfies the

no arbitrage condition between stocks and bonds.26 The no arbitrage condition (4.25), the standard

deviation (4.23), and Sharpe ratio (4.24) can be combined to yield

S(s) = γσ(1 + λ(s)),

so that the equity premium puzzle can be resolved in the Campbell and Cochrane model through the

increased sensitivity of the random shock to consumption growth on the surplus consumption ratio.

In particular, λ(0)+ 1 = 1
S̄

= 22.31 for the parameter values used in the simulation of the Campbell

and Cochrane model, so that the Sharpe ratio, γσ(1 + λ(s)), is close to its historic average.

Numerical solution and error analysis. The numerical solution of Campbell and Cochrane’s

model (4.12) is a nth degree polynomial approximation, pn(s), to the power series expansion (4.17)

of the price-dividend function, that is

pn(s) =
n∑

j=0

pjs
j . (4.27)

The bigger the n the more accurate is the numerical solution pn(s). Corollary 3.2 is used to estimate

the error p(s)−pn(s). However, to apply Corollary 3.2 one needs to establish a uniform bound on the

coefficients, a(s) = −c1(s)/c2(s), b(s) = −c0(s)/c2(s), and the forcing function, g(s) = −1/c2(s) on

a circle centered at 0, and of radius r in the complex plane. Note that c2(s) → 0 as s → r0 = 1−S̄2

2 =

0.4990. Choose r smaller than r0, say r = 0.4, and restrict the domain of definition for the coefficients
26Wachter (2005) derives the continuous time ODE for the Campbell and Cochrane model by starting with this no

arbitrage condition rather than the equilibrium approach used here.
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and the forcing term to |z| ≤ r. Then, the Cauchy integral formula yields the constants Ma, Mb,

and Mg used in the estimates (3.6). For example, if r = 0.4, then M
.= min{Ma,Mb} = 52.6373,

and Mg = 1173.8511.

Applying Corollary 3.2 with these values of M and Mg a uniform bound on the Taylor series

remainder (numerical solution error) p(s) − pn(s) is found. For µ = 0.5, and n = 110 this error

is less than 10−9, while for µ = 0.8 the degree of the polynomial approximation must be increased

to n = 475 to obtain the same degree of accuracy.27 Thus, if an investor wants the support of the

distribution of the surplus consumption ratio to be S
.= es ∈ [0.037, 0.054], then one chooses the

polynomial approximation of degree greater than or equal to 110th in order to keep the error to the

Taylor remainder less than 10−9. However, if the support is increased to S ∈ [0.032, 0.061], then the

degree of the polynomial approximation must increase to 475th to maintain the same accuracy for the

price-dividend ratio.28 Using a standard PC and Maple, the 110th degree polynomial approximation

of the solution, as well as all the graphs related to the numerical solution in this paper are calculated

in 10 seconds, while it takes 90 seconds for the 475th order polynomial. Thus, the analytic method

produces an accurate solution to Campbell and Cochrane’s model in minimal time.

Stationary distribution of surplus consumption ratio. The price-dividend function in the

Campbell and Cochrane model is analytic for |s| ≤ r. Consequently, the steady state probability

distribution for the surplus consumption ratio is restricted to a support that is a closed subset of

the interval [−r, r]. This restriction assures that the price-dividend function is analytic for every

possible realization of the surplus consumption ratio. Note in the original Campbell and Cochrane

working paper this support was chosen to be [0.17S̄, 1.66S̄] rather than [−r, r], since determining

the radius of convergence for the price-dividend function was not part of their considerations.

Merton (1990, Chapter 17 ), and Cox and Miller (1965) provide the mathematical argument for
27The formula in Corollary 3.2 contains a sum to ∞, however the computer cannot count this high. Consequently,

the error is compared when the number of terms was 1500, and 3000. The change in error was only 0.00, so that this
source of error is not significant enough to change the error bound at the level of accuracy of 10−16.

28One concern with such a high order polynomial approximation is rounding error, since as n increases the coefficients
get larger as xn gets smaller. However, the approximations are not materially effected by this issue. For example, the
sup-norm of p60(s) − p50(s) for |s| ≤ .30 is less than 10−9, so that the solution is already accurate at a 50th order
polynomial approximation for all the circumstances considered in this paper. In addition, Maple allows for the increase
in precision. As a result, the number of digits was set to 100 without changing any results reported here.
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determining the probability distribution of a random variable which follows a stochastic process of

the form

ds = b(s)dt + [a(s)]
1
2 dω. (4.28)

To find the stationary probability distribution of s in the Campbell and Cochrane case, that is when

b(s) = (φ−1)s, and a(s) = λ(s)2σ2, let L(s, t, s0) be the conditional probability density for s at time

t given initial s0. This density function satisfies the Kolmogorov-Fokker-Planck forward equation

1
2

∂2

∂s2
[a(s)L(s, t, s0)]− ∂

∂s
[b(s)L(s, t, s0)] =

∂L

∂t
(s, t, s0).29

This equation measures the chance of a small change in s at any instant of time. It is derived by

calculating the probability of a small change in s in a small change of time t, using a second order

Taylor approximation for this change. To determine the steady state distribution, let

lim
t→∞L(s, t, s0) = π(s) so that lim

t→∞
∂L

∂t
(s, t, s0) = 0.

As a result, the steady state distribution for s solves the second order ODE equation

1
2

d2

ds2
[a(s)π(s)]− d

ds
[b(s)π(s)] = 0. (4.29)

In the appendix this ODE is solved subject to a reflection boundary at 0 < s∗ ≤ r, so that

λ(s) > 0 for all |s| ≤ s∗. As a result, the steady state distribution for s is

π(s) = K exp
{
−2σ2k4+(1−φ)(3−k2)

σ2k4 lnλ(s)− (1−φ)
σ2k4

[
k2−1
λ(s) + 3λ(s) + λ(s)2

2

]}
(4.30)

for s ∈ [−s∗, s∗] and zero otherwise. Here K =
[∫ s∗
−s∗ π(v)dv

]−1
and k

.= 1/S̄.30

For the parameter values in the simulation of the Campbell and Cochrane model Figure 1 plots

this stationary probability distribution over the support [−0.75r, 0.75r] = [−0.30, 0.30] for s which is

skewed to the right.31 Thus, Theorem 3.1 can be applied to Campbell and Cochrane’s ODE (4.12)

for all possible realizations of the surplus consumption ratio, since the coefficients and forcing term

of this ODE are always analytic under the steady state distribution for the surplus consumption

ratio.
29See Cox and Miller (1965, pp.208-209).
30The transitory distribution for s is still an open question.
31This graph corresponds to Figure 2 of Campbell and Cochrane (1999) although here the support for the distribution

is smaller relative to theirs.
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4.1 Overview of Analytic Method

