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1 Trading Desk’s Problem

The portfolio manager’s problem (30) subject to (31) is solved by specifying the HJB equation

when the change in the lifetime utility is found using (30) and (3) in the paper. After choosing

the optimal portfolio the manager’s problem boils down to the solution of a Partial Differential

Equation (PDE) for the lifetime utility h(τ,X). Here h(τ,X) is J(τ,X) in equation (32) of

our paper. This lifetime utility under the optimal behavior must be the solution to the PDE.

∂h(τ,X)

∂τ
=

1

2
Trace

(
A′
∂2h(τ,X)

∂X∂X
A

)
− 2

(
∂h(τ,X)

∂X

)′ [
BX + C

]
− h(τ,X)

[
X ′DX + EX + F

]
− 1

2h(τ,X)
Trace

(
H
∂h(τ,X)

∂X

(
∂h

∂X

)′)
+G

(1)

subject to

h(0, X) = h(X). (2)

h(X) is some given terminal lifetime utility of the investor.

The coefficients are given by

A ≡ ΣX

B ≡ 1

2

[
AP −(γj − 1)ΣXΣ′X(b′ − ιb′n)ω1(b− ιbn)(AP − AQ)

]
C ≡ 1

2

[
−ξΣXΣ′Xbn + (γj − 1)ΣXΣ′X (b− ιbn)′ ω1K − γP

]
D ≡ γj − 1

2γj
(AP − AQ)′(b′ − ιb′n)ω1(b− bnι′)(AP − AQ)

(3)

E ≡ γj − 1

γj
(
δ1 − ξbn(AP − AQ)

)
−γ

j − 1

γj
K ′ω1(b− ιbn)(AP − AQ)

F ≡ 1− γj

2
ξ2bnΣXΣ′Xb

′
n +

γj − 1

2γj
K ′ω1K +

β

γj
+
γj − 1

γj

[
δ0 + ξbn(γP − γQ)

]
with K ≡ (b− ibn)(γP − γQ)− γj (bΣXΣ′Xb

′
n − ιbnΣXΣ′Xb

′
n) ξ

G ≡ −β
1

γj

H ≡ (γj − 1)

[
γjΣXΣ′X (b′ − ιb′n)ω1 (b− ιbn)− In

]
ΣXΣ′X

In the text we use four treasury securities so that b4τ is used for the generic bn.

G = 0 when the trading desk does not consider periodic withdrawals from the portfolio.

The coefficients in the PDE (1) are in Table 1 for the parameters from the term structure

model and the preference parameters γj = 10, β = 0.05, ξ = 1.

1



Table 1: Estimates of Parameters for PDE (1).

A B C D E F H

0.0313 0.2716 0.0119 57.5221 3.2240 0.0828 0

Sangvinatsos and Wachter (2005, p. 192 JF) guess the solution when the trading desk

does not make periodic withdrawals between ALC meetings.

h(τ,X) = exp

{
−1

2
X ′B3(τ)X + B2(τ)′X + B1(τ)

}
, (4)

where τ = T − t.
This may be written as

h(τ,X) = exp

{
− 1

2

(
X − (B3(τ))−1 B2(τ)

)′ B3(τ)
(
X − (B3(τ))−1 B2(τ)

)
+ B1(τ) +

1

2
B2(τ)′ (B3(τ))−1 B2(τ)

}
(5)

so that (B3(τ))−1 B2(τ) is the mean and B3(τ)−1 is the variance of the expected utility of

terminal wealth. We call these terms µJ(τ) and σJ(τ) in equation (32) of the paper.

If one takes the derivatives of the guess and substitute into the linear PDE, then one gets

the Ricatti ordinary differential equations. The quadratic form matrix satisfies the ODE

∂B3(τ)

∂τ
= −B3(τ)A [I −H]A′B3(τ)− 2B3(τ)B +D (6)

subject to

B3(0) = B3.

The first line uses the symmetry of A so that A′ = A. In addition, the matrix B3(τ) must

be positive definite, which is true when A [I −H]A′ and D are positive definite.

The ODE for the linear coefficients is

∂B2(τ)

∂τ

′

= −B2(τ)′A [I −H]A′B3(τ) + C ′B3(τ)− B2(τ)′B − E (7)

subject to

B2(0) = B2.
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The ODE for the constant coefficients yields

B1(τ) = B1(0) +
1

2

∫ τ

0

[
B2(s)′A [I −H]A′B2(s)− Trace (AA′B3(s))− 2B2(s)′C − 2F

]
ds

(8)

with

B1(0) = B1.

These expressions are similar to Sangvinatsos and Wachter (2005, p. 222 and 223). The

solutions to these ODEs under the affine term structure estimates are given in Table 2. The

results are reported in Table 2 for γ = 10 and β = 0.05 at a one year time horizon. Figure 1

provides a graph for this solution versus the level of the yield curve in the left hand graph.

The domain is plus and minus 3 standard deviation of the lifetime utility relative to its mean.

The right hand graph has the hedging demand for 5 year bonds, and the total demand for 3

Months and 5 Year government bonds following (8).

Table 2: . Solution to the ODEs (6), (7), and (8)

B1(1) B2(1) B3(1) (B3(τ))−1 B2(τ) exp

(
B1(τ) + 1

2
B2(τ)′ (B3(τ))−1 B2(τ)

)
-0.0770 -2.5239 43.7308 -0.0593 0.9757

Figure 1: . The Expected Lifetime Utility of the trading desk and Portfolio Weights

Table 11 in the paper comes from Table 2 and Figure 6 in the paper corresponds to 1.

We want to find the stochastic process for the lifetime utility given the solution to the

PDE (1) for h(X, t) and the optimal portfolio rule (33) in the paper.

3



First we find the stochastic process for the trading desk’s utility from her bank capital,

since the lifetime utility follows (32) in the paper.

J(τ,Kj
M , X) =

1

1− γj
(
Kj
M

)1−γj
hγ

j

(τ,X) (9)

The stochastic process for the trading desk’s utility from capital is

d
(
Kj
M

)1−γj(
Kj
M

)1−γj =

(
C1(τ)− 1

2

(
X(s)′C3(τ)X(s)− 2C2(τ)X(s)

))
dt+

(
C4(τ) +X(s)′C5(τ)

)
dεs.

(10)

C1(τ) ≡(1− γj)

{
δ0 + ξb′n(γP − γQ)− 1

2
γjξ2b4τΣXΣ′Xb

′
4τ +K ′ω1Kw +

1

2
γjK ′ω1K

+ γj (K ′w −K ′)ω1 (b− ιbn) ΣXΣ′XB2(τ)

− 1

2

(
γj
)2 B2(τ)′ΣXΣ′X (b′ − ιb′n)ω1 (b− ιbn) ΣXΣ′XB2(τ)

}
,

C2(τ) ≡(1− γj)
[
δ1 −ξb′n(AP − AQ) −

(
K ′w + (1− γj)K ′

)
ω1(b− ιbn)(AP − AQ)

+ γj (Kw −K)ω1 (b− ιbn) ΣXΣ′XB3(τ)

+γjB2(τ)′ΣXΣ′X(b′ − ιb′n)ω1 (b− ιbn) (AP − AQ)

−
(
γj
)2 B2(τ)′ΣXΣ′X (b′ − ιb′n)ω1 (b− ιbn) ΣXΣ′XB3(τ)

]
,

C3(τ) ≡(1− γj)
[
γj(AP − AQ)′(b′ − ιb′n)ω1(b− ιbn)(AP − AQ)

−2γj(AP − AQ)(b′ − ιb′n)ω1 (b− ιbn) ΣXΣ′XB3(τ)

+
(
γj
)2 B3(τ)′ΣXΣ′X (b′ − ιb′n)ω1 (b− ιbn) ΣXΣ′XB3(τ)

]
,

C4(τ) ≡(1− γj)
[
K + γjB2(τ)′ΣXΣ′X (b′ − ιb′n)

]
ω1(b− ιbn)ΣX + (1− γj)ξbnΣX

C5(τ) ≡(1− γj)
[
−(AP − AQ)′(b′ − ιb′n) + γjB3(τ)′ΣXΣ′X (b′ − ιb′n)

]
ω1(b− ιb)ΣX ,

Kw ≡ (b′ − ib′n)(γP − γQ)− γj (bΣXΣ′Xb
′
n − ιbnΣXΣ′Xb

′
n)
′
ξ.

(11)

Table 3 gives the values of the coefficients Ci(τ) for τ = 1 given by (11). In this case the

discounted future wealth is positively related to the future factor for low values of the level

factor, i.e. Xs < − (C3(τ))−1 C2(τ) < 0 .
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Table 3: Estimates of Parameters for Equation (11) with γj = 0.

C1(τ) C2(τ) C3(τ) C4(τ) C5(τ)

0.0725 -11.5339 244.3535 -0.1512 -2.2074

By using Ito’s Lemma again one finds:

J(w,X, τ) = J(w,X, 0) exp

{∫ τ

0

(
J1(0)− 1

2

(
X(s)′J3(0)X(s)− 2J2(0)

))
ds

−
∫ τ

0

(
J4(0) +X(s)′J5(0)

)
dεs

}
.

(12)

The coefficients

J1(0) ≡C1(0)− γj(1− γj)
2

C4(0)C4(0)′ + γjF +
γj

2
B2(τ)′

[(
γj + 1

)
ΣXΣ′X +H

]
B2(τ)

− γjB2(τ)′
(
(1− γj)ΣXC4(0)′ + 2C − γP

)
J2(0) ≡C2(0)− γj(1− γj)C4(0)C ′5(0) + γjE + γjB2(τ)′

[(
γj + 1

)
ΣXΣ′X +H

]
B3(τ)

− γjB2(τ)′
(
(1− γj)ΣXC5(0)′ − 2B + AP

)
J3(0) ≡C3(0) + γj(1− γj)C5(0)C ′5(0)− 2γjD + γjB3(τ)′

[(
γj + 1

)
ΣXΣ′X +H

]
B3(τ)

− 2γjB3(τ)′
(
(1− γj)ΣXC5(0)′ − 2B + AP

)
,

J4(0) ≡C4(0) + γjB2(τ)′, and

J5(0) ≡C5(0) + γjB3(τ)′.

(13)

We want J(w,X, τ) to be a uniformly integrable martingale. We recognize that it is a

stochastic exponential (Doléans-Dade exponential). See Protter (pp. 84-89). In our case, we

have a continuous stochastic process for the factor. As a result, we have

E(Xt) = exp

{
Xt −

1

2
[X,X]t

}
,

where [X,X]t is the quadratic variation of J(w,X, τ).

Theorem 45 of Protter (2005, p.141) demonstrates J(w,X, τ) to be a uniformly integrable

martingale as long as

E

[
exp

{
1

2
[X,X]t

}]
<∞.
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In this case, the quadratic variation includes all the terms associated with the variance-

covariance matrix ΣXΣ′X . In this case the quadratic variation is

E

{
exp

[(
J4(0) +X(s)′J5(0)

)′(
J4(0) +X(s)′J5(0)

)]}
<∞. (14)

This is called the Novikov’s Criterion. Below we show these expectations are bounded for the

investor’s problem.

If this is true, then the lifetime utility of the investor is given by

J(w,X, τ) = J(w,X, 0)Et

[
exp

{∫ τ

0

(
J1(0)− 1

2

(
X(s)′J3(0)X(s)− 2J2(0)

))
ds

}]
.

(15)

To solve the COO’s problem (42) in the paper, we need to find the probability distribution

of expressions like (12). In the next section this is accomplished by finding the solution to

the stochastic process (3) in the paper. This allows us to separate formulas like (12) between

an expected and random part. We then use the Komogorov Forward equation to find the

explicit formula for the probability distribution for the unanticipated component.

2 Probability Distribution for Exponential Functions of

an Ornstein-Uhlembeck Process

In this section we find the probability distribution for terms like (12), so that we can evaluate

the value at risk and the call option value of capital. As shown in the previous section the

marginal value of capital is related to the interest rate factors. These factors follow the

Ornstein-Uhlembeck process (3) in the paper.

dX(s) =
(
γP − APX(s)

)
ds+ ΣXdεs. (16)

Following Arnold (1974) Theorem 8.2.2, the fundamental solution is

Φ(s) = e−A
P (s−t).

The solution to (16) is

X(τ) = e−A
P (τ−t)X(t) +

(
I − e−AP (τ−t)

) (
AP
)−1

γP +

∫ t+τ

t

e−A
P (τ−υ)ΣXdευ. (17)
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Here τ > t.

Following Arnold (1974) Theorem 8.2.12 the integral

Yτ =

∫ t+τ

t

e−A
P (τ−υ)ΣXdευ ∼ N(Y ; 0, K(τ)). (18)

Here, N(Y ; 0, K(τ)) represents a normal distribution with mean zero.

Its variance-covariance matrix is given by

K(τ) =

∫ t+τ

t

e−A
P (τ−υ)ΣXΣ′Xe

−AP′(τ−υ)dυ.

By exercise (1.2.11) of Hijab (1987)

K(τ) = K∞ − e−A
PτK∞e

−AP′τ .

Here, the matrix K∞ solves the Lyapunov equation

−APK∞ −K∞AP ′ = ΣXΣ′X .

As the time horizon tends to infinity, K(τ)→ K∞. The solution to this equation is a positive

definite symmetric matrix, which is easily calculated using lyap.m in Matlab.

We have encountered several stochastic processes for lifetime utility and the trading desk’s

capital stock. They all have the form

Zt = exp

{
− 1

2

∫ T

t

[
X ′sD3(s)Xs − 2D2(s)Xs

]
ds+

∫ T

t

(D4(s) +X ′sD5(s)) dεs

}
. (19)

In particular, see (10), and (12) in which Di(s) are replaced by Ci(s) and Ji(s) for i =

1, 2, 3, 4, 5, respectively. We use the notation Xs rather than X(s), used in the text, to

indicate that X is a stochastic process. In addition, the calculations are for a given terminal

time T .

For this stochastic process to have a solution, the Novikov condition (14) must be satisfied.

In this case, the quadratic variation is dependent on the convergence of the stochastic process

for Xs. Its solution is given by (17). The deterministic part of this solution is convergent,

as long as AP has all positive roots. The stochastic part Y includes all the terms associated

with the variance-covariance matrix which is bounded by

K(τ) = K∞ − e−A
PτKe−A

P′τ ≤ K with τ = T − t.
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This together with the convergence of the solution Xs (17) assures the quadratic variation

(14) exists.

We will now explain how the Backward and Forward Kolmogorov Equations apply to our

problem. We then find the solution to these Kolmogorov equations.

2.1 The Backward Kolmogorov Equation

To solve for the expectation of the stochastic process (19) we use the backward Kolmogorov

equation. We represent the transition probability from state X at time t to the state Y at time

T by p(t,X, T, Y ). Subsequently, we will derive the transition probability using the forward

Kolmogorov equation. In the text X is the vector of interest rate factors at the current time

and Y is the random component of these factors at time T given by (18).

We now consider the conditional expectation of (19). As long as the Novikov’s Criterion

(14) holds, the conditional expectation of (19) is

f(t,X) =

∫
RN

exp

{
− 1

2

∫ T

t

[
X ′sD3(s)Xs − 2D2(s)Xs

]
ds

}
× f(T, Y )p(t,X, T, Y )dY.