This section has provided the complete details for solving the Campbell and Cochrane asset pricing

model. Here, we discuss the generality of this method. First, the Cauchly-Kovalevsky Theorem 3.1 is

presented for only IVP with a one-dimensional second order ODE. There is a more general Cauchly-

Kovalevsky Theorem which is applicable in several variables, higher order, and includes both linear

and non-linear differential equations. In future research we plan to investigate more complicated

economic and finance models using this Theorem. We also want to point out the generality of the

method presented here. The analysis of the Campbell and Cochrane model through the derivation

of the differential equation (4.14) is independent of the Cauchly-Kovalevsky Theorem. For other

economic and financial problems the underlining primitives such as the SDF need to be specified as

analytic functions over the relevant region so that the coefficients of the ODE (4.14) are analytic in

this same region. To drive this point home we first explain in this subsection how to derive the ODE

for most popular asset pricing models. Once the differential equation is determined for the IVP

the analytic method consists of six steps listed in the second part of this subsection. By applying

this prescription one should be able to quickly and accurately characterize solutions to many one

dimensional problems in economics and finance.

ODE derivation for asset pricing models. A similar to (4.14) ODE may be derived for most

one dimensional asset pricing models. As in the Campbell and Cochrane model suppose the SDF

(4.2) is an analytic function for a given radius of convergence r1 around the stationary point of the

state variable x0. Also, let the instantaneous mean and standard deviation for stochastic process

of the state variable (4.4) be analytic with the same radius of convergence. In this case the asset

pricing model yields an ODE with analytic coefficients and forcing term with the same region of

convergence around the stationary point x0. The steps for deriving this ODE are as follows:

1. Use Ito’s Lemma 4.1 to find the stochastic process for the SDF (4.8). In this circumstance,

the instantaneous mean and standard deviation for the SDF is analytic in the same region of

convergence.
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2. Apply Ito’s Lemma to rewrite the investor’s Euler condition (4.1) for choosing stocks as a

function (4.10) of the stochastic processes for the SDF, price-dividend ratio, and the dividend

process. Also assume the price-dividend is a function of the state variable, so that Ito’s Lemma

yields a stochastic process for the price-dividend function (4.11).

3. Specify the equilibrium condition such that consumption is related to dividend growth so that

by Ito’s Lemma the stochastic process for dividend growth is a function of the stochastic

process of consumption growth (4.3).

4. Substitute the stochastic processes for the SDF (4.8), the price-dividend function (4.11), and

dividend growth (4.3) into the Euler condition (4.10) to find a second order linear ODE (4.12),

which can be written in the normal form (4.14). In these circumstances the coefficients and

forcing term of this ODE (4.15) are analytic in the same region of convergence as the instan-

taneous mean and standard deviation of the stochastic processes for the SDF (4.8), and the

state variable (4.4).

One dimensional asset pricing models are generally distinguished by the stochastic process for the

SDF and the state variable, such as (4.8) and (4.4), respectively. In applied asset pricing models the

instantaneous means and standard deviations for the stochastic processes for the SDF and the state

variable are usually analytic functions as in the Campbell and Cochrane model. Included in this class

of SDF are the above mentioned affine models, as well as Epstein and Zin (1989, 1990, 1991), Abel

(1990,1999), Constantinides (1990, 1992), Duffie and Epstein (1992a, b) using the Kreps-Porteus

(1978) functional form, Campbell and Cochrane (1999), and Bansal and Yaron (2004). Thus, these

asset pricing models will lead to an ODE like (4.14) with analytic coefficients and forcing term.

Summary of analytic method. Since most applied asset pricing models yield an ODE similar to

(4.14) with analytic coefficients about x0 with radius of convergence r1, the Cauchy-Kovalevsky The-

orem (3.1) yields an analytic price-dividend function of the state variable for a radius of convergence

at least as large as r1. To implement this method one would execute the following steps:

1. Use the Cauchly-Kovalevsky Theorem 3.1 to obtain an analytic price-dividend function (4.17)
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near x0 with radius of convergence r0 which is equal to at least the smallest radius of con-

vergence for the coefficients and forcing term for the ODE (4.14). In addition, determine the

recurrence relation (4.19) for the coefficients of the power series for the price-dividend function.

2. Let the initial condition p0 be equal to the observed average price-dividend ratio. The second

initial condition can be determined by relating the equity premium to the first derivative of

the price-dividend function (4.25) using the no arbitrage property between stocks and bonds.

By evaluating the equity premium at its observed average value the second initial condition p0

(4.26) is established.

3. Use a nth order polynomial (4.27) to approximate the solution for the price-dividend ratio

within the radius of convergence.

4. Choose an r < r0 and determine bounds on the coefficients and forcing term for complex values

z on a circle Cr of radius r on the complex plane. By Cauchy’s integral formula there exist

uniform bounds for the kth order derivatives of the coefficients and forcing term (3.6).

5. Choosing the order of the polynomial approximation (4.27) high enough, one can achieve any

desired degree of accuracy for the price-dividend ratio for the state variable |x| < µr with

µ ∈ (0, 1) following Corollary 3.2.

6. Once the solution to the price-dividend ratio is known, the stochastic process for the price-

dividend ratio is given by an equation like (4.11), where the first and second derivatives of the

power series solution (4.17) are substituted for p′ and p′′. In addition, the stochastic process

for the return on equity is given by an equation like (4.21) with instantaneous mean (4.22)

and standard deviation (4.23), so that the power series solution to the ODE can also be used

to calculate the stochastic process for the return on equity.

Thus, the analytic method can be used to characterize the properties of most asset pricing models.
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5 Simulation of Campbell and Cochrane model

After setting the initial conditions and the support of the distribution of the surplus consumption

ratio, the solution of the ODE (4.12) for the Campbell and Cochrane model is unique and analytic

over the entire support of the steady state probability distribution for the surplus consumption ratio.

For concreteness let this support be [−µr, µr]. In the simulations the parameters are set using a

monthly time frame following Campbell and Cochrane (1999) for their consumption claim model.

The results of the simulations in Table 1 and Figures 2 − 6 are annualized. The parameters on a

monthly basis are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, S̄ = 0.0448,

and µr = 0.32. The first initial condition is based on their historic average price-dividend ratio,

p0 = 219.6. The second initial condition is tied to their historic average equity premium, following

equation (4.26), so that p1 = 111.76.

Table 1 records in column 2 the moments from the solution of Campbell and Cochrane’s model.

Column 2 records the sample data from Campbell and Cochrane (1999) which is based on the U.S.

stock market from 1947 to 1995. Following Campbell and Cochrane, the price-dividend ratio is 18.3

by construction. In Figure 2 the price-dividend function with 475 coefficients is drawn over the range

[S̄e−0.49, S̄e0.49] to demonstrate how the approximation deteriorates outside the range identified by

the error analysis [S̄e−µr, S̄eµr] = [0.032, 0.061]. Figure 3 presents the price-dividend function over

this smaller range. The price-dividend function in Figure 3 varies from 15.5 to 21.6 as the surplus

consumption ratio varies in the interval [S̄e−µr, S̄eµr] = [0.032, 0.061]. Thus, there could be a change

in the price-dividend function of 39% over the support of the steady state distribution of the surplus

consumption ratio.

The graph in Figure 3 corresponds to Figure 3 of Campbell and Cochrane. The main difference

from their graph is that the price-dividend function is portrayed over a smaller range. The smaller

range was chosen based on the error analysis. The 110th order polynomial approximation has an

error close to zero in the interval S ∈ [0.037, 0.054]. By increasing µ to 0.75 so that S ∈ [0.032, 0.061],

the polynomial approximation must increase to 475th order to keep error the same.32 To increase
32As shown in Figure 2 the function becomes unstable for s within 0.001 of r, so that the graphs in the paper are a

good representation of the range of the surplus consumption ratio in which the analytic method can be used.
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the upper bound of the support to only 0.064, one would have to set µ = 0.9. To reduce the error to

10−9 in this case, the order of the polynomial approximation must be increased to n = 1160, which

would increase the computation time to 150 seconds. Thus, the behavior of the price-dividend ratio

cannot be identified over as large a range considered in Campbell and Cochrane (1999), however

dividend growth of x0 + 32% per month is larger than any historic observation in the Campbell and

Cochrane (1999) data sets.

To see the effect of additional coefficients compare the 475th order polynomial approximation

for the price-dividend ratio relative to its first order polynomial approximation. The dash line in

Figure 4 shows that this error is small when the surplus consumption ratio is close to its steady state

value of s̄. However, the error is 3.0% for high surplus consumption ratio and 0.9% for low surplus

consumption ratio. By moving to the fourth order polynomial approximation for the price-dividend

ratio, the solid line is close to zero for almost all surplus consumption ratios but can still have 1%

error for high surplus consumption ratios. This again is a reflection of the non-linear property of the

true price-dividend function. By moving to the 475th order polynomial approximation the change

in the solution cannot be detected by the computer.33

The conditional expected return on equity given by (4.22) can also be calculated once the price-

dividend function is known. The expected return on equity at S = S̄ is 7.5% in Table 1. This value

of the conditional expected return is close to the value in Campbell and Cochrane’s data set.34 By

manipulating the parameter p1 one can match the expected return on equity exactly. In Figure 5

the expected return on equity, given by the bottom (solid) line, changes from 12% to 1.4% over the

possible range of the surplus consumption ratio. This graph corresponds to Figure 4 of Campbell and

Cochrane (1999) except that the expected return declines faster for high surplus consumption ratios.

This helps explain the ability of the price-dividend ratio to forecast future returns as demonstrated

by Cochrane (2005, 2006). When the price-dividend ratio is above the normal value expected by
33This conclusion suggest that linear generated asset pricing model of Gabaix (2007), which leads to a linear price-

dividend function, is inconsistent with non-linear asset pricing models such as Campbell and Cochrane’s. This incon-
sistency becomes more pronounced as dividend growth moves further away from its steady state value.

34While the results in Table 1 are close to the moments found in Cambell and Cochrane’s data set, the more system-
atic simulated method of moments of Christensen and Kiefer (2000) can be used to choose the optimal combination
of parameters for the theory to match the data. This is feasible since the Maple program takes a few seconds to solve
for 110 coefficients in the polynomial approximation for the price-dividend function.
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individuals, the price-dividend ratio moves back toward normal times, so that expected returns are

low during these time periods. These lower expected returns lead to lower realized returns as well,

following (4.21). Thus, the solution captures the time variation in expected returns envisioned by

Campbell and Cochrane.

The conditional standard deviation of stock returns is given by (4.23) for various values of the

surplus consumption ratio. This standard deviation at S = S̄ is about 13.3% in Table 1, and the

dash line in Figure 5 varies between 2.3% and 18% as the surplus consumption ratio varies from

0.061 to 0.032 . This result corresponds to Figure 5 of Campbell and Cochrane (1999) for most

values of the surplus consumption ratio. However, the decline in the standard deviation at higher

levels of the surplus consumption ratio is faster for the true price-dividend function. In Campbell

and Cochrane’s model the volatility of stocks is lowest in good times while it is highest in bad times.

This result is consistent with the direction of change in volatility of the stock market over time in

that it is lower during expansions.35

Finally, the conditional Sharpe ratio can be calculated using (4.24). At the steady state surplus

consumption ratio this Sharpe ratio is 0.56 in Table 1, which is close to the historic average found in

Campbell and Cochrane’s data set. Following the behavior of the mean and standard deviation of

equity, the Sharpe ratio in Figure 6 varies between 0.68 and 0.49 as the economy moves from bad to

good times, however it increases for surplus consumption ratios beyond 0.057. This corresponds to

Figure 6 of Campbell and Cochrane (1999) except for this higher range for the surplus consumption

ratio.

The replication of all the results in Campbell and Cochrane’s (1999) paper using the analytic

method to solve the continuous time version of their model is surprising given the results in CCH

(2008a). Campbell and Cochrane (1999) simulate the discrete time version of their model. How-

ever, CCH (2008a) demonstrate that the solution to their integral equation in discrete time cannot

generate the appropriate level of the price-dividend ratio and equity premium without considering

extreme negative values for dividend growth. This problem does not arise in continuous time since

the analytic solution of the ODE (4.12) is solved using local analytic methods. On the other hand,
35See Schwert (1989,1990).