(20)

We will show f(t,X) for any t ∈ [0, T ] is the solution to the backward Kolmogorov equation

∂f(t,X)

∂t
− 1

2
(X ′D3(t)X − 2D2(t)X) f(t,X)

+

(
∂f(t,X)

∂X

)′ (
γP − APX

)
+

1

2
Trace

(
ΣXΣ′X

∂2f(t,X)

∂X∂X

)
= 0

(21)

under the stochastic process (16).1 We will be using in the subsequent argument the operator

KX defined by

KX ≡
(

∂

∂X

)′ (
γP − APX

)
+

1

2
Trace

(
ΣXΣ′X

∂2

∂X∂X

)
(22)

so that
∂f(t,X)

∂t
− 1

2
(X ′D3(t)X − 2D2(t)X) f(t,X) +KXf(t,X). (23)

The Kolmogorov backward PDE is solved subject to the terminal condition

lim
t↑T

f(t,X) = f(X), X ∈ RN . (24)

1This is a variation on the argument for Theorem 8.4.1 of Calin et. al. Also see Duffee (1992) Appendix
E, and Karatzas and Shreve (1988, pp. 366-369).
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Proof. Define the integrating factor

φ(t, s) = exp

{
− 1

2

∫ s

t

[
X ′υD3(υ)Xυ − 2D2(υ)Xυ

]
dυ

}
.

Let

Ys = φ(t, s)f(s,Xs) s ∈ [t, T ]

which is a function of the solution to the stochastic differential equation for X (17). As a

result, we can apply Theorem 6.3.1 of Shreve (2006). For a Borel measurable function h(y)

on t ∈ [0, T ], we have

E [h(X(T )) | F(t)] = g(t,X(t)).

Under these conditions, Lemma 6.4.2 of Shreve (2006), the stochastic process g(t,X(t)) is a

martingale. Now introduce the discount process

D(t) = φ(0, t).

Define

Y (t,X)− E [φ(t, T )h(X(T )) | F(t)] ,

then

Y (t,X) = φ(0, t)f(t,X)

is a martingale and satisfies the PDE (23). However, f(t,X) is not a martingale.

To see the reason for the PDE (23), apply Ito’s lemma to Ys under the stochastic process

(16) to yield

dYs =− 1

2

[
X ′sD3(s)Xs − 2D2(s)Xs

]
φ(t, s)f(s,Xs)ds+ φ(t, s)

∂f(s,Xs)

∂s
ds

+ φ(t, s)

(
∂f(s,Xs)

∂X

)′ (
γP − APXS

)
ds+

1

2
φ(t, s)Trace

(
ΣXΣ′X

∂2f(s,XS)

∂X∂X

)
ds

+ φ(t, s)

(
∂f(s,XS)

∂X

)′
ΣXdεs

For Ys to be a martingale the drift term must be zero. This property is satisfied by the PDE

(23).

Since Ys is a martingale we can integrate from t to T

φ(t, T )f(T,XT )− φ(t, t)f(t,Xt) =

∫ T

t

φ(t, s)

[
∂f(s,Xs)

∂s
− 1

2
(X ′sD3(s)Xs − 2D2(s)Xs)

× f(s,Xs) +KXsf(s,Xs)

]
ds+

∫ T

t

φ(t, s)

(
∂f(s,Xs)

∂Xs

)′
ΣXdεs

9



We impose (21) subject to the terminal condition (24). In addition we can use the martingale

property to take expectations, since Novikov’s Criterion (14) is true.

f(t,X(t)) = Et

[
φ(t, T )f(Y )

]
+ Et

[
φ(t, s)

(
∂f(s,XS)

∂X

)′
ΣXdεs

]
The second term is zero which leads to the result: Thus, solving the backward Kolmogorov

equation (21) for f(t,X) yields the expectation (20).

2.2 Solving the Backward Kolmogorov Equation.

We set the terminal condition for the backward Kolmogorov equation

f(X) = exp

{
1

2
X ′D3X +D2X +D1

}
,

where Di are constants for the terminal condition.

Guess the solution of (21) has the form

f(t,X) = exp

{
− 1

2

[
X ′F3(t)X − 2F2(t)X + F1(t)

]}
, (25)

∂f(t,X)

∂X
= f(t,X) [−F3(t)X + F2(τ)′] .

∂2f(t,X)

∂X∂X
= f(t,X)

(
F3(t)XX ′F3(t)− 2F3(τ)XF2(t) + F2(t)′F2(τ)−F3(τ)

)
.

∂f(t,X)

∂t
= f(τ,X)

[
−1

2
X ′
∂F3(t)

∂t
X +

∂F2(t)

∂t
X − 1

2

∂F1(t)

∂t

]
.

Now substitute these results into the Kolmogorov backward equation (21).[
−1

2
X ′
∂F3(t)

∂t
X +

∂F2(t)

∂t
X − 1

2

∂F1(t)

∂t

]
− 1

2
(X ′D3(t)X − 2D2(t)X)

+ [−X ′F3(t) + F2(τ)]
(
γP − APX

)
+

1

2
Trace

(
ΣXΣ′X

(
F3(t)XX ′F3(t)− 2F3(τ)XF2(t) + F2(t)′F2(τ)−F3(τ)

))
= 0[

−1

2
X ′
∂F3(t)

∂t
X +

∂F2(t)

∂t
X − 1

2

∂F1(t)

∂t

]
− 1

2
X ′D3(t)X +D2(t)X

−X ′F3(t)γP +X ′F3(t)APX + F2(τ)γP −F2(τ)APX +
1

2
X ′F3(t)ΣXΣ′XF3(t)X

−F2(t)ΣXΣ′XF3(t)X +
1

2
F2(t)ΣXΣ′XF2(t)′ − 1

2
Trace (ΣXΣ′XF3(t)) = 0
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Now equate quadratic, linear, and constant terms to obtain three ODEs.

∂F3(t)

∂t
= F3(t)ΣXΣ′XF3(t)−D3(t) + 2F3(t)AP (26)

subject to

F3(0) = D3.

This is the Lyapunov equation.

∂F2(t)

∂t
= F2(t)

(
ΣXΣ′XF3(t) + AP

)
−D2(t) + γP ′F3(t) (27)

subject to

F2(0) = D2.

This ODE is linear so that we can use integrating factor to solve for F2(t). The Final ODE is

∂F1(t)

∂t
= 2F2(τ)γP + F2(t)ΣXΣ′XF2(t)′ − Trace (ΣXΣ′XF3(t)) (28)

subject to

F1(0) = D1.

This initial value problem is the simplest since everything on the right hand side of the ODE

is known.

2.3 The Forward Kolmogorov Equation

Following Karatzas and Shreve (1988) the solution to the backward Kolmogorov equation

(21) f(t,X) for fixed (T, Y ) is

f(t,X) ≡ p(t,X, T, Y ). (29)

In addition, for fixed (t,X) the function

g(τ, Y ) ≡ φ(t, τ)p(t,X, τ, Y ) (30)

solves the forward Kolmogorov equation.2

∂g(τ, Y )

∂τ
= K∗Y g(τ, Y )− 1

2
(Y ′D3(τ)Y − 2D2(τ)Y ) g(τ, Y ). (31)

2See Karatzas and Shreve (1988, p. 369) equation (7.24). Also see Theorem 8.7.1. of Calin et. al (2011),
and Chirikjian (2009, p.118-121)
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Here, the dual of KX given by3

K∗X =−
N∑
i=1

∂

∂Xi

(
γP − APX

)
i
+

1

2

N∑
i,j=1

∂2

∂Xi∂Xj

ΣikΣ
′
kj

=− γP ′ ∂
∂X

+X ′AP ′
∂

∂X
+ Trace(AP) +

1

2
Trace

(
ΣΣ′

∂2

∂X∂X

)
. (32)

Remark: Notice that only the distribution of the factors enters (32). The preferences of

the investor only influences the discount factor φ(t, τ) in (31).

To find the initial condition, let the Dirac distribution centered at X ∈ RN be f(X) = δX

such that

δX(θ) =

∫
RN
δx(Y )θ(Y )dY = θ(X).

For a given Xt = X ∈ RN ,

g(τ,X) =

∫
RN
δX(Y )φ(t, τ)p(t,X, τ, Y )dY = φ(t, τ)p(t,X, τ,X).

Consequently, if the initial condition for the Kolmogorov forward equation (31) is

lim
τ→0+

g(τ,X(τ)) = δX , (33)

then the solution to (31) is φ(t, τ)p(t,X, τ, Y ) = g(τ, Y ).

Thus, we have

Theorem 2.1. The discounted transition probability φ(t, τ)p(t,X, τ, Y ) for a given Xt = X ∈
RN is the solution to the Kolmogorov Forward equation (31) with (32) subject to the initial

condition (33).

Proof. We will use the property of the dual for the Kolmogorov operator, KY given by∫
RN
KY f(Y )g(Y )dY =

∫
RN
f(Y )K∗Y g(Y )dY. (34)

3See Øksendal (2005, p. 169). Also follow the derivation in Chirikjian (2009, p. 121)
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We know from (20) that

f(t,X) =

∫
RN

exp

{
− 1

2

∫ T

t

[
X ′sD3(s)Xs − 2D2(s)Xs

]
ds

}
× f(Y )p(t,X, T, Y )dY

=

∫
RN

∫
RN

exp

{
− 1

2

∫ τ

t

[
X ′sD3(s)Xs − 2D2(s)Xs

]
ds

}

exp

{
− 1

2

∫ T

τ

[
X ′sD3(s)Xs − 2D2(s)Xs

]
ds

}
f(Y )p(t,X, τ, Z)p(τ, Z, T, Y )dZdY

=

∫
RN
φ(t, τ)f(τ, Z)p(t,X, τ, Z)dZ

The next to last step uses the Chapman-Kolmogorov equation for a Markov process4 and the

last step uses the definition of f(t,X). As a result, we know for any t < τ ≤ T

f(t,X) =

∫
RN
f(τ, Y )φ(t, τ)p(t,X, τ, Y )dY. (35)

Next differentiate in τ

0 =
∂f(t,X)

∂τ
=

∫
RN

∂f(τ, Y )

∂τ
φ(t, τ)p(t,X, τ, Y )dY +

∫
RN
f(τ, Y )

∂φ(t, τ)p(t,X, τ, Y )

∂τ
dY

=

∫
RN
f(τ, Y )

∂φ(t, τ)p(t,X, τ, Y )

∂τ
dY −

∫
RN
KY f(τ, Y )φ(t, τ)p(t,X, τ, Y )dY

+
1

2

∫
RN

(Y ′D3(τ)Y − 2D2(τ)Y ) f(τ,X)φ(t, τ)p(t,X, τ, Y )dY

(36)

The second step uses the backward Kolmogorov equation (21).

Now apply the property (34) to find

0 =

∫
RN
f(τ, Y )

[
∂φ(t, τ)p(t,X, τ, Y )

∂τ
−K∗Y (φ(t, τ)p(t,X, τ, Y ))

+
1

2
(Y ′D3(τ)Y − 2D2(τ)Y )φ(t, τ)p(t,X, τ, Y )

]
dY

This means we want to define g(τ, Y ) = φ(t, τ)p(t,X, τ, Y ) for (31).to hold.

4See Chirikjian (2009, p. 108) equation (4.16).
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2.4 Solving the Forward Kolmogorov Equation

It is difficult to impose the initial condition (33), since there is no explicit form for it. However,

the Fourier transform of δX is 1. As a result, we will take the Fourier transform of the

Kolmogorov equation (31) and find its solution. We will then apply the inverse Fourier

transform to find the solution to the Kolmogorov forward equation given the initial condition.

Suppose that f(X) ∈ S(RN), on RN . This functional space refers to all functions which

rapidly decrease, so that f(X) is absolutely integrable over RN .5 This allows one to move

between Fourier transforms and its inverse. The Fourier transform of f(X) is

F [f(X)] = f̂(ξ) =

∫ ∞
−∞

f(X)e−iξ
′X dX.

Here ξ ∈ RN and ξ ·X ≡ ξ′X = ξ1X1 + · · ·+ ξNXN .

The inverse Fourier transform of f̂(ξ) is

F−1[f̂(ξ)] = f(X) =
1

(2π)N

∫ ∞
−∞

f̂(ξ)eiξ·X dξ.

If the Fourier transforms of f(X) exists, then

FX

[
∂f(X)

∂Xj

]
=iξjFX [f(X)]⇒ FX

[
∂f(X)

∂X

]
= iξFX [f(X)].

FX

[
∂2f(X)

∂Xj∂Xk

]
=− ξjξkFX [f(X)]⇒ FX

[
∂2f(X)

∂X∂X

]
= −ξξ′FX [f(X)]. (37)

The subscript X is added to keep track of the integration over X not t.

FX [−iXf(X)] =
∂f̂(ξ)

∂ξ
⇒ FX [Xf(X)] = i

∂f̂(ξ)

∂ξ
. (38)

Proof:
∂f̂(ξ)

∂ξj
=
∂

∂ξj

∫ ∞
−∞

f(X)e−iξ·X dX =

∫ ∞
−∞
−iXjf(X)e−iξ·X dX = FX [−iXjf(X)].

⇒ FX [−iXf(X)] =
∂FX [f(X)]

∂ξ
.

FX

[(
∂f

∂X

)′
APX

]
= Trace

(
APFX

[
X

(
∂f

∂X

)′ ])
= iT race

AP ∂FX
[(

∂f
∂X

)′]
∂ξ


=i2Trace

(
AP

∂ξ′FX [f(X)]

∂ξ

)
= −Trace

(
AP

∂FX [f(X)]

∂ξ
ξ′ + APFX [f(X)]

)
.

5These results from Alex Himonas’s Topics in PDE notes. Also see Evans (2002, pp. 182-186).
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The first result applies the Trace to a quadratic form. The second step uses (38) for the

function
(
∂f
∂X

)′
. In the third equality we use the first result in (37). Finally, we use the

product rule of differentiation and i2 = −1.

We also have to consider FX [X ′Xf(X)].

FX [X ′Xf(X)] =
∂2f̂(ξ)

∂ξ∂ξ

Proof:
∂f̂(ξ)

∂ξj∂ξk
=

∂

∂ξk

∫ ∞
−∞
−iXjf(X)e−iξ·X dX =

∫ ∞
−∞

iXkiXjf(X)e−iξ·X dX = FX [−XkXjf(X)].

⇒ FX [−XX ′f(X)] =
∂2FX [f(X)]

∂ξ∂ξ
.

Notice

FX [X ′D3(τ)Xf(τ,X)] =FX [Trace (X ′D3(τ)X) f(τ,X)] = FX [Trace (D3(τ)XX ′f(τ,X))]

= Trace (FX [D3(τ)XX ′f(τ,X)]) = Trace

(
D3(τ)

∂2f̂(ξ)

∂ξ∂ξ

)
The first step is true since X ′D3(τ)X ∈ R . The second step uses the property Trace (ABC) =

Trace (BCA). The third step takes advantage of the trace being a linear operator so that

the additive property of integrals can be used. Since X ′X is symmetric the last step uses the

last property of Fourier transforms.