26



the integral equation, which arises in discrete time, must be solved over the entire support of the

probability distribution. In addition, the level of the price-dividend function, and equity premium

is controlled by the initial conditions p0 equal to the average price-dividend ratio in Campbell and

Cochrane’s data, and p1 can be set based on the average equity premium (4.26). Thus, the con-

tinuous time version of Campbell and Cochrane’s model more accurately represents the behavior of

stock returns, which they wanted to capture.

6 Conclusion

Rather than summarizing the analytic method, which was done at the end section 4, we conclude

by mentioning that the general Cauchy-Kovalevsky Theorem is applicable to many continuous time

problems in finance. In finance, it is customary for continuous time problems, including option

pricing, term structure, portfolio decisions, corporate finance, market microstructure and financial

engineering, to have SDF which are analytic.36 Thus, each of these problems can potentially benefit

from using the analytic method discussed here. However, some of these problems have several state

variables and are subject to boundary values rather than initial values. In future work we plan to

explore to what extent the the Cauchy-Kovalevsky Theorem can be used to solve these alternative

financial economic problems.

36See Sundaresan (2000) for a recent survey of the work in continuous time finance.
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Table 1. Comparison of Model Relative to Data
Statistic Campbell Campbell

Cochrane Cochrane Data
Et(Re) 0.075 0.076
σ(R) 0.133 0.157
Et(Rb) 0.009 0.009
Et(Re −Rb) 0.066 0.067
Sharpe 0.56 0.34
P 18.3 24.7

Notes : Re is the real return on stocks and Rb is the real return on bonds, and P is the price-dividend ratio.
Et is the conditional expectation operator and σ is the standard deviation. The statistics for the theoretical
solutions are evaluated at the historic average for the state variable. The parameters for Campbell and
Cochrane’s model are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 = 219.60,
p1 = 111.76, S̄ = 0.0448 and µr = 0.32. The data for Campbell and Cochrane is taken from their Table 4.
We use the Postwar Sample from 1947 to 1995 for the U.S..

Figure 1 shows the steady state probability distribution in the Campbell and Cochrane model.

The parameter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0,

p0 = 219.60, p1 = 111.76, S̄ = 0.0448 and µr = 0.32. The x-axis gives the surplus consumption

ratio on the support of the distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061], The y-axis records the

steady state probability distribution for the surplus consumption ratio.
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Figure 2 displays the price-dividend function in the Campbell and Cochrane model. The param-

eter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 = 219.60,

p1 = 111.76, S̄ = 0.0448. The x-axis gives the surplus consumption ratio on the support of the

distribution S = [S̄e−0.49, S̄e0.49]. The y-axis records the price-dividend ratio.
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Figure 3 displays the price-dividend function in the Campbell and Cochrane model. The param-

eter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 = 219.60,

p1 = 111.76, S̄ = 0.0448 and µr = 0.32. The x-axis gives the surplus consumption ratio on the sup-

port of the distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061]. The y-axis records the price-dividend

ratio.

29



Figure 4 displays the error analysis for the Campbell and Cochrane model. The parameter values

are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76,

S̄ = 0.0448 and µr = 0.32. The x-axis gives the surplus consumption ratio on the support of

the distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061]. The y-axis for the dotted line compares the

475th order polynomial approximation for the price-dividend ratio with the first order polynomial

approximation. In addition, the solid line compares the 475th order polynomial approximation for

the price-dividend ratio to it’s fourth order polynomial approximation.
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Figure 5 portrays the equity premium and standard deviation of equity in the continuous time

model of Campbell and Cochrane. The parameter values are rb = 0.00078, x̄ = 0.00157, φ = 0.9896,

γ = 2, σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76, S̄ = 0.0448 and µr = 0.32. The x-axis gives the

surplus consumption ratio on the support of the distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061].

The y-axis records the equity premium and standard deviation. The equity premium line is the solid

line, while the dotted line represents the standard deviation.
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Figure 6 shows the Sharpe ratio in the model of Campbell and Cochrane. The parameter values

are rb = 0.00078, x̄ = 0.00157, φ = 0.9896, γ = 2, σ = 0.00323, b = 0, p0 = 219.60, p1 = 111.76,

S̄ = 0.0448 and µr = 0.32. The x-axis gives the surplus consumption ratio on the support of the

distribution S = [S̄e−0.32, S̄e0.32] = [0.032, 0.061]. The y-axis records the Sharpe ratio.
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7 Appendix

Proof of Theorem 3.1. We begin by recalling our initial value problem

y′′(x) + a(x)y′(x) + b(x)y(x) = g(x), y(0) = y0, y′(0) = y1. (7.1)

Since a(x), b(x) and g(x) are analytic about x = 0 with radius of convergence r0 we have

a(x) =
∞∑

k=0

akx
k, b(x) =

∞∑

k=0

bkx
k, g(x) =

∞∑

k=0

dkx
k, (7.2)

and for any 0 < r < r0, there exist Ma, Mb, Mg > 0 such that

|ak|rk ≤ Ma, |bk|rk ≤ Mb, |dk|rk ≤ Mg, k = 0, 1, 2, · · · . (7.3)

Now let us assume that the solution y(x) can be written (at least formally) as a power series, that is

y(x) =
∞∑

k=0

ckx
k, (7.4)

where c0 = y0, c1 = y1 and ck, k = 2, 3, · · · are to be determined so that y(x) is a solution. We have

y′ =
∞∑

k=1

kckx
k−1 =

∞∑

k=0

(k + 1)ck+1x
k, (7.5)

and

y′′ =
∞∑

k=2

k(k − 1)ckx
k−2 =

∞∑

k=0

(k + 2)(k + 1)ck+2x
k. (7.6)

For y to be a solution we must have

∞∑

k=0

(k + 2)(k + 1)ck+2x
k +

( ∞∑

k=0

akx
k
)( ∞∑

k=0

(k + 1)ck+1x
k
)

+
( ∞∑

k=0

bkx
k
)( ∞∑

k=0

ckx
k
)

=
∞∑

k=0

dkx
k,

which, after multiplying the series, gives

∞∑

k=0

[
(k + 2)(k + 1)ck+2 +

k∑

j=0

ak−j(j + 1)cj+1 +
k∑

j=0

bk−jcj

]
xk =

∞∑

k=0

dkx
k. (7.7)

From the last equation we obtain the recurrence relation

(k + 2)(k + 1)ck+2 = dk −
k∑

j=0

[
ak−j(j + 1)cj+1 + bk−jcj

]
(7.8)
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for computing the coefficients c2, c3, · · · .
Taking absolute values in (7.8) and using the Cauchy estimates (7.3) gives

(k + 2)(k + 1)|ck+2| ≤ |dk|+
k∑

j=0

[
|ak−j |(j + 1)|cj+1|+ |bk−j ||cj |

]

≤ Mg

rk
+

k∑

j=0

[ Ma

rk−j
(j + 1)|cj+1|+ Mb

rk−j
|cj |

]

≤ Mg

rk
+

M

rk

k∑

j=0

[
(j + 1)|cj+1|+ |cj |

]
rj .

Here M
.= max{Ma, Mb}. Adding the extra term M |ck+1|r (it will be helpful later) to the right-hand

side of the last inequality gives

(k + 2)(k + 1)|ck+2| ≤ Mg

rk
+

M

rk

k∑

j=0

[
(j + 1)|cj+1|+ |cj |

]
rj + M |ck+1|r. (7.9)

Letting C0
.= |c0| = |y0|, C1

.= |c1| = |y1| and for k ≥ 2 defining Ck by the recurrence relation

(k + 2)(k + 1)Ck+2 =
Mg

rk
+

M

rk

k∑

j=0

[(j + 1)Cj+1 + Cj ]rj + MCk+1r , (7.10)

we see that

|ck| ≤ Ck, k = 0, 1, 2, · · · . (7.11)

Therefore, the series
∑∞

k=0 ckx
k converges if

∑∞
k=0 Ckx

k does.

Next we shall show that the series
∑∞

k=0 Ckx
k converges for |x| < r. For this, by the ratio test,

it suffices to show lim supk→∞Ck+1/Ck ≤ 1/r. In recurrence relation (7.10) replacing k with k − 1

gives

(k + 1)kCk+1 =
Mg

rk−1
+

M

rk−1

k−1∑

j=0

[
(j + 1)Cj+1 + Cj

]
rj + MCkr, k ≥ 1, (7.12)

and replacing k with k − 2 gives

k(k − 1)Ck =
Mg

rk−2
+

M

rk−2

k−2∑

j=0

[
(j + 1)Cj+1 + Cj

]
rj + MCk−1r, k ≥ 2. (7.13)
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Multiplying (7.12) by r and using (7.13) gives

r(k + 1)kCk+1 ≤ Mg

rk−2
+

M

rk−2

{ k−2∑

j=0

[
(j + 1)Cj+1 + Cj

]
rj +

[
kCk + Ck−1

]
rk−1

}
+ MCkr

2

≤ Mg

rk−2
+

M

rk−2

k−2∑

j=0

[
(j + 1)Cj+1 + Cj

]
rj + MkCkr + MCk−1r + MCkr

2

≤ Mg

rk−2
+ k(k − 1)Ck − Mg

rk−2
−MCk−1r + MkCkr + MCk−1r + MCkr

2.

From the last inequality we obtain

r(k + 1)kCk+1 ≤
[
k(k − 1) + Mkr + Mr2

]
Ck.

or
Ck+1

Ck
≤ (k − 1)

r(k + 1)
+ M

k + r

(k + 1)k
. (7.14)

Therefore lim supk→∞Ck+1/Ck ≤ 1/r. Thus, the function y(x) defined by the power series (7.4),

whose coefficients are defined by the recursion formula (7.8) has radius of convergence r0. This

justifies all operations performed above (multiplication and differentiation of series). Therefore, the

solution y(x) to the initial value problem (2.1) is analytic with radius r0. ¤

Proof of Corollary 3.2. Iterating backwards using inequality (7.14) to obtain

Ck ≤ Ck−1

[
k − 2
rk

+ M
k − 1 + r

k(k − 1)

]

≤ Ck−2

[
k − 3

r(k − 1)
+ M

k − 2 + r

(k − 1)(k − 2)

] [
k − 2
rk

+ M
k − 1 + r

k(k − 1)

]

≤ C2

k−1∏

l=2

[
l − 1

r(l + 1)
+ M

l + r

(l + 1)l

]

≤ 1
2

[Mg + |y1|(1 + r)M + |y0|M ]
k−1∏

l=2

[
l − 1

r(l + 1)
+ M

l + r

(l + 1)l

]
.

The last step uses the definition of C2 in (7.12) when k = 1.
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Using this, the Taylor series remainder is estimated as follows
∣∣∣∣∣y(x)−

n∑

k=0

ckx
k

∣∣∣∣∣ =
∞∑

k=n+1

|ck||x|k ≤
∞∑

k=n+1

Ck|x|k

≤ 1
2

[Mg + |y1|(1 + r)M + |y0|M ]
∞∑

k=n+1

k−1∏

l=2

[
l − 1

r(l + 1)
+ M

l + r

(l + 1)l

]
|x|k

≤ 1
2

[Mg + |y1|(1 + r)M + |y0|M ]
∞∑

k=n+1

k−1∏

l=2

[
l − 1

r(l + 1)
+ M

l + r

(l + 1)l

]
|µr|k.

Consequently, we have a uniform bound for the Taylor series remainder for |x| ≤ |µr|, where 0 ≤
µ ≤ 1. ¤

Derivation of stochastic process for the SDF (4.8). In the CC model the stochastic discount

factor is given by (4.2), its partial derivatives are:

∂Λ
∂S

= −γ
Λ
S

,
∂Λ
∂C

= −γ
Λ
C

,
∂Λ
∂t

= −βΛ, (7.15)

∂2Λ
∂S2

= γ(γ + 1)
Λ
S2

,
∂2Λ
∂C2

= γ(γ + 1)
Λ
C2

, and
∂2Λ

∂S∂C
= γ2 Λ

SC
.