Recall the Kolmogorov forward equation

∂g(τ, Y )

∂t
=− γP ′∂g(τ, Y )

∂Y
+

(
∂g(τ, Y )

∂Y

)′
APY + Trace

(
AP
)
g(τ, Y )

+
1

2
Trace

(
ΣΣ′

∂2g(τ, Y )

∂Y ∂Y

)
− 1

2
(Y ′D3(τ)Y − 2D2(τ)Y ) g(τ, Y ). (39)

subject to the initial condition

g(0, Y0) = δY .

Apply the Fourier transform to the forward Kolmogorov equation.

∂FY [g(τ, Y )]

∂τ
= −γP ′FY

[
∂g(τ, Y )

∂Y

]
+ FY

[(
∂g(τ, Y )

∂Y

)′
APY

]
+ Trace(AP)FY [g(τ, Y )] +

1

2
Trace

(
ΣΣ′FY

[
∂2g(τ, Y )

∂Y ∂Y

])
− 1

2
FY [(Y ′D3(τ)Y − 2D2(τ)Y ) g(τ, Y )]

(40)
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subject to the initial condition

FY [g(0, Y0)] = 1.

Next use the rules for Fourier transform to obtain

∂FY [g(τ, Y )]

∂τ
= −iγP ′ξFY [g(τ, Y )]− Trace

(
AP

∂FY [g(τ, Y )]

∂ξ
ξ′ + APFY [g(τ, Y )]

)
+ Trace(AP)FY [g(τ, Y )]− 1

2
Trace (ΣΣ′ξξ′FY [g(τ, Y )])− 1

2
Trace

(
D3(τ)

∂2ĝ(ξ)

∂ξ∂ξ

)
+ i

(
∂FY [g(τ, Y )]

∂ξ

)′
D2(t, τ)′

⇒∂FY [g(τ, Y )]

∂τ
+

1

2
ξ′ΣΣ′ξFY [g(τ, Y )] + iγP ′ξFY [g(τ, Y )]

−
(
∂FY [g(τ, Y )]

∂ξ

)′ (
iD2(τ)′ − AP ′ξ

)
+

1

2
Trace

(
D3(τ)

∂2ĝ(ξ)

∂ξ∂ξ

)
= 0

(41)

subject to the initial condition

FY [g(0, Y0)] = 1.

Now that the initial value problem is defined we can use a guess and verify procedure to

find its solution.

FY [g(τ, Y )] = exp

{
− 1

2

[
ξ′G3(τ)ξ − 2iG2(τ)′ξ + G1(τ)

]}
, (42)

We do not assume the matrix is symmetric, since 1
2
ξ′ (G3(τ) + G3(τ)′) ξ = ξ′G3(τ)ξ .

∂FY [g(τ, Y )]

∂ξ
= FY [g(τ, Y )] [−G3(τ)ξ − G3(τ)′ξ + iG2(τ)] .

∂2FY [g(τ, Y )]

∂ξ∂ξ
= FY [g(τ, Y )]

(
− [G3(τ) + G3(τ)′] ξξ′ [G3(τ) + G3(τ)′]

− 2i [G3(τ) + G3(τ)′] ξG2(τ)′ − G2(τ)G2(τ)′ − [G3(τ) + G3(τ)′]
)
.

∂FY [g(τ, Y )]

∂τ
= FY [g(τ, Y )]

[
−1

2
ξ′
∂G3(τ)

∂τ
ξ + i

∂G2(τ)

∂τ
ξ − 1

2

∂G1(τ)

∂τ

]
.
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Now substitute these results into the Fourier transform (41) of the forward Kolmogorov

equation (31).[
−1

2
ξ′
∂G3(τ)

∂τ
ξ + i

∂G2(τ)

∂τ
ξ − 1

2

∂G1(τ)

∂τ

]
+

1

2
ξ′ΣXΣ′Xξ + iξ′γP

− (−ξ′ [G3(τ) + G3(τ)′] + iG2(τ))
(
iD2(τ)′ − AP ′ξ

)
+

1

2
Trace

(
D3(τ)

(
[G3(τ) + G3(τ)′] ξξ′ [G3(τ) + G3(τ)′]

− 2i [G3(τ) + G3(τ)′] ξG2(τ)− G2(τ)′G2(τ)− [G3(τ) + G3(τ)′]
))

= 0

⇒
[
−1

2
ξ′
∂G3(τ)

∂τ
ξ + i

∂G2(τ)

∂τ
ξ − 1

2

∂G1(τ)

∂τ

]
+

1

2
ξ′ΣXΣ′Xξ + iγP ′ξ

+D2(τ)G3(τ)iξ − ξ′G3(τ)AP ′ξ + G2(τ)D2(τ)′ + G2(τ)AP ′iξ +
1

2
ξ′G3(τ)D3(τ)G3(τ)ξ

− G2(τ)D3(τ)G3(τ)iξ − 1

2
G2(τ)D3(τ)G2(τ)′ − 1

2
Trace (D3(τ)G3(τ)) = 0.

Now equate quadratic, linear (iξ), and constant terms to obtain three ODEs.

∂G3(τ)

∂τ
= G3(τ)D3(τ)G3(τ)− 2G3(τ)AP ′ + ΣXΣ′X (43)

subject to

G3(0) = 0N×N .

Again this is the Lyapunov equation.

∂G2(τ)

∂τ
= G2(τ)

(
D3(τ)G3(τ)− AP ′

)
− γP ′ −D2(τ)G3(τ) (44)

subject to

G2(0) = 0N .

This ODE is linear so that we can use integrating factor to solve for G2(τ). The integrating

factor is

int = e−(D3(τ)G3(τ)−AP′)τ .

Consequently,

∂e−(D3(s)G3(s)−AP′)sG2(s)

∂s
ds = −e−(D3(s)G3(s)−AP′)s (γP ′ −D2(s,X)G3(s)

)
ds.
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Now integrate from τ to 0

G2(τ,X) = e(D3(τ)G3(τ)−AP′)τG2(0)−
∫ τ

0

e−(D3(s)G3(s)−AP′)(s−τ)
(
γP ′ −D2(s,X)G3(s)

)
ds.

The Final ODE is

∂G1(τ)

∂τ
= 2G2(τ)D2(τ)′ − G2(τ)D3(τ)G2(τ)′ − Trace (D3(τ)G3(τ)) (45)

subject to

G1(0) = 0.

This initial value problem is the simplest since everything on the right hand side of the ODE

is known.

Solving these three ODEs leads to the solution (42) to the Fourier transform of the Kol-

mogorov equation (41). The final step is to take the inverse Fourier transform to (42)

g(τ, Y ) =
1

(2π)N

∫ ∞
−∞

exp

{
− 1

2

[
ξ′G3(τ)ξ − 2 (G2(τ)− Y ′) iξ + G1(τ)

]}
dξ. (46)

To calculate this integral we use the following Lemma following Strauss (2008, p. 345)

and Strichartz (2008, pp. 41-43).

Lemma 2.2. Let α be a positive number and let x0 and y0 be real numbers.∫ ∞
−∞

e−α(x+x0+iy0)2 dx =

√
π

α
(47)

We also need the multiple dimension version of Lemma 2.2.

Lemma 2.3. Let A be a N×N symmetric matrix with all positive eigenvalues and let Z ∈ CN .

∫
RN
e−

1
2(X+A−1Z)

′
A(X+A−1Z)dX =

√
(2π)N

detA
. (48)

To apply the Lemma 2.3 to the inverse Fourier transform (46) we have to multiply out

the quadratic exponent(
X + A−1Z

)′
A
(
X + A−1Z

)
= X ′AX + 2Z ′X + Z ′(A−1)Z (49)

Now match up the coefficients in (46) to yield
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A = G3(τ) and Z = (G2(τ)′ −X) i (50)

As a result, we can complete the square in the exponent of (46) to find

g(τ, Y ) =
1

(2π)N

∫ ∞
−∞

exp

{
− 1

2

[
ξ′G3(τ)ξ − 2 (G2(τ)− Y ′) iξ + G1(τ)

]}
dξ

= exp

{
− 1

2
G1(τ)− 1

2
(G2(τ)′ − Y )

′ G3(τ)−1 (G2(τ)′ − Y )

}

× 1

(2π)N

∫ ∞
−∞

exp

{
− 1

2

(
Y + G3(τ)−1 (G2(τ)′ − Y ) i

)′ G3(τ)
(
Y + G3(τ)−1 (G2(τ)′ − Y ) i

)}
dξ

=
1√

(2π)N det(G3(τ))
exp

{
− 1

2
G1(τ)− 1

2
(G2(τ)′ − Y )

′ G3(τ)−1 (G2(τ)′ − Y )

}
. (51)

By applying this solution to the forward Kolmogorov equation for the stochastic process

(19), we can find the probability distribution for the trading desk’s utility from bank capital

(10) and her overall utility (12).

These random terms are probability densities of a normal distribution. We denote these

probabilities densities by

N (x;µ,Σ) ≡ 1√
(2π)N det(Σ)

exp

{
− 1

2
(x− µ)′Σ−1(x− µ)

}
(52)

for x ∈ Rn.

By (51) the discounted transition probability can be written as

φ(t, τ)p(t,X, τ, Y ) = exp

{
− 1

2
G1(τ)

}
N (Y ;G2(τ)′,G3(τ)) . (53)

Note that

φ(t, s) = exp

{
− 1

2

∫ s

t

[
X ′υD3(υ)Xυ − 2D2(υ)Xυ

]
dυ

}
does not include the constant term

D0(τ) = exp

{
− 1

2
D1(τ)τ

}
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so it has to be added back in. The same is true for the backward Kolmogorov equation (21).

In the analysis of option values and VaR we will use various rules for Gaussian probability

distributions which we recall from Petersen and Pedersen (2008). First we use the rule for

the product of two normal distributions.

N (x;µ1,Σ1)×N (x;µ1,Σ1) = ϑN (x;µc,Σc)

where ϑ ≡ 1√
(2π)N det (Σ1 + Σ2)

exp

{
− 1

2
(µ1 − µ2)′ (Σ1 + Σ2)−1 (µ1 − µ2)

}
,

µc ≡
(
Σ−1

1 + Σ−1
2

)−1 (
Σ−1

1 µ1 + Σ−1
2 µ2

)
,

and Σc =
(
Σ−1

1 + Σ−1
2

)−1
. (54)

We also use the linear rule6

Ax ∼ N (x,Aµ,ΣA′), (55)

Finally, we convert to a standard normal using the rule

x =σZ + µ such that Z ∼ N (0N , IN) . (56)

Here, Σ = σσ′ is the Cholesky decomposition of the variance covariance matrix. By following

these basic rules for a normal distribution we are able to represent the probability distribution

for the trading desk’s bank capital and her lifetime utility.

2.5 Stochastic Discount Factor

We now have all the tools necessary to break a stochastic process like (10) and (12) into

expected and random components. First, we apply the argument to the stochastic discount

factor. The other stochastic processes will be solved using the same technique.

6See Petersen amd Pedersen (2008) 8.1.4, p. 41.
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Mτ,t

Mt,t

= exp

{
−
∫ t+τ

t

[
r (X(s)) +

1

2
Λ (X(s))

′
Λ (X(s))

]
ds+

∫ t+τ

t

Λ (X(s))′ dεs

}
= exp

{
−
∫ t+τ

t

[
r (X(s)) +

1

2

(
γP − γQ −

(
AP − AQ

)
X(s)

)′
(Σ′XΣX)

−1

(
γP − γQ −

(
AP − AQ

)
X(s)

)]
ds+

∫ t+τ

t

(
γP − γQ −

(
AP − AQ

)
X(s)

)′
(Σ′X)

−1
dεs

}

= exp

{
−
∫ t+τ

t

[
δ0 +

1

2

(
γP − γQ

)′
(Σ′XΣX)

−1 (
γP − γQ

)
+
(
δ1 −

(
γP − γQ

)′
(Σ′XΣX)

−1 (
AP − AQ

))
X(s)

+
1

2
X(s)′

(
AP − AQ

)′
(Σ′XΣX)

−1 (
AP − AQ

)
X(s)

]
ds

+

∫ t+τ

t

((
γP − γQ

)′
(Σ′X)

−1 −X(s)′
(
AP − AQ

)′
(Σ′X)

−1
)
dεs

}
= exp

{∫ τ

0

(
−M1(0)− 1

2

(
X ′sM3(0)Xs − 2M2(0)Xs

)}]
ds+

∫ T

t

(M4 +M5Xs) dεs

}
.

We use the risk free rate, the risk premium and the risk neutral coefficients in this derivation.

The constants are given by

M1 ≡δ0 +
1

2

(
γP − γQ

)′
(Σ′XΣX)

−1 (
γP − γQ

)
,

M2 ≡−
[
δ1 −

(
γP − γQ

)′
(Σ′XΣX)

−1 (
AP − AQ

)]
,

M3 ≡
(
AP − AQ

)′
(Σ′XΣX)

−1 (
AP − AQ

)
,

M4 ≡
(
γP − γQ

)′
(Σ′X)

−1
and M5 ≡ −

(
AP − AQ

)′
(Σ′X)

−1
.

(57)

As a result, the stochastic process for the pricing kernel is

Mτ,t

Mt,t

= exp

{∫ τ

0

(
−M1(0)− 1

2

(
X ′sM3(0)Xs − 2M2(0)Xs

))
ds+

∫ t+τ

t

(M4 +X ′sM5) Σ′Xdεs

}
.

(58)

These coefficients for (57) are provided in Table 4. M3 is positive so that the stochastic

discount factor has the Gaussian shape. For Xs > (M3)−1M2 = −0.0210 an increase in the

factor leads to a decrease in the stochastic discount rate, but it reverses sign for lower values
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Table 4: Estimates of Parameters in (57).

M1 M2 M3 M4 M5

0.3212 -26.8228 1278 0.7223 35.7529

of the factor. M5 is negative so that shocks to the interest rate factors lowers the stochastic

discount factor.

We need the probability distribution for the pricing kernel in solving the loan desk’s

problem. Before applying the forward Kolmogorov results, we factor out all the deterministic

terms from (58). We have from (17)

X(τ) = A0(τ) + e−A
P (τ−t)X(t) + Yτ , (59)

where

A0(τ) =
(
I − e−AP (τ−t)

) (
AP
)−1

γP .

We also will use ∫ t+τ

t

e−A
P (s−t)ds =

(
AP
)−1
[
I − e−APτ

]
.