The logarithm of consumption x = ln(C), and the surplus consumption ratio, s = ln(S), are

assumed to follow the stochastic processes (4.3) and (4.4), respectively, so that by Ito’s rule

dS

S
= ds +

1
2
(ds)2 so that

(
dS

S

)2

= (ds)2, (7.16)

and
dC

C
= dx +

1
2
(dx)2 so that

(
dC

C

)2

= (dx)2. (7.17)

As a result S and C are stochastic differential equations such that Ito’s rule (4.7) may be applied

to the function Λ(t, S, C) to get

dΛ =
∂Λ
∂t

dt +
∂Λ
∂S

dS +
∂Λ
∂C

dC +
1
2

(
∂2Λ
∂S2

(dS)2 + 2
∂2Λ

∂S∂C
dSdC +

∂2Λ
∂C2

(dC)2
)

.

Substitute in the partial derivatives of Λ (7.15) to find

dΛ = −βΛdt− γ
Λ
S

dS − γ
Λ
C

dC +
1
2

(
γ(γ + 1)

Λ
S2

(dS)2 + 2γ2 Λ
SC

dSdC + γ(γ + 1)
Λ
C2

(dC)2
)

.
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Group common terms together, and use the rules for the stochastic process for S (7.16) and C (7.17)

to yield

dΛ
Λ

= −βdt−γ

(
ds +

1
2
(ds)2

)
−γ

(
dx +

1
2
(dx)2

)
+

1
2

(
γ(γ + 1)(ds)2 + 2γ2 (dx) (ds) + γ(γ + 1)(dx)2

)
.

Once again combine common terms, and substitute the stochastic processes for dx (4.3) and ds (4.4)

dΛ
Λ

=− βdt− γ ((φ− 1)(s− s̄)dt + λ(s− s̄)σdω)− γ (x̄dt + σdω)+

1
2

(
γ2((φ− 1)(s− s̄)dt + λ(s− s̄)σdω)2 + 2γ2 (x̄dt + σdω) ((φ− 1)(s− s̄)dt+

λ(s− s̄)σdω) + γ2(x̄dt + σdω)2
)
.

Now use multiplication rules for Brownian motion (dω)2 = dt, dωdt = 0, and (dt)2 = 0, and combine

the common terms so that

dΛ
Λ

= −βdt− γ ((φ− 1)(s− s̄)dt + λ(s− s̄)σdω)− γ (x̄dt + σdω) +
1
2
γ2σ2 (1 + λ(s− s̄))2 dt.

Finally, we have the stochastic process for the SDF (4.8) in the CC model

dΛ
Λ

=
(
−γ(φ− 1)s− β − γx̄ +

1
2
γ2σ2 (1 + λ(s))2

)
dt− γσ (1 + λ(s− s̄)) dω,

where s is translated to s− s̄ to simplify the subsequent algebra.

Derivation of the ODE (4.12) for the CC model. Cochrane (2005, p.28) shows that the

equilibrium price of stocks satisfies the Euler equation:

Λ(t)D(t) dt + Et [d(Λ(t)P (t))] = 0 , (7.18)

where P (t) is the price of a stock at time t, and D(t) is the dividend paid by this stock at time

t. Define the price-dividend ratio to be p(t) = P (t)/D(t) such that the Euler condition (7.18) is

equivalent to

Λ(t)D(t) dt + Et [d(Λ(t)p(t)D(t))] = 0 .

By Ito’s Lemma 4.1

d(ΛpD)
ΛpD

=
dΛ
Λ

+
dp

p
+

dD

D
+

dΛdp

Λp
+

dDdp

Dp
+

dΛdD

ΛD
,
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so that the Euler condition (7.18) becomes

1
p

dt + Et

(
dΛ
Λ

+
dp

p
+

dD

D
+

dΛdp

Λp
+

dDdp

Dp
+

dΛdD

ΛD

)
= 0 , (7.19)

which corresponds to (4.10). In equilibrium, we have D = C so that the consumption is replaced by

the dividends in (7.19). As a result, one can use the rule for the consumption level (7.17) to obtain

0 =
1
p
dt + Et

(
dΛ
Λ

+
dp

p
+ dx +

1
2
(dx)2 +

dΛ
Λ

(
dp

p
+ dx +

1
2
(dx)2

)
+

dp

p

(
dx +

1
2
(dx)2

))
. (7.20)

From the stochastic process for consumption growth (4.3) it follows that

dx +
1
2
(dx)2 = x̄dt + σdω +

1
2
(x̄dt + σdω)2 =

(
x̄ +

1
2
σ2

)
dt + σdω. (7.21)

Now substitute this result into the pricing equation (7.20), and use condition Et(dω) = 0 to get

0 =
1
p
dt + Et

(
dΛ
Λ

+
dp

p
+

(
x̄ +

1
2
σ2

)
dt +

dΛ
Λ

(
dp

p
+

(
x̄ +

1
2
σ2

)
dt + σdω

)
+

dp

p

((
x̄ +

1
2
σ2

)
dt + σdω

))
.

Substitute the expression for the stochastic discount factor (4.8), and again use Et(dω) = 0 such

that

0 =
1
p
dt + Et

((
−γ(φ− 1)s− β − γx̄ +

1
2
γ2σ2 (1 + λ(s))2

)
dt+

((
−γ(φ− 1)s− β − γx̄ +

1
2
γ2σ2 (1 + λ(x))2

)
dt− γσ (1 + λ(x)) dω

)

×
(

dp

p
+

(
x̄ +

1
2
σ2

)
dt + σdω

)
+

dp

p
+

(
x̄ +

1
2
σ2

)
dt +

dp

p

((
x̄ +

1
2
σ2

)
dt + σdω

))
. (7.22)

The solution for the price dividend function p(s) is assumed to be a C2 function of the surplus

consumption ration, where ds is given by (4.4), so by Ito’s rule (4.7) the stochastic process for the

price-dividend ratio (4.11) is given by

dp =
(

p′(s)(φ− 1)s +
1
2
p′′(s)λ(s)2σ2

)
dt + p′(s)λ(s)σdω. (7.23)

By substituting this expression for the price dividend ratio into the asset pricing equation (7.22),
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and using Et(dω) = 0 one has

0 =
1

p(s)
dt + Et

((
−γ(φ− 1)s− β − γx̄ +

1
2
γ2σ2 (1 + λ(s))2

)
dt+

((
−γ(φ− 1)s− β − γx̄ +

1
2
γ2σ2

1 (1 + λ(s))2
)

dt− γσ (1 + λ(s)) dω

)

×
((

p′(s)(φ− 1)s + 1
2p′′(s)λ(s)2σ2

)
dt + p′(s)λ(s)σdω

p(s)
+

(
x̄ +

1
2
σ2

)
dt + σdω

)

+

(
p′(s)(φ− 1)s + 1

2p′′(s)λ(s)2σ2
)
dt

p(s)
+

(
x̄ +

1
2
σ2

)
dt+

((
p′(s)(φ− 1)s + 1

2p′′(s)λ(s)2σ2
)
dt + p′(s)λ(s)σdω

p(s)

)
×

((
x̄ +

1
2
σ2

)
dt + σdω

))
.