Now factor the square term to find

X(τ)′M3X(τ) =
(
A0(τ) + e−A

P (τ−t)X(t) + Yτ

)′
M3

(
A0(τ) + e−A

P (τ−t)X(t) + Yτ

)
=
(
γP ′
(
AP ′
)−1
(
I − e−AP′(τ−t)

)
+X(t)′e−A

P′
)
M3((

I − e−AP (τ−t)
) (
AP
)−1

γP + e−A
P (τ−t)X(t)

)
+ 2

(
γP ′
(
AP ′
)−1
(
I − e−AP′(τ−t)

)
+X(t)′e−A

P′(τ−t)
)
M3Yτ + Y ′τM3Yτ

= γP ′
(
AP ′
)−1
(
I − e−AP′(τ−t)

)
M3

(
I − e−AP (τ−t)

) (
AP
)−1

γP

+ 2γP ′
(
AP ′
)−1
(
I − e−AP′(τ−t)

)
M3e

−AP (τ−t)X(t) +X(t)′e−A
P′M3e

−AP (τ−t)X(t)

+ 2
(
γP ′
(
AP ′
)−1
(
I − e−AP′(τ−t)

)
+X(t)′e−A

P′(τ−t)
)
M3Yτ + Y ′τM3Yτ .
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Now integrate the first term over the time horizon τ given X(t) = X.

− 1

2

∫ t+τ

t

X(s)′M3X(s)ds =

− 1

2

∫ t+τ

t

γP ′
(
AP ′
)−1
(
I − e−AP′(s−t)

)
M3

(
I − e−AP (s−t)

)
ds
(
AP
)−1

γP

− γP ′
(
AP ′
)−1
∫ t+τ

t

(
I − e−AP′(s−t)

)
M3e

−AP (s−t)dsX(t)− 1

2
X(t)′

∫ t+τ

t

e−A
P′(s−t)M3e

−AP (s−t)dsX(t)

−
(
γP ′
(
AP ′
)−1
∫ t+τ

t

(
I − e−AP′(s−t)

)
M3Ysds+X(t)′

∫ t+τ

t

e−A
P′(s−t)M3Ysds

)
− 1

2

∫ t+τ

t

Y ′sM3Ys

= −1

2
γP ′
(
AP ′
)−1M3

(
AP
)−1

γPτ

+ γP ′
(
AP ′
)−1
∫ t+τ

t

e−A
P′(s−t)dsM3

(
AP
)−1

γP

− 1

2
γP ′
(
AP ′
)−1
∫ t+τ

t

e−A
P′(s−t)M3e

−AP (s−t)ds
(
AP
)−1

γP

− γP ′
(
AP ′
)−1M3

∫ t+τ

t

e−A
P (s−t)dsX(t) + γP ′

(
AP ′
)−1
∫ t+τ

t

e−A
P′(s−t)M3e

−AP (s−t)dsX(t)

− 1

2
X(t)′

∫ t+τ

t

e−A
P′(s−t)M3e

−AP (s−t)dsX(t)− γP ′
(
AP ′
)−1M3

∫ t+τ

t

Ysds

+

(
γP ′
(
AP ′
)−1
∫ t+τ

t

e−A
P′(s−t)M3Ysds −X(t)′

∫ t+τ

t

e−A
P′(s−t)M3Ysds

)
− 1

2

∫ t+τ

t

Y ′sM3Ys.

If we use the definition of Ys, we have

− γP ′
(
AP ′
)−1M3

∫ t+τ

t

Ysds+

(
γP ′
(
AP ′
)−1
∫ t+τ

t

e−A
P′(s−t)M3

∫ s

t

e−A
P (s−υ)ΣXdευds

−X(t)′
∫ t+τ

t

e−A
P′(s−t)M3

∫ s

t

e−A
P (s−υ)ΣXdευds

)
= 0, (60)

since dευds = 0 by Ito’s Rule.

We need the result∫ t+τ

t

e−A
P′(s−t)M3e

−AP (s−t)ds =
[
M− e−AP′τMe−A

Pτ
]
,

where the matrix M solves the Lyapunov equation

− APM−MAP ′ =M3. (61)

The solution to this equation is a positive definite symmetric matrix, which is easily calculated

using lyap.m in Matlab.
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− 1

2

∫ t+τ

t

X(τ)′M3X(τ)ds = −1

2
γP ′
(
AP ′
)−1M3

(
AP
)−1

γPτ

+ γP ′
(
AP ′
)−1 (

AP ′
)−1
[
I − e−AP′τ

]
M3

(
AP
)−1

γP

− 1

2
γP ′
(
AP ′
)−1
[
M− e−AP′τMe−A

Pτ
] (
AP
)−1

γP

− γP ′
(
AP ′
)−1M3

(
AP
)−1
[
I − e−APτ

]
X(t) + γP ′

(
AP ′
)−1
[
M− e−AP′τMe−A

Pτ
]
X(t)

− 1

2
X(t)′

[
M− e−AP′τMe−A

Pτ
]
X(t)− 1

2

∫ t+τ

t

YsM3Ys

We also need∫ t+τ

t

M2Xsds =M2

∫ t+τ

t

(
AP
)−1

γPds−M2

∫ t+τ

t

e−A
P (τ−t)ds

(
AP
)−1

γPds

+M2

∫ t+τ

t

e−A
P (s−t)dsX(t) +

∫ t+τ

t

M2Ysds

=M2

(
AP
)−1

γPτ −M2

(
AP
)−1
[
I − e−AP (τ)

] (
AP
)−1

γP

+M2

(
AP ′
)−1
[
I − e−AP (τ)

]
X(t) +

∫ t+τ

t

M2

∫ s

t

e−A
P (s−υ)ΣXdευds

=M2

(
AP
)−1

γPτ −M2

(
AP
)−1
[
I − e−AP (τ)

] (
AP
)−1

γP

+M2

(
AP
)−1
[
I − e−AP (τ)

]
X(t).

The last step uses the rule dευdt = 0

We also need∫ t+τ

t

dε′sΣXM′
5Xs =

∫ t+τ

t

dε′sΣXM′
5

(
AP
)−1

γP −
∫ t+τ

t

dε′sΣXM′
5e
−AP (τ−t) (AP)−1

γP

+

∫ t+τ

t

dε′sΣXM′
5e
−AP (s−t)X(t) +

∫ t+τ

t

dε′sΣXM′
5Ys

=

∫ t+τ

t

dε′sΣX

[
M′

5

(
AP
)−1

γP −M′
5e
−AP (τ−t) (AP)−1

γP

+M′
5e
−AP (s−t)X(t)

]
+

∫ t+τ

t

dε′sΣXM′
5Ys

=

∫ t+τ

t

(M4 +X ′tM5 + Y ′sM5Σ′X) dεs
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We now bring all these calculations into the stochastic process for the pricing kernel.

Mτ,t

Mt,t

= exp

{
−M1(τ)τ − 1

2
γP ′
(
AP ′
)−1M3

(
AP
)−1

γPτ

+ γP ′
(
AP ′
)−1 (

AP ′
)−1
[
I − e−AP′τ

]
M3

(
AP
)−1

γP

− 1

2
γP ′
(
AP ′
)−1
[
M− e−AP′τMe−A

Pτ
] (
AP
)−1

γP

− γP ′
(
AP ′
)−1M3

(
AP
)−1
[
I − e−APτ

]
X(t) + γP ′

(
AP ′
)−1
[
M− e−AP′τMe−A

Pτ
]
X(t)

− 1

2
X(t)′

[
M− e−AP′τMe−A

Pτ
]
X(t) +M2

(
AP
)−1

γPτ −M2

(
AP
)−1
[
I − e−AP (τ)

] (
AP
)−1

γP

+M2

(
AP
)−1
[
I − e−AP (τ)

]
X(t)− 1

2

∫ t+τ

t

Y ′sM3Ys +

∫ t+τ

t

(M4 +X ′tM5 + Y ′sM5Σ′X) dεs

}
.

(62)

Define

M(τ,X) ≡ exp

{
−M1(τ)τ − 1

2
γP ′
(
AP ′
)−1M3

(
AP
)−1

γPτ

+ γP ′
(
AP ′
)−1 (

AP ′
)−1
[
I − e−AP′τ

]
M3

(
AP
)−1

γP

− 1

2
γP ′
(
AP ′
)−1
[
M− e−AP′τMe−A

Pτ
] (
AP
)−1

γP

+M2

(
AP
)−1

γPτ −M2

(
AP
)−1
[
I − e−AP (τ)

] (
AP
)−1

γP

+

[
γP ′
(
AP ′
)−1
[
M− e−AP′τMe−A

Pτ
]

+M2

(
AP
)−1
[
I − e−AP (τ)

]
− γP ′

(
AP ′
)−1M3

(
AP
)−1
[
I − e−APτ

] ]
X(t)− 1

2
X(t)′

[
M− e−AP′τMe−A

Pτ
]
X(t)

}

= exp

{
− 1

2

(
X −M−1

3 M2

)′
M3

(
X −M−1

3 M2

)
+

1

2
M′

2M
−1
3 M2 + M1

}
(63)

This result can be used to separate the portion of the pricing kernel dependent on the

current factors X from future random changes in these factors Ys for s > t. We substitute

the known part (63) into the pricing kernel (62) so that

1

M(τ,X)

Mτ,t

Mt,t

= exp

{
− 1

2

∫ t+τ

t

Y ′sM3Ysds+

∫ t+τ

t

(M4 +X ′tM5 + Y ′sM5Σ′X) dεs

}
(64)
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This relation is an example of the stochastic process (19) so that its probability distribution

is the solution to the forward Kolmogorov equation (31). Notice (64) is dependent on the

current X through M5. This means that D4 ≡ M4 + X ′tM5 and D5 = M5Σ′X . These terms

do not influence the forward Kolmogorov equation, since this error term has mean zero.

The solution to the forward Kolmogorov equation yields the probability distribution for

the pricing kernel.

1

M(τ,X)

Mτ,t

Mt,t

∼ 1√
(2π)N det(A3(τ,X))

exp

{
− 1

2
A1(τ,X)− 1

2
Y ′A3(τ,X)−1Y

}

which has the same form as (19) with the appropriate definitions of the coefficients D′s.
The coefficients for the discounted probability distribution for the pricing kernel (51) are

given in Table 5 which has a normal distribution, since A3(τ) > 0. These coefficients are

reported at one year time horizon. A2 and A3(τ) quickly converges to the steady state. Also,

recall from (51) that the maximum of the pricing kernel is A2(τ) with variance A3.

Table 5: Solution to Forward Kolmogorov Equation (40) for coefficients in (57) .

A1 A2 A3 σM

-0.0691 0.0000 1.1158 10−4 0.0106

Thus the probability distribution for the pricing kernel is given by

Mτ,t

Mt,t

∼ exp

{
− 1

2

(
X −M−1

3 M2

)′
M3

(
X −M−1

3 M2

)
+

1

2
M′

2M
−1
3 M2 + M1 −

1

2
A1(τ)

}

× 1√
(2π)N det(A3(τ))

exp

{
− 1

2
Y ′A3(τ)−1Y

}

This leads to equation (10) in the text with σM ≡ A3(τ).

Et

[
Mτ,t

Mt,t

]
= exp

{
− 1

2

(
X −M−1

3 M2

)′
M3

(
X −M−1

3 M2

)
+

1

2
M′

2M
−1
3 M2 + M1 −

1

2
A1(τ)

}

× 1√
(2π)N det(A3(τ))

∫ ∞
−∞

exp

{
− 1

2
Y ′A3(τ)−1Y

}
dY

= exp

{
− 1

2

(
X −M−1

3 M2

)′
M3

(
X −M−1

3 M2

)
+

1

2
M′

2M
−1
3 M2 + M1 −

1

2
A1(τ)

}
(65)
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This corresponds to equation (9) in the text with

(σM(τ))−1 ≡M3

M(τ) ≡ exp

{
1

2
M′

2M
−1
3 M2 + M1 −

1

2
A1(τ)

}
. (66)

Table 6: Coefficients in (65) for Pricing Kernel.

M1 M2 M3 M−1
3 M2 exp

{
1
2
M′

2M
−1
3 M2 + M1 − 1

2
A1(τ)

}
-0.1610 -10.5396 461.52543 -0.0228 0.9940

Figure 2: The Expected Pricing Kernel (65).

The expected pricing kernel is less than one. For example, a level of the term structure

of 0 leads to Et

[
Mτ,t

Mt,t

]
= 0.8812 and 0.9879 for the stationary point of the level, −0.0177. At

the maximum level of the yield curve 0.0256 we have Et

[
Mτ,t

Mt,t

]
= 0.5785.

All the other distributions have the deterministic term (63) with the appropriate changes

in the constants. For example the capital stock replaces M′s with K′s.

2.6 Gross Growth Rate of the Trading Desk’s Capital

In Table 7 we apply the forward Kolmogorov equation to the gross rate of growth of the

trading desk’s capital using the coefficients in (11). This corresponds to equation (36) in the
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paper. We can also express in Table 8 the conditional probability of this growth rate of capital

as in the case of the pricing kernel (63). This leads to equation (35) in the paper. Tables 7

and 8 are used to construct Table 5 in the paper.

Table 7: Solution to Forward Kolmogorov Equation (40) for coefficients in (11).

K1 K2 K3 σK

-0.0130 0.0000 1.0895 10−4 0.0104

Table 8: Coefficients in (63) for Trading Desk’s Capital.

K1 K2 K3 K−1
3 K2 exp

{
− 1

2
K′2K

−1
3 K2 + K1 − 1

2
K1(τ)

}
0.0074 -5.6309 88.1733 -0.0639 1.2138

The expected gross growth rate of the capital for the trading desk is a Gaussian distribution

in Figure 8 in the paper. At the stationary point for the level of the yield curve −0.177

we have Et

[
Kτ,t
Kt,t

]
= 1.1048. With the highest level of the yield curve at 0.0256 we have

Et

[
Kτ,t
Kt,t

]
= 0.8529, since the higher level leads to a decrease in the price of bonds. In

addition, a higher level should revert to the lower mean, resulting in an expected loss on the

portfolio.

We will also deal with the product of the pricing kernel with the gross growth rate of the

trading desk’s capital. Its coefficients are given by

D1(τ) ≡C1(τ) +M1,

D2(τ) ≡C2(τ) +M2,

D3(τ) ≡C3(τ) +M3,

D4(τ) ≡C4(τ) +M4, and

D5(τ) ≡C5(τ) +M5.

(67)

Tables 10 and 11 apply the forward Kolmogorov equation to find the probability distri-

butions for this product and its conditional expectation which corresponds to equation 38 in

the paper.
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Figure 3: The Unexpected Gross Growth Rate for
The Trading Desk’s Capital, (65).

Table 9: Estimates of Parameters for Equation (67).

D1(τ) D2(τ) D3(τ) D4(τ) D5(τ)

0.3937 -38.3567 1,522.60 0.5711 33.5455

Table 10: Solution to Forward Kolmogorov Equation (40) for coefficients in (67).

KM1 KM2 KM3 σKM

-0.0825 0.0000 1.1222 ×10−4 0.0106

Table 11: Coefficients in (63) for Product of Pricing Kernel with Trading Desk’s Capital.

MK1 MK2 MK3 MK−1
3 MK2 exp

{
− 1

2
KK′2MK−1

3 MK2 + MK1 − 1
2
MK1(τ)

}
-0.1536 -16.1705 549.4276 -0.0294 1.1339

The expected discounted value for the gross growth rate of the capital for the trading desk

is a Gaussian distribution in Figure 4. At the stationary point for the level of the yield curve

−0.177 we have Et

[
MKτ,t
MKt,t

]
= 1.0917. With the highest level of the yield curve observed at

0.0256 we have Et

[
MKτ,t
MKt,t

]
= 0.4935. Finally, the maximum value is Et

[
MKτ,t
MKt,t

]
= 1.1339.
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Figure 4: The Expected Discounted Value of Gross Growth Rate for
The Trading Desk’s Capital, (65).

Therefore we have expressed all the stochastic processes for solving the loan desk’s problem

as standard normal random variables with mean zero. This can be done by adding

exp

{
− 1

2
A1(τ,X)

}

to the constant term in MK(τ,X).

We write these probabilities as

1

M(τ,X)

Mτ,t

Mt,t

= pM(t,X, τ, Y ),
1

K(τ,X)

Kj
M(t+ τ)

Kj
M(t)

= pK(t,X, τ, Y ), (68)

1

KM(τ,X)

Mτ,t

Mt,t

Kj
M(t+ τ)

Kj
M(t)

= pMK(t,X, τ, Y ),
1

MP(τ,X)

Mτ,t

Mt,t

P̄3τ,t

P3τ,t

= pMP (t,X, τ, Y ),

1

MY(τ,X)

Mτ,t

Mt,t

Y = pMY (t,X, τ, Y ) and
1

KMY(τ,X)

Mτ,t

Mt,t

Kj
M(t+ iτ)

Kj
M(t)

Y = pMKY (t,X, τ, Y ).

3 Loan Desk’s Optimization Problem

This section derive additional results for the model in section 5 of the paper. The Lagrangian

function for the COO’s problem after using the balance sheet constraint for the loan desk to
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remove the quantity of deposits is given by

V
(
t,Kj

M(t), Kj
L(t), rj2τ,t−τ , X(t)

)
= Kj

M(t)M(τ,X)K(τ,X)− rp

D̄
M(τ,X)

[
D̄ −Kj

M(t)
]2

+ maxEt

{
M(τ,X)

[
(rjτ,t − cj − rDτ,t)

{
γj0,τ − γ

j
1,τr

j
τ,t + σ(rjτ,t)ε

j
τ,t

}
+ (rj2τ,t − cj − rDτ,t)

{
γj0,2τ − γ

j
1,2τr

j
2τ,t + σ(rj2τ,t)ε

j
2τ,t

}
+ rDτ,t

(
Kj
L(t) + (1− ξ)Kj

M(t)−Rj
t

)
+ (rj2τ,t−τ − cj − rDτ,t)

{
γj0,2τ − γ

j
1,2τr

j
2τ,t−τ + σ(rj2τ,t−τ )ε

j
2τ,t−τ

}
− (1− χ)rjKτ,t + (1− η)qj

]
τ

+ λ1M(τ,X)

[
Kj
M(t) +Kj

L(t)− κL
(
Ljτ,t + Lj2τ,t + Lj2τ,t−τ

)
− κT ξKj

M(t)− cb
(
P̄3τ,t

P3τ,t

− 1

)+ ]
+ λ2M(τ,X)

[
Kj
t − ατL

j
τ,t − α2τ

(
Lj2τ,t + Lj2τ,t−τ

)
− αT ξKj

M(t) + αRR
j
t

]
+ Et

[
M2τ,t

Mt,t

V
(
t+ τ,Kj

M(t+ τ), Kj
L(t) +

[
πjL(t)− rjKτ,t + qj

]
τ, rj2τ,t, X(t+ τ)

)]}
.

(69)

For the two period loans we have

M(τ,X)

[
2
(
−γj1,2τ + σ1ε

j
2τ,t

)
rj2τ,t −

(
cj + rD2τ,t

) (
−γj1,2τ + σ1ε

j
2τ,t

)
+ γj0,2τ + σ0ε

j
2τ,t

]
τ −M(τ,X) [λ1κL + λ2α2τ ]

(
−γj1,2τ + σ1ε

j
2τ,t

)
+ Et

[
M2τ,t

Mt,t

∂V

∂mj
2τ,t

]
+ Et

[
M2τ,t

Mt,t

∂V

∂Kj
L(t+ τ)

]
∂πjL
∂mj

2τ,t

= 0.

Here,

∂πjL
∂mj

2τ,t

=

[
2
(
−γj1,2τ + σ1ε

j
2τ,t

)
rj2τ,t −

(
cj + rD2τ,t

) (
−γj1,2τ + σ1ε

j
2τ,t

)
+ γj0,2τ + σ0ε

j
2τ,t

]
τ,

and
∂V

∂mj
2τ,t

=
∂πjL
∂mj

2τ,t

− [λ1κL + λ2α2τ ]
(
−γj1,2τ + σ1ε

j
2τ,t

)
.

Using the optimal condition for paying dividends (44) in the paper, the optimal condition for

the two period loan margin becomes[
2rj2τ,t −

(
cj + rD2τ,t

)
+

γj0,2τ + σ0ε
j
2τ,t(

−γj1,2τ + σ1ε
j
2τ,t

)] τ =
[M(τ,X) +M(2τ,X)]

[χM(τ,X) +M(2τ,X)]
(λ1κL + λ2α2τ ) .

(70)
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Here, the stochastic discount factor is given by (10) in the paper.7

We can also examine the behavior of the two period loans. We focus on the capital

constraint (21) in the paper. First we solve (70), when these constraints do not bind, then

rj∗2τ,t =
1

2

(
cj + rD2τ,t

)
−

γj0,2τ + σ0ε
j
2τ,t

2
(
−γj1,2τ + σ1ε

j
2τ,t

) . (71)

Consequently, the two period loan follows the same rule as one period loans using the demand

for two period loans.

When the liquidity and capital constraints are binding, the analysis follows the same

argument as for the one period loan in the paper. First the loan rate is set on the demand

for two period loans.

rjK2τ,t =
1(

−γj1,2τ + σ1ε
j
2τ,t

) [Lj2τκ,t − (γj0,2τ + σ0ε
j
2τ,t

)]
. (72)

The subscript ′2τκ, t′ in the two period loan rate refers to the loan rate when the two period

loans just satisfy the capital constraint (21) at time t in the paper.

The lagrange multiplier for the capital constraint (21) at time t in the paper is found by

solving (70) for λ1 when λ2 = 0. In addition, we use (72).

λ1 =
2τ [χM(τ,X) +M(2τ,X)]

κL [M(τ,X) +M(2τ,X)]

(
rjK2τ,t −

1

2

(
cj + rD2τ,t

)
+

γj0,2τ + σ0ε
j
2τ,t

2
(
−γj1,2τ + σ1ε

j
2τ,t

)) . (73)

By using (71), the lagrange multiplier for the capital constraint (21) in the paper also has

a payoff similar to a European call option

λ∗1(t) =

{
2τ [χM(τ,X)+M(2τ,X)]
κL[M(τ,X)+M(2τ,X)]

[
rjK2τ,t − r

j∗
2τ,t

]
for rjKτ,t > rj∗τ,t

0 for rjKτ,t ≤ rj∗τ,t.
(74)

The essential difference from (57) in the paper is that the slope of the payoff is now in-

fluenced by the expectation of the marginal investor’s intertemporal rate of substitution,
[χM(τ,X)+M(2τ,X)]
[M(τ,X)+M(2τ,X)]

, as well as the weights on two period loans in the capital constraint. This

result can be seen by comparing this with (57) in the paper. As a result, the relative payoff

between the two and one period loans satisfies[
rjK2τ,t − r

j∗
2τ,t

]
[
rjKτ,t − r

j∗
τ,t

] =
[χM(τ,X) +M(2τ,X)]

[M(τ,X) +M(2τ,X)]χ
. (75)

7If the bank chooses to issue equity, then 1 is replaced by 1 + η and χ becomes 2 .
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Thus, the relative payoffs on two and one period loans is dependent on the stochastic discount

factor for the marginal investor, the response of the demand for loans to the two period interest

rate, and the weights on two and one period loans in the capital constraint.

4 The Capital Option Value under Capital Constraint

Now that we have the probability distributions (68) we can evaluate the expected marginal

value of the loan desk’s capital (65) in the paper. With the solution to this expected marginal

value of the loan desk’s capital, we can then determine the optimal amount of the loan desk’s

capital using (23) in the paper. To find this option value we use the logic for solving the

Black-Scholes option pricing formula.

To illustrate these calculations we start with the counter cyclical buffer. Using (11) in the

paper the counter cyclical buffer is dependent on

Pτ,τ
P̄τ,τ

= exp

{
bτ

[
e−A

P (τ−t)(X − X̄) + Y

]}
= P(τ,X) exp

{
bτY

}
(76)

The last step uses the fact that Y has a normal distribution with mean 0 and variance

bτK(τ)b′τ so that Pτ,τ
P̄τ,τ

has a standard normal distribution after adjusting for the variance.

As a result, the counter cyclical buffer is positive when

Y < e−A
P (τ−t)(X̄ −X),

since bτ < 0.

The counter cyclical buffer applies whether or not the liquidity or the capital constraint

binds. As a result, we can calculate the cost of the counter cyclical buffer. We need the prob-

ability distribution for M2τ,t

Mt,t
. Following the derivation of the forward Kolmogorov equation

the two terms have a normal distribution in (68).

exp

{
− 1

2
Y ′A3(τ)−1Y + bτY

}
= exp

{
− 1

2
(Y −A3(τ)b′τ )

′A3(τ)−1 (Y −A3(τ)b′τ )

+
1

2
bτA3(τ)b′τ

}
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As a result we have

M2τ,t

Mt,t

(
P̄τ,s
Pτ,s
− 1

)+

=

((
P(τ,X)M(2τ,X)pM(t,X, 2τ, Y )exp

{
bτY

}
(77)

−M(2τ,X)pM(t,X, 2τ, Y )

))+

=
1√

(2π)N det(A3(τ))

((
P(τ,X)M(2τ,X)exp

{
1

2
bτA3(τ)−1b′τ

}

× exp

{
− 1

2
(Y −A3(τ)b′τ )

′A3(τ)−1 (Y −A3(τ)b′τ )

}
(78)

−M(2τ,X) exp

{
− 1

2
Y ′A3(τ)−1Y

}))+

.

Let ρb for given X be defined by

P(τ,X)M(2τ,X) exp

{
1

2
bτA3(τ)b′τ

}
exp

{
− 1

2
(ρb −A3(τ)b′τ )

′A3(τ)−1 (ρb −A3(τ)b′τ )

}

−M(2τ,X) exp

{
− 1

2
ρ′bA3(τ)−1ρb

}
= 0⇒ exp

{
bτe
−AP (τ−t)(X − X̄) + bτρb

}
− 1 = 0

⇒ ρb = e−A
P (τ−t)(X̄ −X). (79)

Let A3(τ) = ΣMΣ′M . Thus, the option value of the counter cyclical buffer is

cbEt

(
M2τ,t

Mt,t

(
P̄τ,s
Pτ,s
− 1

)+
)

=cbM(2τ,X)

(
P(τ,X) exp

{
1

2
b′τA3(τ)−1bτ

}(
1− Φ

(
Σ−1
M (ρb − (ΣMΣ′M) bτ )

))
−
(
1− Φ

(
Σ−1
M ρb

)))
. (80)

This corresponds to (25) in the paper.

Here, define the probability

Pr {Z > ρ} ≡ 1√
(2π)N

∫ ∞
ρ

e−
1
2
Z′ZdZ ≡ Φ (ρ) ,
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so that

∂Φ (ρ)

∂ρ
=− 1√

(2π)N
e−

1
2
ρ′ρ.

In the rest of the derivation we take the counter cyclical buffer as given by CCB, since its

marginal cost is known given current information.

4.1 Option value of capital constraint

The option value of capital for the loan desk is dependent on the marginal value of the capital

of the loan desk in the future. This marginal value of capital is

∂V

∂Kj
L(t)

=M(τ,X)
[
rD(t) + λ∗1(t) + λ∗2(t)

]
τ + Et

[
M2τ,t

Mt,t

∂V

∂Kj
L(t)

]
=M(τ,X)

[
rD(t) + λ∗1(t) + λ∗2(t)

]
τ +M(2τ,X)Et

[
pM(2τ, Y )

∂V

∂Kj
L(t)

]
=M(τ,X)

[
rD(t) + λ∗1(t) + λ∗2(t) + (χ− 1)

]
τ (81)

The first step uses the property of the stochastic discount factor which divides it into an

expected and random component. The second step uses (44) from the paper. As a result, the

expected marginal value of capital for the loan desk is

M(2τ,X)pM(2τ, Y )
∂V

∂Kj
L(t+ 1)

=M(2τ,X)pM(2τ, Y )

×
[
rD(t+ 1) + λ∗1(t+ 1) + λ∗2(t+ 1) + (χ− 1)

]
τ, (82)

where we have used the properties of the stochastic discount factor from t to t+ 2τ .

We start with the expression for the expected marginal value of the loan desk’s capital

under the capital constraint in (65) of the paper. This term is dependent on the term

Et

{
pM(2τ, Y )

[
1

κL

(
rjκτ,t+τ − r

j∗
τ,t+τ

)+
]]}

. (83)

We will bring back the constant 2χ
κL
M(2τ,X) after the derivation.

Recall from (55) in the paper

rj∗τ,t =
1

2

(
cj + rDτ,t

)
+

γj0,τ + σ0ε
j
τ,t

2
(
γj1,τ − σ1ε

j
τ,t

) , (84)
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For the capital constraint (21) in the paper we also have (56) in the paper replaced by

rjκτ,t =
1(

γj1,τ − σ1ε
j
τ,t

) [(γj0,τ + σ0ε
j
τ,t

)
− Ljκ,t

]
, (85)

and the loans subject to the capital constraint (23) in the paper yields

Ljκ,t+τ =
1

κL

[
Kj(t+ τ)− κT ξKj

M(t+ τ)− κL
(
Lj2τ,t+τ + Lj2τ,t

)
− cb

(
P̄3τ,t

P3τ,t

− 1

)+ ]
. (86)

As a result, the Lagrange multiplier (57) in the paper is

λ∗1(t) =2
χ

κL

[
1(

γj1,τ − σ1ε
j
τ,t

) [(γj0,τ + σ0ε
j
τ,t

)
− Ljκ,t

]
− 1

2

(
cj + rDτ,t

)
−

γj0,τ + σ0ε
j
τ,t

2
(
γj1,τ − σ1ε

j
τ,t

)]

=
χ

κL

[
− 2(

γj1,τ − σ1ε
j
τ,t

) [Ljκ,t]− (cj + rDτ,t
)

+
γj0,τ + σ0ε

j
τ,t(

γj1,τ − σ1ε
j
τ,t

)]

=
2χ

κL
(
γj1,τ − σ1ε

j
τ,t

)[γj0,τ + σ0ε
j
τ,t

2
− 1

κL

[
Kj(t+ τ)− κT ξKj

M(t+ τ)− κL
(
Lj2τ,t+τ + Lj2τ,t

)
− cb

(
P̄3τ,t

P3τ,t

− 1

)+ ]
− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + rDτ,t

) ]

The option payoff for the capital constraint using (55) and (56) in the paper is

2χ

κL
pM(2τ, Y )

(
rjκτ,t+τ − r

j∗
τ,t+τ

)+

=
2χ

κL
(
γj1,τ − σ1ε

j
τ,t

)pM(2τ, Y )

(
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− Ljκ,t+τ −

1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + rDτ,t+τ

))+

.