Finally, use Ito’s multiplication rules (dω)2 = dt, dωdt = 0 , and (dt)2 = 0 from Ito’s Lemma

4.1, and multiply by p(s)dt, so that

0 =1 +
(

γ(1− φ)s− β + (1− γ)x̄ +
σ2

2
(γ(1 + λ(s))− 1)2

)
p(s)−

(
(1− φ) s + (γ − 1)σ2λ(s) + γσ2λ(s)2

)
p′(s) +

λ(s)2σ2

2
p′′(x).

Define the constants K0 = β + (γ − 1)x̄ > 0 and K1 = (1 − φ) > 0, and use the definition for r(x)

to yield the ODE (4.12).

Derivation of initial condition (4.25). Following Cochrane (2005, p.26) the instantaneous total

return on equity is

Re(s) dt =
dP

P
+

Ddt

P
.

We now convert from stock price P to price-dividend ratio where p = P
D . so that by Ito’s Lemma

4.1 the return on equity is given by the equation

Re(s) dt =
dt

p
+

dp

p
+

dC

C
+

dCdp

Cp
. (7.24)

Substituting in the stochastic process for consumption growth (7.17) and (7.21), as well as the

price-dividend ratio (7.23) yields the stochastic process for the return on stocks (4.21).
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Recall that −Rb(s) dt = Et[dΛ/Λ] and D = C. By (7.19) and (7.24), one finds

(
Et (Re(s))−Rb(s)

)
dt =

dt

p
+ Et

[
dΛ
Λ

+
dp

p
+

dC

C
+

dCdp

Cp

]

= −Et

[
dΛdp

Λp
+

dΛdC

ΛC

]

= σ2γ (1 + λ(s))
(

1 + λ(s)
p′(s)
p(s)

)
dt .

In the last step the stochastic process for the SDF (4.8) is multiplied by the stochastic process for

consumption growth (7.21), and the price-dividend ratio (7.23) taking account of the multiplication

rules in stochastic calculus. The second initial condition (4.25) follows by solving this equation for

p′(s), and setting s = 0.

Recursive formula (4.19) for Campbell and Cochrane’s model. By the Cauchy-Kovalevsky

Theorem 3.1 we can write

p(s) =
∞∑

n=0

pnsn near s = 0.

Also, we write ci(s) =
∑∞

n=0 c
(n)
i sn near s = 0. We will derive the recurrence formula for pn with

n > 2. For this, we calculate

p′(s) =
∞∑

n=0

(n + 1)pn+1s
n and p′′(s) =

∞∑

n=0

(n + 1)(n + 2)pn+2s
n .

Then, using the product formula for convergent series we obtain

c2(s)p′′(s) =

[ ∞∑

n=0

c
(n)
2 sn

][ ∞∑

n=0

(n + 1)(n + 2)pn+2s
n

]
=

∞∑

n=0

[
n∑

k=0

(k + 1)(k + 2)c(n−k)
2 pk+2

]
sn,

c1(s)p′(s) =

[ ∞∑

n=0

c
(n)
1 sn

][ ∞∑

n=0

(n + 1)pn+1s
n

]
=

∞∑

n=0

[
n∑

k=0

(k + 1)c(n−k)
1 pk+1

]
sn,

c0(s)p(s) =

[ ∞∑

n=0

c
(n)
0 sn

][ ∞∑

n=0

pnsn

]
=

∞∑

n=0

[
n∑

k=0

c
(n−k)
0 pk

]
sn.

Substituting the formulas for c2(s)p′′(s), c1(s)p′(s), and c0(s)p(s) into the differential equation

gives

∞∑

n=0

[
n∑

k=0

(k + 1)(k + 2)c(n−k)
2 pk+2

]
sn =

∞∑

n=0

[
n∑

k=0

(k + 1)c(n−k)
1 pk+1 +

n∑

k=0

c
(n−k)
0 pk

]
sn − 1.
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Matching the coefficients of same powers we obtain

2c
(0)
2 p2 = c

(0)
1 p1 + c

(0)
0 p0 − 1,

n∑

k=0

(k + 1)(k + 2)c(n−k)
2 pk+2 =

n∑

k=0

(k + 1)c(n−k)
1 pk+1 +

n∑

k=0

c
(n−k)
0 pk for n > 1.

Finally, solving the second equation for pn+2 (n > 1) gives

(n + 1)(n + 2)c(0)
2 pn+2 =

n+1∑

k=1

kc
(n−k+1)
1 pk +

n∑

k=0

c
(n−k)
0 pk −

n+1∑

k=2

(k − 1)kc
(n−k+2)
2 pk

= (n + 1)(c(0)
1 − nc

(1)
2 )pn+1 +

n∑

k=2

[
c
(n−k)
0 + kc

(n−k+1)
1 − (k − 1)kc

(n−k+2)
2

]
pk

+ (c(n−1)
0 + c

(n)
1 )p1 + c

(n)
0 p0 .

If c
(0)
2 6= 0, then the above recurrence formula calculates all the pn with n > 2. ¤

Derivation of bounds on a(x), b(x), and g(x). To estimate the bound on the coefficients it is

necessary to find a bound on the sensitivity function λ(s) within the complex plane following CCH

(2006a). Let z = x + yi be a point on the circle Cr, that is x2 + y2 = r2. Also, we assume that

r < r0 = 1−S̄2

2 . We write

u + vi = λ(z) =
1
S̄

√
1− 2z − 1 =

1
S̄

√
1− 2x− 2yi− 1 with u + 1 ≥ 0,

which is equivalent to

(u + 1)2 − v2 =
1− 2x

S̄2
and (u + 1)v = − y

S̄2
.

These equations imply

(u + 1)4 − 1− 2x

S̄2
(u + 1)2 − y2

S̄4
= 0 and v4 +

1− 2x

S̄2
v2 − y2

S̄4
= 0 .