(87)

This imposes a bound on the constant which determines whether or not the constraint

binds.
1

2

(
γj0,τ + σ0ε

j
τ,t

)
> Ljκ,t+τ +

1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + rDτ,t+τ

)
. (88)

The conditional expectation of the counter cyclical buffer in the capital constraint (23) in

the paper was found in (80). This is the simplest term in (87) so that it illustrates how to

calculate the whole expression (87).
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We continue with the calculation of the probability distribution for the option payoff (87).

We now use the rules for future capital of the trading desk (36) in the paper and the factors

(17). We also use the linear rules for the deposit rate (51) and bank reserves (52) in the

paper.

pM(2τ, Y )

[
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− Ljκ,t −

1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + rDτ,t

) ]
=

CCB

M(2τ,X)
+ pM(2τ, Y )

[
− 1

κL
Kj
L(t+ τ)− 1

κL
(1− κT ξ)Kj

M(t+ τ) +
(
Lj2τ,t+τ + Lj2τ,t

)
+

1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
cj − 1

2

(
γj1,τ − σ1ε

j
τ,t

)
(d0 + d1X(t+ τ))

]

=
CCB

M(2τ,X)
+

{
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t + Lj2τ,t

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

[
e−A

PτX(t) +
(
I − e−APτ

) (
AP
)−1

γP
]}

pM(2τ, Y )

− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1pM(2τ, Y )Y

− 1

κL
(1− κT ξ)Kj

M(t)pM(2τ, Y ) exp

{∫ t+τ

t

[
C1(τ) + C2(τ)X(s) +

1

2
X(s)′C3(τ)X(s)

]
ds

+

∫ t+iτi

t

[
C4(τ) + C5(τ)X(s)

]
dεs

}

=
CCB

M(2τ,X)
+

{
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t+τ + Lj2τ,t

)

− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1µ(τ,X)

)}exp

{
− 1

2
Y ′σM(2τ)−1Y

}
√

(2π)N det(σM(2τ))

− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

exp

{
− 1

2
Y ′ (σM(2τ)−1 + σY (τ)−1)Y

}
√

(2π)N det(σM(2τ) + σY (τ))

− (1− κT ξ)
κL

Kj
M(t)K(τ,X)

exp

{
− 1

2
Y ′ (σM(2τ)−1 + σK(τ)−1)Y

}
√

(2π)N det(σM(2τ) + σK(τ))
.

In the first equality we substitute CCB for the counter cyclical buffer, the critical loans

(86), the deposit rate (51) and bank reserves (52) in the paper. In the second step we
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substitute in the rules for future capital of the trading desk (36) in the paper and the factors

(17). In the final step we use the appropriate probability rules (68).

We also used the definition

µ(τ,X) ≡ e−A
PτX +

(
I − e−APτ

) (
AP
)−1

γP

We want to evaluate the option value from equation (65) in the paper.

2
χ

κL
Et

[
pM(2τ, Y )

(
rjκτ,t+τ − r

j∗
τ,t+τ

)+
]

=
2χ

κL
(
γj1,τ − σ1ε

j
τ,t

) CCB

M(2τ,X)

+
2χ

κL
(
γj1,τ − σ1ε

j
τ,t

) ∫ ∞
−∞

{{
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t+τ + Lj2τ,t

)

− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1µ(τ,X)

)}exp

{
− 1

2
Y ′σM(2τ)−1Y

}
√

(2π)N det(σM(2τ))

− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

exp

{
− 1

2
Y ′ (σM(2τ)−1 + σY (τ)−1)Y

}
√

(2π)N det(σM(2τ) + σY (τ))

− (1− κT ξ)
κL

Kj
M(t)K(τ,X)

exp

{
− 1

2
Y ′ (σM(2τ)−1 + σK(τ)−1)Y

}
√

(2π)N det(σM(2τ) + σK(τ))

}+

dY.

Find ρκ for each
{
Kj
L(t+ τ), Kj

M(t), X, εji
}

such that

F
(
ρk, K

j
L(t+ τ), Kj

M(t), X, εji
)

=

{
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t+τ + Lj2τ,t

)

− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1µ(τ,X)

)}exp

{
− 1

2
ρ′κσM(2τ)−1ρκ

}
√

(2π)N det(σM(2τ))

− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

exp

{
− 1

2
ρ′κ (σM(2τ)−1 + σY (τ)−1) ρκ

}
√

(2π)N det(σM(2τ) + σY (τ))

− (1− κT ξ)
κL

Kj
M(t)K(τ,X)

exp

{
− 1

2
ρ′κ (σM(2τ)−1 + σK(τ)−1) ρκ

}
√

(2π)N det(σM(2τ) + σK(τ))
= 0. (89)
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Cancel the common terms to find

F
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

=

{
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t+τ + Lj2τ,t

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1µ(τ,X)

)} 1√
(2π)N det(σM(2τ))

− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

exp

{
− 1

2
ρ′κσY (τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σY (τ))

− (1− κT ξ)
κL

Kj
M(t)K(τ,X)

exp

{
− 1

2
ρ′κσK(τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σK(τ))
= 0. (90)

This result leads to the equation (67) in the paper.

This relation is nonlinear in ρk, because of the terms like

f(ρκ,KM) = exp

{
− 1

2
ρ′κσK(τ)−1ρκ

}
. (91)

However, we do know

∂F
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

∂ρκ
=

1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

exp

{
− 1

2
ρ′κσY (τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σY (τ))
2ρ′κσY (τ)−1

+
(1− κT ξ)

κL
Kj
M(t)K(τ,X)

exp

{
− 1

2
ρ′κσK(τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σK(τ))

1

2
ρ′κσK(τ)−1 ≥ 0, (92)

so the function is always increasing in the cutoff. In addition, it reaches it minimum at ρκ = 0.

If

F
(
0, Kj

L(t+ τ), Kj
M(t), X, εji

)
< 0, (93)

then there exists exactly two solution ρκ. Otherwise the capital constraint is always binding,

so that you just take the expected value without a cutoff.

We have the partial derivative for loan desk manager’s future capital

∂F
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

∂Kj
L

= − 1

κL

1√
(2π)N det(σM(2τ))

< 0. (94)
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We have the partial derivative for the trading desk’s capital

∂F
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

∂Kj
M(t)

= −(1− κT ξ)
κL

K(τ,X)

exp

{
− 1

2
ρ′κσK(τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σK(τ))
< 0.

(95)

We have the partial derivative for the yield curve factors.

∂F
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

∂X
= −1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1e
−APτ 1√

(2π)N det(σM(2τ))

+
(1− κT ξ)

κL
Kj
M(t)K(τ,X) (σK(τ))−1

(
X − µK(τ)

) exp

{
− 1

2
ρ′κσK(τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σK(τ))
. (96)

This partial derivative is used to find conditions 1 and 2 on page 37 of the paper.

We have the partial derivative for the loan shocks.

∂F
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

∂εji
=

{
1

2
σ0 + σ1

(
cj + d0 + d1µ(τ,X)

)} 1√
(2π)N det(σM(2τ))

+
1

2
σ1d1

exp

{
− 1

2
ρ′κσY (τ)−1ρκ

}
√

(2π)N det(σM(2τ) + σY (τ))
> 0. (97)

The total differential is

dF
(
ρκ, K

j
L(t+ τ), Kj

M(t), X, εji
)

=Fρκdρκ + FKj
L(t+τ)dK

j
L(t+ τ)

+ FKj
M (t)dK

j
M(t) + FXdX + Fεji

dεji (98)

It is straight forward to calculate all these derivatives using the Chebfun add on for Matlab.

As a result, we have

∂ρκ

∂Kj
L(t+ τ)

= −
FKj

L(t+τ)

Fρκ
> 0,

∂ρκ

∂Kj
M(t)

= −
FKj

M (t)

Fρκ
> 0,

∂ρκ
∂X

= −FX
Fρκ

, and
∂ρκ

∂εji
= −

Fεji
Fρκ

< 0. (99)

These results are the bases for Proposition 5.3 in the text.
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In choosing the optimal capital for the loan desk we need to know how this critical value

is affected by changes in the loan desk’s capital stock.

∂ρκ(K
j
L(t+ τ),Ωt,τ )

∂Kj
L(t+ τ)

> 0, and
∂2ρκ(K

j
L(t+ τ),Ωt,τ )

∂2Kj
L(t+ τ)

< 0.

Thus, the critical function ρκ(K
j
L(t+ τ),Ωt,τ ) must be concave in Kj

L(t+ τ).

We also want to find the Cholesky decompositions for σM(2τ) = ΣMΣ′M , σM(2τ)+σY (τ) =

ΣMY Σ′MY and σM(2τ)+σK(τ) = ΣMKΣ′MK . In this case the option value using (55) and (56)

in the paper is

2χ

κL
M(2τ,X)Et

[
pM(2τ, Y )

(
rjκτ,t+τ − r

j∗
τ,t+τ

)+
]

=
2χM(2τ,X)

κL
(
γj1,τ − σ1ε

j
τ,t

){ CCB(X)

M(2τ,X)

+

[
1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t+τ + Lj2τ,t

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1µ(τ,X)

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1Φ

(
ΣY (τ)−1ρκ
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. (100)
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As a result, we can calculate the Delta for the option value of the loan desk’s capital.

∆κ =
∂M(2τ,X)Et

[
pM(2τ, Y )
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j∗
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−
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ρκ < 0. (102)

There are four competing effects of an increase in the capital for the loan desk’s:

1. a direct negative effect on the capital constraint, since more capital lessens the capital

constraint.

2. a negative effect through the cumulative probability that the capital constraint binds

using the probability distribution for the stochastic discount factor Φ
(
Σ−1
M ρκ

)
, by Propo-

sition 5.3.

3. a positive indirect effect through Φ (ΣY (τ)−1ρκ), the cumulative probability that the

capital constraint binds using the probability distributions for the future factors, Y in

(5) from the paper.
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4. a positive indirect effect through Φ (ΣK(τ)−1ρκ), the cumulative probabilities that the

capital constraint binds using the probability distribution for the capital for the trading

desk (35) in the paper.

To satisfy the second order condition for the loan desk’s to issue equity or pay dividends,

we must have ∆κ < 0. In addition, to have an interior solution for the issuing of equity or

payment of dividends (43) or (44), we make the following assumption:

Assumption 1: The absolute value of the sum of effects 1. and 2. is greater than the sum

of effects 3. and 4.

Next we want to know how changes in the current capital of the trading desk influences

the expected marginal value of capital for the loan desk (65) in the paper responds to a change

in the trading desk’s capital, ∆KM =
∂EMV (X,Kj

M (t),Kj
L(t+τ))

∂Kj
M

.

∆KM =
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(103)

×K(τ,X)Φ
(
ΣK(τ)−1ρκ

) √
det(σM(2τ))√

det(σM(2τ) + σK(τ))
Φ
(
Σ−1
M ρκ

)
+

[
2χ

κL
(
γj1,τ − σ1ε

j
τ,t

){1

2

(
γj0,τ + σ0ε

j
τ,t

)
− 1

κL
Kj
L(t+ τ) +

(
Lj2τ,t+τ + Lj2τ,t

)
− 1

2

(
γj1,τ − σ1ε

j
τ,t

) (
cj + d0 + d1µ(τ,X)

)}
− 1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1Φ

(
ΣY (τ)−1ρκ

) √
det(σM(2τ))√

det(σM(2τ) + σY (τ))

− (1− κT ξ)
κL

Kj
M(t)K(τ,X)Φ

(
ΣK(τ)−1ρκ

) √
det(σM(2τ))√

det(σM(2τ) + σK(τ))

]
∂Φ
(
Σ−1
M ρκ

)
∂ρκ

∂ρκ(K
j
L(t+ τ),Ωt,τ )

∂Kj
M(t)

−
[

1

2

(
γj1,τ − σ1ε

j
τ,t

)
d1

√
det(σM(2τ))√

det(σM(2τ) + σY (τ))

+
(1− κT ξ)

κL
Kj
M(t)K(τ,X)

√
det(σM(2τ))√

det(σM(2τ) + σK(τ))

]
∂Φ
(
Σ−1
K ρκ

)
∂ρκ

∂ρκ(K
j
L(t+ τ),Ωt,τ )

∂Kj
M(t)

Φ
(
Σ−1
M ρκ

)}
.

The four effects of this change are the same as for a change in the capital for the loan

desk’s. The key change is that the changes in the three cumulative probabilities for the
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stochastic discount factor, yield curve factor and capital for the trading desk now have different

qualitative effects, based on the size of ∂ρκ
∂Kj

L(t+τ)
> 0 relative to ∂ρκ

∂Kj
M (t)

> 0 from Proposition

(5.3) in the paper.

The impact of a change in the interest rate factors ∆X =
∂EMV (X,Kj
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∂X
is given by
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)}
(104)

There are four effects of changes in the yield curve factors.

1. a direct negative effect through the decrease in the cost of the counter cyclical buffer

by (80).

2. a negative effect through a change in the conditional expectation of the gross rate of

capital growth for the trading desk, K(τ,X), for X > µK, and the change in the future

deposit rate from (51) in the paper resulting from the change in the expected value of

the yield curve factors by (4) in the paper.

3. a positive effect through a change in the cumulative probability distribution, Φ
(
Σ−1
Y ρκ

)
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for the yield curve factors, and the gross growth rate of the gross growth rate of trading

desk’s capital, Φ
(
Σ−1
K ρκ

)
, by Proposition 5.3 in the paper.

4. a positive effect through the cumulative probability distribution, Φ
(
Σ−1
M ρκ

)
, and the

conditional expectated value, M(2τ,X), of the stochastic discount factor, when X >

µM > µK by Proposition 5.3 in the paper.

4.2 The Capital Option Value under Liquidity Constraint

We also need to find the option value of the liquidity constraint to complete the calculations

in (65) in the paper. Recall from (22) from the paper.
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1
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M(t+ τ) + αRR
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The following calculations are similar to those for the capital constraint. We use the rules

for future capital of the trading desk (36) in the paper and the yield curve factors (17).
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=
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The option value of the liquidity constraint becomes
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Find ρl for each
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(105)
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The Greeks ∆l and Γl are the same as in the case of the capital constraint with κ replaced

by l.

As a result the option value of capital is given by
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(107)

The option value of the loan desk’s capital under both the capital (100) and liquidity

constraints (107) have the same functional form when one uses the parameters of each con-

straint. Thus, the comparative statics for each option value are the same as in the previous

subsection.

The last term we have to calculate for the expected marginal value of the loan desk’s
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capital is the marginal effect of the deposit rate.
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In the first step we use the expression for the deposit rate (51) in the paper. In the

second step we use the solution for the factors (17). The third step separates the two random

expressions. The last step applies the intertemporal rate of substitution (10) from the paper

and the price of an τ period zero coupon bond (11) from the paper to evaluate the first term

in terms of current factors.

We can now put the three terms together. For any change over one period we have
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Here t can be any time period. Also, the shock to loan demand εjτ,t has a discrete distribution

with S values εji . This corresponds to (75) in the text when the two period loans are ignored.

The ∆ in the text corresponds to either ∆κ or ∆l depending on which constraint (22) or (23)

is binding. The same is true for (104) and (101) for the change in the interest rate factors or

the trading desk’s capital stock.

5 Choice of Capital for the Trading and Loan Desks

We can now discuss how the COO chooses the amount of future capital for the loan desk.

We start in a terminal period t+ (n− 1)τ + τ and choose capital for the last period based on

the first order condition for choosing new issues of capital or payment of dividends.8 We use

(χ− 1) since most of the time a bank pays dividends but seldom issues equity.

As a result, the capital allocated to the loan desk for time nτ under (44) in the paper is

given by9
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((
ΣM(τ)−1 + ΣK(τ)−1

)
ρκ((n− 1)τ)

)}
= 0,

(108)

which yields a maximum when

∆κ < 0.

Here, ∆κ is given by (101). This is a fixed point problem that yields the optimal choice of

capital in the next to last period, Kj∗
L (t+ nτ).

8We write the period as t + (n − 1)τ + τ rather than t + nτ , since in general the loan desk’s capital is
chosen in the previous period t+ (n− j)τ and is available in the next period t+ (n+ 1− j)τ .

9To save space we only include the option value of the capital constraint. If The liquidity constraints binds
then replace l with κ.
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Theorem 5.1. The bank’s choice of capital for the loan desk is optimal when (108) holds for

the time period [(n− 1)τ, nτ ] and ∆κ < 0.

By (81) the marginal value of capital for the lending desk in period t+ (n− 1)τ is

∂V

∂Kj
L(t+ (n− 1)τ)

=M(τ,X)
[
rD(t+ (n− 1)τ)τ + λ1(t+ (n− 1)τ) + λ2(t+ (n− 1)τ)

]
+M(2τ,X)Et+(n−1)τ

[
pM(2τ, Y )

[
rD(t+ nτ)τ + λ∗1(t+ nτ) + λ∗2(t+ nτ)

]]
=M(τ,X)

[
rD(t+ (n− 1)τ)τ + λ1(t+ (n− 1)τ) + λ2(t+ (n− 1)τ) + (χ− 1)τ

]
.

(109)

As a result, the choice of capital (44) of the paper in period t+ (n− 2)τ is Kj
L(t+ (n− 1)τ)

satisfies

M(τ,X)(χ− 1)τ =M(2τ,X)E(t+(n−2)τ)

[
pM(2τ, Y )

(
rD(t+ (n− 1)τ)τ

+ λ1(t+ (n− 1)τ) + λ2(t+ (n− 1)τ) + (χ− 1)τ

)]
.

(110)

By(81), (109), and (110) the marginal value of capital in period t+ (n− 2)τ is

∂V

∂Kj
L(t+ (n− 2)τ)

=M(τ,X)
[
rD(t+ (n− 2)τ)τ + λ1(t+ (n− 2)τ) + λ2(t+ (n− 2)τ)

]
+M(2τ,X)Et+(n−2)τ

[
pM(2τ, Y )

[
rD(t+ (n− 1)τ)τ + λ∗1(t+ (n− 1)τ)

+ λ∗2(t+ (n− 1)τ) + (χ− 1)τ

]]
=M(τ,X)

[
rD(t+ (n− 2)τ)τ + λ1(t+ (n− 2)τ) + λ2(t+ (n− 2)τ) + (χ− 1)τ

]
(111)

This result has the same form as (109).

As a result, the choice of capital in period t+ (n− 3)τ is Kj
L(t+ (n− 2)τ)

(χ− 1)τ =M(2τ,X)Et

[
pM(2τ, Y )

(
rD(t+ (n− 2)τ)τ + λ1(t+ (n− 2)τ)

+ λ2(t+ (n− 2)τ) + (χ− 1)τ

)]
.

(112)

Thus, in general the optimal condition for the loan desk’s capital is

(χ− 1)τ =M(2τ,X)Et

[
pM(2τ, Y )

(
rD(t+ τ)τ + λ1(t+ τ) + λ2(t+ τ) + (χ− 1)

)]
.

(113)
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Theorem 5.2. The bank’s choice of capital for the loan desk’s is optimal when (113) holds

for all n and ∆κ < 0.

This corresponds to Proposition (5.4) in the paper.

We can use the optimal condition (113) to see how the changes in the level, slope and

curvature of the yield curve impacts the optimal capital of the loan desk.

∂Kj
L(t+ τ)

∂Kj
M(t)

= − 1

∆κ

∂M(2τ,X)Et

[
pM(2τ, Y )

[
rjκτ,t+τ − r

j∗
τ,t+τ

]+]
∂Kj

M(t)
= −∆KM

∆κ

, (114)

where the partial derivatives are given by (101) and (103).

∂Kj
L(t+ τ)

∂X
=

(χ− 1)τ

∆κ

M(2τ,X) (σM(τ))−1

(
X − µM(τ)

)
− ∆X

∆κ

, (115)

where the partial derivatives are given by (101) and (104). We can also determine how the

capital of the loan desk changes over several periods.

Theorem 5.3. The impulse response of the optimal loan desk’s capital to the level, slope and

curvature of the term structure is determined by (114) and (115).

Proof. If the level, slope or curvature increases at time t, then the expected percentage change

in the trading desk’s capital at time t+ τ is − (σK(τ))−1

(
X − µK(τ)

)
following (34) in the

paper. The change in the loan desk’s capital at time t + τ is given by (115). At time t + 2τ

the trading desk’s expected percentage change in the capital is − (σK(2τ))−1

(
X − µK(2τ)

)
.

In addition the change in the loan desk’s capital is now

∂Et
(
Kj
L(t+ 2τ)

)
∂X

=− Et

(
∆KM(t+ 2τ)

∆κ(t+ 2τ)

)
K(2τ,X) (σK(2τ))−1

(
X − µK(2τ)

)

+ Et

(
∂Kj

L(t+ 2τ)

∂Xτ

)
e−A

P (τ−t).

Here, the partial derivatives are given by (114) and (115) at time 2τ .

At time t + kτ for k ≥ 3 the trading desk’s expected percentage change in the capital is
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− (σK(kτ))−1

(
X − µK(kτ)

)
, while the change in the loan desk’s capital is

Et

(
∂Kj

L(t+ kτ)

∂X

)
=− Et

(
∆KM(t+ kτ)

∆κ(t+ kτ)

)
K(kτ,X) (σK(kτ))−1

(
X − µK(kτ)

)

+ Et

(
∂Kj

L(t+ kτ)

∂X(k−1)τ

)
e−A

P ((k−1)τ−t).

5.1 Optimal Kj
M

To solve the COO’s problem we use the first order conditions (45) to (47) in the paper. Here,

the marginal value of the trading desk’s capital is given by

∂V

∂Kj
M(t)

=M(τ,X)

[
K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKj

M(t)
]

+ (1− ξ)rD(t)τ + (1− ξκT )λ1(t)

+ (1− ξαT )λ2(t)

]
+M(2τ,X)Et

[
pM(2τ, Y )

∂V

∂Kj
M(t+ τ)

]
.

In addition, the marginal value of the loan desk is given by (81) given the optimal choice

of capital for the trading desk.

∂V

∂Kj
L(t)
− EMV (X,Kj

M , K
j
L(τ,Kj

M , X)) =M(τ,X)
[
rD(t)τ + λ1(t) + λ2(t)

]
. (116)

Now substitute the marginal value of capital for the loan desk into the marginal value for

the trading desk to yield

∂V

∂Kj
M(t)

=
∂V

∂Kj
L(t)
−
[
EMV (X,Kj

M , K
j
L(τ,Kj

M , X))−M(2τ,X)Et

[
pM(2τ, Y )

∂V

∂Kj
M(t+ τ)

]]
+M(τ,X)

[
K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKj

M(t)
]
− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
.

(117)

If the bank has both a trade and loan desk in the future, then ∂V

∂Kj
M (t+τ)

− ∂V

∂Kj
L(t+τ)

= 0,

then

∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

=M(τ,X)

[
K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKj

M(t)
]
− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
.

(118)
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This leads to (72) in the paper under (47) in the paper. (73) in the paper follows from setting

this equation to zero using (47) in the paper.

Consider this condition at KjN
M given by (71) in the paper.

∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

=M(τ,X)

[
K(τ,X) + ξ

rp

2D̄

[
D̄ − ξKjN

M (t)
]
− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
T 0

=

[
K(τ,X) + ξ

rp

2
− ξ2 r

p

2D̄
D̄

[
2

ξ2rp
K(τ,X) + 1

]
− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
T 0

=

[
K(τ,X)−K(τ,X) + ξ

rp

2
− ξ2 r

p

2
− ξrD(t)τ − ξκTλ1(t)− ξαTλ2(t)

]
T 0

⇒rp(1− ξ) T 2
[
rD(t)τ + κTλ1(t) + αTλ2(t)

]
.

(119)

This corresponds to (75) in the paper.

Suppose the capital constraint is binding, then

∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

= K(τ,X) + ξ
rp

2D̄

[
D̄ − ξKj

M(t)
]
− ξ(d0 + d1X)− 2ξχτ

κL
(
γj1,τ − σ1ε

j
t,t

){γj0,τ + σ0ε
j
t,t

2

− 1

κL

[
Kj(t)− κT ξKj

M(t)− cb
(
P̄3τ,t

P3τ,t

− 1

)+ ]
− 1

2

(
γj1,τ − σ1ε

j
t,t

) (
cj + d0 + d1X

)}
= 0

⇒Kj
M(t) =

2κ2
L

(
γj1,τ − σ1ε

j
t,t

)
D̄

ξ2
[
2κTχD̄τ + rpκ2

L

(
γj1,τ − σ1ε

j
t,t

)] (K(τ,X) +
rp

2
− ξ(d0 + d1X)

)

− 4ξχκLD̄τ

ξ2
[
2κTχD̄τ + rpκ2

L

(
γj1,τ − σ1ε

j
t,t

)]{γj0,τ + σ0ε
j
t,t

2
− 1

κL

[
Kj(t)− cb (P(t,X)− 1)+

]

− 1

2

(
γj1,τ − σ1ε

j
t,t

) (
cj + d0 + d1X

)}
.

This corresponds to (78) in the paper.

We can also find how changes in factors influence the capital for the trading desk.

∂Kj
M(t)

∂X
=−

2κ2
L

(
γj1,τ − σ1ε

j
t,t

)
D̄

ξ2
[
2κTχD̄τ + rpκ2

L

(
γj1,τ − σ1ε

j
t,t

)] (K(τ,X) (σK(τ))−1

(
X − µK(τ)

)
+ ξd1

)

− 4ξχκLD̄τ

ξ2
[
2κTχD̄τ + rpκ2

L

(
γj1,τ − σ1ε

j
t,t

)]{ 1

κL
cb
(
P(t,X)bsτ | X < X̄

)
− 1

2

(
γj1,τ − σ1ε

j
t,t

)
d1

}
.

(120)
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If the capital constraint is not binding, then

∂V

∂Kj
M(t)

− ∂V

∂Kj
L(t)

= K(τ,X) + ξ
rp

2D̄

[
D̄ − ξKj

M(t)
]
− ξ(d0 + d1X) = 0

⇒Kj
M(t) =

2D̄

ξ2rp

(
K(τ,X) + ξ

rp

2
− ξ(d0 + d1X)

)
.

(121)

The impact of X is

∂Kj
M(t)

∂X
=− 2D̄

ξ2rp

(
K(τ,X) (σK(τ))−1

(
X − µK(τ)

)
+ ξd1

)
. (122)

6 Calibrating The Bank Parameters

This section explains how the parameters of the simulation in the paper are determined. First

we set the parameters for the liquidity (19) and capital (21) constraints. We then determine

the parameters for the bank using the 500 largest commercial banks in the United States from

Quarter I 2001 to Quarterly IV 2007. Finally, we provide evidence on the relation between

monetary policy and the yield curve factors.

6.1 Regulatory Constraints

To determine the parameters for the regulatory constraint we use Michael King (2010, pp.

10-11) who provides a simplified model of the NSFR.

NSFR =
Equity +Debt>1yr + Liabs>1yr + 0.85StableDeposits<1yr + 0.70OtherDeposits

0.05GovtDebt+ 0.50CorpLoans<1yr + 0.85RetLoans<1yr +OtherAssets
> 1.

(123)

which implies

Equity +Debt>1yr + Liabs>1yr + 0.85StableDeposits<1yr + 0.70OtherDeposits

> 0.05GovtDebt+ 0.50CorpLoans<1yr + 0.85RetLoans<1yr +OtherAssets.
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In our model we have

Kj ≡Equity

Ljτ ≡0.50CorpLoans<1yr + 0.85RetLoans<1yr

Lj2τ,t + Lj2τ,t−τ ≡OtherAssets

Dj ≡StableDeposits<1yr

OLj ≡Debt>1yr + Liabs>1yr + 0.70OtherDeposits

ωKj
M ≡GovtDebt

These variables are stated relative to total assets in Table 12 for the average of the 574

bank holding companies with more than $1 billion in assets as of March 31, 2015. Bank

Capital is Total Equity capital. Short term loans, Ljτ is the Commercial and Industrial Loans

plus Loans to Individuals minus Automobile loans. We subtract off Auto Loans since they

tend to be longer than one year. For GovtDebt, ωKj
M we use U. S. Government Securities

plus Securities Issued by states and Political Subdivisions. For bank reserves, Rj
t we take

Currency and Coin in Domestic Offices plus Balances due from Federal Reserve Banks. For

StableDeposits<1yr we use Transaction Accounts + NonTransaction Accounts - Total Time

Deposits.

In terms of our model of the NSFR we take10

Kj
t ≥ 0.05ωKj

M + 0.675Ljτ + Lj2τ,t + Lj2τ,t−τ − 0.85Dj − Other Liabilities . (124)

The 0.68 is based on equal weight for corporate and retail loans.

From the balance sheet constraint we have

Dj = Rj + Ljτ + 0.675Lj2τ,t + Lj2τ,t−τ − Other Liabilities −Kj
t .

We place the same weight on short term loans. Otherwise these loans would reduce capital

requirements.

Kj
t ≥0.027

(
T jτ,tPτ,t + T j2τ,tP2τ,t + T j3τ,tP3τ,t + T j4τ,tP4τ,t

)
+ 0.055Ljτ + 0.08

(
Lj2τ,t + Lj2τ,t−τ

)
− 0.459Rj − 0.069 Other Liabilities . (125)

10Since commercial and retail loans are consolidated in the model we take the weight to be the average of
0.5 and 0.85.
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Kj
t ≥ ατL

j
τ,t + α2τ

(
Lj2τ,t + Lj2τ,t−τ

)
− αRRj

t + αT
(
T jτ,tPτ,t + T j2τ,tP2τ,t + T j3τ,tP3τ,t + T j4τ,tP4τ,t

)
.

(126)

The parameters for the regulatory constraints are given in Table 13. This Table corresponds

to Table 10 in the paper.

Table 12: . Average Accounting Ratios for Commercial Banks with more than a Billion $
(March 31, 2015).