If y 6= 0, then the quadratic formula yields

(u + 1)2 =
1− 2x +

√
1− 4x + 4r2

2S̄2
and v2 =

−1 + 2x +
√

1− 4x + 4r2

2S̄2
.

Applying

(1− 2r)2 = 1− 4r + 4r2 ≤ 1− 4x + 4r2 ≤ 1 + 4r + 4r2 = (1 + 2r)2 ,
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we get
1− 2r

S̄2
≤ (u + 1)2 ≤ 1 + 2r

S̄2
and 0 ≤ v2 ≤ 2r

S̄2
,

where the first inequality implies further that

0 < λ(r) =
√

1− 2r

S̄
− 1 ≤ u ≤

√
1 + 2r

S̄
− 1 = λ(−r).

So

0 < λ2(r) ≤ u2 + v2 ≤ λ2(−r) +
2r

S̄2
.

This set of inequalities can be used to establish bounds on the coefficients for z on Cr. Since

c2(z) =
σ2

2
λ2(z)

we have that

|c2(z)| = σ2

2
|λ2(z)| ≥ σ2

2
|λ2(r)| .= m2, for |z| = r.

Also, since

c1(z) = K1Z + (γ − 1)σ2λ(z) + γσ2λ2(z),

we have that

|c1(z)| ≤ K1r + (γ − 1)σ2

√
λ2(−r) +

2r

S̄2
+ γσ2

[
λ2(−r) +

2r

S̄2

]
.= m1, for |z| = r.

Finally, since

c0(z) = K0 − γK1z − 1
2
σ2

(
γλ(z) + γ − 1

)2
,

we have that

|c0(z)| ≤ K0 + γK1r +
σ2(γ − 1)2

2
+ γ(γ − 1)σ2

√
λ2(−r) +

2r

S̄2
+

γ2σ2

2

[
λ2(−r) +

2r

S̄2

]
.= m0,

for all |z| = r. Thus, the bounds on the coefficients and forcing term are

|a(z)| =
∣∣∣c1(z)
c2(z)

∣∣∣ ≤ m1

m2

.= Ma, |b(z)| =
∣∣∣c0(z)
c2(z)

∣∣∣ ≤ m0

m2

.= Mb, and |g(z)| =
∣∣∣ 1
c2(z)

∣∣∣ ≤ 1
m2

.= Mg,

for z on Cr.
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Then, by Cauchy’s integral formula we obtain

|a(k)(0)| ≤ k!
2π

∮

Cr

|a(z)|
rk+1

dz =
Mak!
2π

· 2πr

rk+1
=

Mak!
rk

for k = 0, 1, 2, . . . .

which corresponds to the bounds in (7.3) with |ak| = k!|a(k)(0)|. Following the same argument for

the coefficient b(s) and g(s), we get

|b(k)(0)| ≤ Mbk!
rk

and |g(k)(0)| ≤ Mgk!
rk

for k = 0, 1, 2, . . . . ¤

Derivation of probability distribution (4.30). Assume that the steady state distribution π(s)

satisfies the reflection barrier condition at s = s∗ from Cox and Miller (1965, p. 223):

{
1
2

d

ds
[a(s)π(s)]− b(s)π(s)

} ∣∣∣
s=s∗

= 0 .

Then 1
2

d2

ds2 [a(s)π(s)]− d
ds [b(s)π(s)] = 0 is equivalent to

1
2

d

ds
[a(s)π(s)]− b(s)π(s) = 0

or to the separable equation:
dπ(s)

ds
+

a′(s)− 2b(s)
a(s)

π(s) = 0 .

So

π(s) = c1 exp
{
−

∫ s a′(v)− 2b(v)
a(v)

dv

}
for some c1 ∈ R .

Recall that a(s) = σ2λ(s)2, b(s) = (φ− 1)s, and λ(s) = 1
S̄

√
1− 2s− 1.

∫
a′(s)− 2b(s)

a(s)
ds =

∫
2σ2λ(s)λ′(s)− 2(φ− 1)s

σ2λ(s)2
ds = 2

∫
λ′(s)
λ(s)

ds +
2(φ− 1)

σ2

∫
s

λ(s)2
ds

= 2 lnλ(s) +
2(1− φ)

σ2

∫
s

λ(s)2
ds

We will calculate
∫

s
λ(s)2

ds via the change of variable: y = λ(s) = 1
S̄

√
1− 2s − 1. Then we get
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s = 1
2 [1− (S̄)2(y + 1)2] and ds = −(S̄)2(y + 1) dy.

∫
s

λ(s)2
ds =

∫
1

2y2

[
1− (S̄)2(y + 1)2

] [−(S̄)2(y + 1)
]

dy =
(S̄)2

2

∫
1
y2

[
(S̄)2(y + 1)3 − (y + 1)

]
dy

=
(S̄)2

2

∫ [
(S̄)2y + 3(S̄)2 +

3(S̄)2 − 1
y

+
(S̄)2 − 1

y2

]
dy

=
(S̄)2

2

[
(S̄)2

2
y2 + 3(S̄)2y + (3(S̄)2 − 1) ln y +

1− (S̄)2

y

]
+ C

=
(S̄)2

2

[
(S̄)2

2
λ(s)2 + 3(S̄)2λ(s) + (3(S̄)2 − 1) lnλ(s) +

1− (S̄)2

λ(s)

]
+ C

As a result,

∫
a′(s)− 2b(s)

a(s)
ds =

2σ2 + (3(S̄)2 − 1)(S̄)2(1− φ)
σ2

lnλ(s)

+
(S̄)2(1− φ)

σ2

[
(S̄)2

2
λ(s)2 + 3(S̄)2λ(s) +

1− (S̄)2

λ(s)

]
+ C .

Set

c2 =
∫ s∗

−∞

{
2σ2 + (3(S̄)2 − 1)(S̄)2(1− φ)

σ2
ln λ(s) +

(S̄)2(1− φ)
σ2

[
(S̄)2

2
λ(s)2 + 3(S̄)2λ(s) +

1− (S̄)2

λ(s)

]}
ds .

Then

π(s) =
1
c2

{
2σ2 + (3(S̄)2 − 1)(S̄)2(1− φ)

σ2
lnλ(s) +

(S̄)2(1− φ)
σ2

[
(S̄)2

2
λ(s)2 + 3(S̄)2λ(s) +

1− (S̄)2

λ(s)

]}

for s < s∗ . Thus (4.30) is the steady state probability function for s. ¤
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