Variable %
Kj
t

A
11.22

Ljτ,t
A

15.59
Lj2τ,t+L

j
2τ,t−τ

A
58.82

Rjt
A

10.4
(T j2τ,tP2τ,t+T

j
3τ,tP3τ,t)

A
15.19

Dj

A
56.24

OLj

A
32.54

Table 13: Parameters for Regulatory Constraints (125) and (126).

ατ α2τ αR αT κT κL b

0.055 0.08 0.459 0.027 0.0 0.08 0.02

6.2 Benchmark Parameters for Banking Model

Next we identify the parameters for the bank. To set the deposit rate parameters we use the

data from 500 largest U. S. Commercial Banks from 2001 Quarter I to 2007 Quarter IV. To

obtain the deposit rate parameters in

rDjτ,t = d0 + d1X1(t) + εrD,j,t.

A panel regression of the interest expense on deposits relative to the first interest rate factor

X1(t) is provided in Table 14. Bank fixed effects are included in the regression. We use
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interest expense on total deposits relative to total deposits, which has a mean value of 0.0078.

We use the estimates in Table 14 for the deposit rate parameters in Table 16.

Table 14: . Panel Regression of deposit rate on first state variable.

Variable/Statistic Constant X(1)

β 0.0111 0.0282
T-Stat (7.4196) (4.6694)
adjR̄2 0.2487

Table 15: . Panel Regression of bank reserves on first state variable.

Variable/Statistic Constant X1(t)

β 0.1340 0.3936
T-Stat 17.4619 12.6935
R̄2 0.5715

Table 16: Parameters for Deposits (51) and Reserves (52) in the paper.

d0 d1 r0 r1 cj

0.0111 0.0282 0.1340 0.3936 0.0378

To find parameters for the bank reserves we run the panel regression with bank fixed

effects, and using the same set of banks and time period.

Rj
t = r0 + r1X1(t) + εR,j,t.

We estimate this relation using a panel regression with bank fixed effects in Table 15 for the

500 largest U. S. Commercial Banks from 2001 Quarter I to 2007 Quarter IV. The dependent

variable is cash balances plus deposits due from other depository institutions including the

Federal Reserve. These estimates are included in the Table 16 for the parameters used in the

simulations. In the paper this Table corresponds to Table 7.
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For reserves we use cash balances plus deposits due from other depository institutions

divided by total assets for the 500 largest commercial banks using data from 2001 to 2007.

This number includes balances due from depository institutions which is not part of reserves.

Yet, cash items in process of collection plus balances due from Federal Reserve divided by total

assets, 10.83%, is 80% of cash balances plus deposits due from other depository institutions

divided by total assets for the commercial banks with more than one Billion $ as of March

31, 2015.11

We estimate the demand for loans (48) in the paper.

Ld,jτ,t = γj0,τ − γ
j
1,τr

j
τ,t + σ(rjτ,t)ε

j
τ,t with σ(rjτ,t) = σ0 + σ1r

j
τ,t.

To estimate the loan demand we use Commercial and Industrial Loans divided by bank

assets for the 500 largest Commercial Banks from 2001 Quarter I to 2007 Quarter IV. Table

17 contains the results for a panel regression with bank fixed effects. We also control for bank

size by including the logarithm of bank assets.

Table 17: . Panel Regression of Commercial and Industrial Loans/Assets on Interest Income.

Variable/Statistic Constant rjτ,t ln(Assets)

β 0.373368 −0.029707 −0.017113
T-Stat 22.98413 (4.2635) 15.4891
adjR̄2 0.8739 S.E. 0.0331

The slope of the demand curve is −γj1,τ + σ1ε
j
τ,t. As a result, the inverse of the elasticity

of demand is

−1

ε
=

∂rjτ,t

∂Ld,jτ,t

Ld,jτ,t

rjτ,t
=

1

−γj1,τ + σ1ε
j
τ,t

γj0,τ + σ0ε
j
τ,t +

(
−γj1,τ + σ1ε

j
τ,t

)
rjτ,t

rjτ,t

=1 +
γj0,τ + σ0ε

j
τ,t

rjτ,t(−γ
j
1,τ + σ1ε

j
τ,t)

< 0

⇒MR =

(
1 +

∂rjτ,t

∂Ld,jτ,t

Ld,jτ,t

rjτ,t

)
rjτ,t = rjτ,t

(
1− 1

ε

)
= 2rjτ,t −

γj0,τ + σ0ε
j
τ,t

(γj1,τ − σ1ε
j
τ,t)

.

(127)

11We divided the parameters from the level of reserves regression by the total average across all banks and
time periods.
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Here, 1
ε

= − ∂rjτ,t

∂Ld,jτ,t

Ld,jτ,t

rjτ,t
is the inverse of elasticity of demand. When loans are not constrained

the first order condition is

∂πjL
∂mj

τ,t

=
[
2
(
−γj1,τ + σ1ε

j
τ,t

)
rjτ,t −

(
cj + rDτ,t

) (
−γj1,τ + σ1ε

j
τ,t

)
+ γj0,τ + σ0ε

j
τ,t

]
τ

=
(
−γj1,τ + σ1ε

j
τ,t

) [
−
(
cj + rDτ,t

)
+ 2rjτ,t +

γj0,τ + σ0ε
j
τ,t(

−γj1,τ + σ1ε
j
τ,t

)] = 0

⇒rjτ,t =
1

2

[(
cj + rDτ,t

)
+

γj0,τ + σ0ε
j
τ,t(

γj1,τ − σ1ε
j
τ,t

)] . (128)

We pick the values of the parameters γj0,τ and γj0,τ using the average data across the 500

U.S. Commercial Banks from Quarter I of 2001 to Quarter IV of 2007. We want to match the

average value of the commercial and industrial loans relative to assets Lj/Aj = 0.1212, the

loan rate of rjτ,t = 0.0643 using the ratio of interest income and fees to loans for commercial

and industrial loans. cj = 0.0376, for the average non-interest expenses divided by total assets.

The average interest expense on deposits to total deposit ratio is used to set rDτ,t = 0.0165.

Finally, we want the coefficients to yield the optimal unconstrained loan rate of rjτ,t = 0.0643

when the uncertainty is zero. This leads to the relations:

1.
γj0,τ

2(γj1,τ)
= rjτ,t − 1

2

(
cj + rDτ,t

)
= 0.03719.

2. γj0,τ = γj1,τr
j
τ,t + Lj = γj1,τr

j
τ,t + Lj =

γj0,τ
2(0.03719)

rjτ,t + Lj.

3. Yields γj0,τ = 0.8972 and γj1,τ = 12.0621.

4. The Marginal Revenue is 2rjτ,t −
γj0,τ

γj1,τ
= 2× 0.0643− 0.1526

2.0516
= 0.0543.

Table 18: Parameters for Loan Demand (48) and (49) in the paper.

γ0,τ γ1,τ σ0 σ1 z0 z1

0.8972 12.0621 0.0331 0.2067 -0.6150 0.00035

If we use the parameters from the regression we have γ0 = 0.1121 and γ1 = 0.030. However,

Marginal revenue turns out to be too big, since γ0/γ1 = 3.7367. Consequently, we choose the
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parameters in Table 18 which are based on the unconstrained profit maximization condition

and the loan demand curve.

From the 500 Largest U.S. Commercial banks we have total charge offs to total assets is

0.00566 with a standard deviation of 0.0133. The standard error of the regressions in Table

17 is 0.0331. We want the standard error σ0 + σ1r
j
τ,t = 0.0331 + 0.0133 = 0.0464 so that

σ0 = 0.0331 and σ1 = 0.0133/rjτ,t = 0.2067 Consider a two point distribution with payoff z0

with probability p = 0.00566 and z1 with probability 1 − p. Suppose we know mean x and

variance y, then basic algebra shows

z0 = x−
√

1− p
p

y and z1 = x+

√
p

1− p
y.

These leads to the solutions z0 = −0.6150 and z1 = 0.0035. rjτ,t(z0) = 0.0631 and rjτ,t(z1) =

0.0643 when the interest rate is kept at its optimum. This completes Table 18 which is

reproduced in Table 8 of the paper.

6.3 Yields Factors and Macroeconomic Variables

Recent work by Joslin, Priebsch and Singleton (2014) has examined the relation between the

principle components of yields data and macroeconomic variables. They find that the level is

positively affected by economic growth and inflation.12 This corresponds to the usual result

that interest rates increase during booms to the business cycle and when inflation increases.

At the same time a higher level of economic growth leads to a flatter slope for a positive

sloped yield curve, since a central bank would want to raise short term interest rates when

the economy is expanding too fast. In addition, they find that higher inflation increases

the slope of the yield curve by a smaller magnitude relative to economic growth. While the

third principle component is not affected by economic growth and inflation, it does have a

negative impact on economic growth and inflation. Consequently, higher curvature signals

lower economic growth and inflation, which in turn leads to lower level and a larger slope

for the yield curve. Thus, there is a significant connection among the latent factors and

economic growth and inflation, which corresponds to how the yield curve behaves over the

business cycle.

We examine such connections between yields factors and economic variables using our

data in the sample period 1990M01-2013M12. Specifically, we base our analysis within the

12They use the Chicago Federal Reserve index of economic activity for economic growth.
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well established monetary policy framework of the Taylor rule (1993). Since we illustrate the

implications of the model using a one factor model, we investigate how a one factor model

captures monetary policy. To this end, we first regress the short term 3 Month Treasury yield

on the deviation of inflation ∆Pt−1 from its target ∆P ∗, as well as the GDP gap Y gap = Y P−Y
Y P

.

r3mo,t = ∆Pt−1 + r∗t + a∆P (∆Pt−1 −∆P ∗) + aY Y
gap.

To measure the Taylor variables we use Real Potential Gross Domestic Product, Billions of

Chained 2009 Dollars, Quarterly, Not Seasonally Adjusted from FRED, Y P and Monthly real

GDP from Macroeconomic Analysis http://www.macroadvisers.com/monthly-gdp/, Y . We

interpolate the quarterly potential GDP to obtain the monthly observations. For inflation,

∆P we use Consumer Price Index for All Urban Consumers: All Items Less Food and En-

ergy, Change from Year Ago, Index 1982-84=100, Monthly, Seasonally Adjusted from FRED.

Finally, we use the 3-month yield to maturity on Treasury security as a proxy for the short

term rate.13 As a result, Y gap is negative during a recession. r∗t is the natural real rate of

interest. In addition, the Taylor principle assumes that a∆P = 0.5 and aY = 0.5. As a result

a 1% increase in inflation leads to a 11
2
% increase in the short term interest rate, while a 1%

increase in the output gap leads to a 1
2
% increase in short term interest rates.

The results of the Taylor rule regression are in Table 19. Note that for this exercise and all

of the following exercises using factors, the t-test statistics are calculated using Newey-West

HAC (Heteroskedasticity and Autocorrelation Consistent) estimator because the yields data

are typically highly persistent. The regression is run for data from April 1992 to December

2013 because monthly real GDP starts from April 1992. We obtain the expected signs for the

impact of inflation and the GDP gap. Yet, the Taylor principle does not hold since a change

in the inflation rate leads to a less than 1% increase in short term interest rates, so that

the Federal Reserve is less aggressive in combating inflation relative to the Taylor principle.

Furthermore, the response of the short rate to inflation rate is not significant.14

Because the short rate variation reflects both the level and slope movements of the yield

curve, we study how each of the factors responds to the macroeconomic variables using both

the empirically constructed factors and the term structure latent factors obtained through

13We could also use the Federal Funds rate and obtain similar results.
14Note, however, that we use lagged variables in the Taylor-rule regression here as a simple specification to

illustrate how yields factors are generally related to the economic variables.
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Table 19: . OLS Regression of 3 Month yield on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β 0.6005 0.4299
T-Stat (7.1273) (1.1759)
R̄2 0.6641

D-W 0.0993

Kalman filter within the affine term structure model. Both constructions are presented in the

previous subsection.

First we focus on the empirical factors as constructed in the previous section by following

Diebold and Li (2006). Recall the level explains 95.5% of the variation of the yield curve,

while slope and curvature explain 4.2% and 0.2% of this variation, respectively. We estimate

the Taylor rule regressions using the level, slope and curvature factors of the yield curve as

the dependent variable and the results are given in Tables 20, 21 and 22. First, the level

factor regression yields quantitatively similar results to that using the 3-month short rate in

Table 19. A positive and significant response coefficient estimate associated with the output

gap suggests that the level factor tends to rise (decline) in response to economic booms (re-

cessions). Although the response coefficient estimate associated with the inflation rate is also

consistent with economic intuitions it is again not significant and the magnitude does not

satisfy the Taylor principle. The adjusted R-square of the level factor regression turns out

to be higher than those of both the slope and curvature factors regressions. Despite a lower

adjusted R-square, the slope factor regression also yields results consistent with economic in-

tuitions. The negative and significant response coefficient estimate of the output gap suggests

that the Fed tends to cut (raise) the short rate leading to larger (smaller) slope factor during

recessions (booms). Again, although the response coefficient estimate of the inflation rate is

consistent with Taylor rule it is not significant. Turning to the curvature factor, the regression

results reveal that it appears to be significantly positively correlated with the output gap.

For comparison purposes we also run the same Taylor rule regressions using the latent

factors obtained in the affine term structure model via the Kalman Filter, and the results

are given in Tables 23, 24, and 25. The Taylor rule regressions results are broadly similar to

those using the empirical factors. However, the adjusted R-square for the first latent factor

that is closely related to the level factor becomes lower than those for the second and third
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Table 20: . OLS Regression of Level on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β 0.4648 0.2615
T-Stat (4.1191) (0.9649)
R̄2 0.4991

D-W 0.0814

Table 21: . OLS Regression of Slope on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β -0.1357 -0.1684
T-Stat (-2.8873) (-0.6095)
R̄2 0.2134

D-W 0.1381

Table 22: . OLS Regression of Curvature on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β 0.1438 0.1307
T-Stat (4.2511) (0.7840)
R̄2 0.3337

D-W 0.1417

factors.

Overall, the above regression results suggest yield curve factors contain useful information

about how monetary policy reacts to economic conditions. For example, during economic

booms, consistently the level factor rises and the slope factor declines. This suggests that

during economic booms when the Fed raises the policy rate, it shifts up the whole yield curve

leading to a rise of the level factor, and at the same time, such a policy raises the short end

of the yield curve more than the long end so that the yield curve also becomes flatter. These

observations suggest that it is entirely possible to use one factor such as the level factor to

capture the monetary policy.
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Table 23: . OLS Regression of First Latent Variable on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β 0.1657 0.0899
T-Stat (1.2073) (0.2284)
R̄2 0.0967

D-W 0.0504

Table 24: . OLS Regression of Second Latent Variable on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β -0.5046 -0.1869
T-Stat (-5.2797) (-1.0252)
R̄2 0.5000

D-W 0.2640

Table 25: . OLS Regression of Third Latent Variable on Taylor Rule Variables

Variable/Statistic Y gap
t−1 ∆Pt−1

β 0.9083 0.5300
T-Stat (8.2229) (1.0401)
R̄2 0.6308

D-W 0.1591
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