
A Continuous Time Multi-Dimensional Asset Pricing Model with

Duffie-Epstein Preferences and Kreps-Porteus Utility

Peter Kelly

University of Notre Dame

Department of Mathematics

Advisors: Alex A. Himonas and Tom F. Cosimano

April 28, 2009

Abstract

Our research creates a well-defined problem to find an analytic solution for the price-

dividend ratio. We use a two-dimensional consumption process and assume Duffie-Epstein

preferences and Kreps-Porteus utility. We start with a one-dimensional model, the solution

to which we will use in our more complicated model. We also derive the famous Black-Scholes

formula for call options.
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1. Introduction

The price to dividend ratio is a number that describes the ratio of the price of a stock to

its yearly dividends. For example, if the price of a current stock is eighty dollars and the

dividends paid out last year equals two dollars then the price to dividend ratio is forty. A

typical average price to dividend ratio for the market and, in fact, the one that we use in

our research is twenty three. The price to dividend ratio is a very important tool because it

can be used to price derivatives. A derivative is a contract based on factors such as assets or

indices. They are very important because they can be used to reduce risk. Risk reduction is

a critical component of any investment. The classic example that shows how a derivative can

be helpful concerns an airline company worried about the rising price of oil. A call option

on oil will allow this airline company to purchase oil at a strike price K at a future time T

no matter what the price of oil happens to be, thereby eliminating risk associated with the

volatility of oil prices. It is clear that these instruments are vital to hedging risk and permit

a determination of their fair prices.

My research seeks to find a closed form solution for the price to dividend ratio. A closed

form solution for the price to dividend ratio is one that solves for the price to dividend ratio

with a number of well known functions. In my research, the price to dividend ratio will have

a power series solution.

This process starts with the utility function. The utility function is an ordinal mapping

that measures a person’s happiness. Nearly every utility function has three basic properties.

The first assumes that the utility function increases with consumption. That is, people are

happier with higher levels of consumption. The second standard assumption is that the

utility function is increasing at a decreasing rate. That is, a millionaire will not receive the

same satisfaction from receiving a ten dollar bill as a poor person would. Finally, we assume

that the utility function is time separable. That is, we assume that the utility function is

not changing across time. Put in other words, a certain level of consumption will provide

the same utility in each time period. In our research, we will also make a representative

investor assumption. This means that we assume that there is one investor, who behaves like

the average investor in the economy. Obviously, this makes the time separable assumption

far more plausible. An accurate utility function is essential because it tells us the level of

happiness that an investor will receive from every level of consumption. This will tell us how

much an investor is opposed to taking gambles, or how averse he/she is to fluctuations in

consumption.

One important indicator of these utility functions is the coefficient of relative risk aversion.

The coefficient of relative risk aversion for a given utility function is a measure that tells us

how opposed the representative investor is to taking an actuarially fair gamble. It is standard

to assume that the utility function exhibits a constant coefficient of relative risk aversion.

Another important description of a utility function is the intertemporal elasticity of substi-

tution. This essentially tells us how willing an investor is to substitute consumption across

time. A problem with most utility functions, including the power utility function, is that the

intertemporal elasticity of substitution is tied to the coefficient of relative risk aversion (i.e.
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it is equal to the inverse). There is no reason to expect this since both are measures of two

inherently different things (one is a measure of aversion to different levels of consumption and

one is a measure of how opposed one is to switching consumption from one period to another).

Additionally, empirically we see that these two measures should not be related. Therefore,

because of the data, and because of intuition, we use a utility function, the Kreps-Porteus

utility function (12.41), from Kreps and Porteus’ Temporal Resolution of Uncertainty and

Dynamic Choice Theory Econometrica paper, with Duffie-Epstein preferences, from Duffie

and Epstein’s Stochastic Differential Utility Econometrica paper, that separates these two

measures.

In 1999, Campbell and Cochrane introduced an extremely accurate and successful utility

function in their By Force of Habit, a Consumption-Based Explanation of Aggregate Stock

Market Behavior JPE paper. Campbell and Cochrane describe happiness as a function of

how much the representative investor had consumed relative to his/her past consumption.

This utility function is commonly described as the ”keeping up with the Jones” utility func-

tion. However, this utility function is problematic in that it is backward looking. We will

use a utility function that is forward looking. We will still incorporate the past into our

function, but, the past will be used to form our expectation for the future so that utility

will be a function, called the aggregator function, of consumption today and expected future

consumption. In this sense, utility will be a recursive function. This means that utility

today will be a function of consumption today and expected utility tomorrow. Using the

tools of mathematics, we show how this recursive utility function leads us to a differential

equation. And, again, using the tools of mathematics and computer programming, we solve

this differential equation.

Next, we will try to show how the price-dividend ratio comes into play. We start with the

investor maximization problem. This problem essentially states that an investor is trying to

maximize his expected utility. We represent this maximum, say M, as an infinite sum where

utility is measured each period and each period to the future is given a certain discount

factor, because the future does not matter quite as much as the present. Through the use

of advanced mathematics, we work through this in the deterministic case. It can be shown

that this maximization problem can be rewritten as a functional equation where M at a time

t is equal to the utility from consumption today plus M at time t plus one. As one might

expect and we prove that this is acceptable, we solve for the optimal condition by looking

at the first order condition. The first order condition is what is normally referred to as the

Euler equation. We include multiple proofs of this equation including an ”intuitive proof”.

Through mathematics, we show how this Euler equation will lead us to a differential equation

for the price-dividend ratio.

In order to use the Euler condition, we first must choose our consumption and dividend

processes. In 2004, Ravi Bansal (Duke) and Amir Yaron (Wharton) modeled consumption

and dividend growth in their Risks for the Long Run: A Potential Resolution of Asset Pricing

Puzzle Journal of Finance paper. The Bansal and Yaron model of consumption and dividend

growth explained key financial phenomena including the equity premium puzzle. The equity

premium puzzle explores the paradox of why potential shareholders do not invest in stocks
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despite the undisputed fact that stocks have had much higher annual growth than other

investments. Is the deterrent risk to capital? Does the allure of guaranteed preservation of

capital in other financial instruments such as treasuries offset the unattractive lower rate of

annual growth? Given the risk aversion coefficient, those are obviously insufficient responses.

To address such insufficient responses, the key component of the Bansal/Yaron model is a

multi-dimensional consumption process which presents a long-run process with an expected

return. However, within the model, to humanize it, the expected growth rate of consumption

was also subjected to a trend and random motion yielding the empirical result.

In my research, I applied this empirical result of the Bansal and Yaron model to the

aforementioned model to determine the price-dividend ratio as a function of that consumption

process. The ratio within that crafted model, the price-dividend ratio simply compares the

price of a stock to the dividends that are paid on the stock. My crafted model sought to

determine the relationship of the multi dimensional consumption process to the movement of

the price dividend ratio. Because the Bansal/Yaron model’s consumption process suggests

startling results, including a potential explanation of the equity premium puzzle, I used

their model to determine if it is aligned with, or compatible to, the observed behavior of

the price to dividend ratio. My research, in order to access this price to dividend function,

solves three differential equations which analyze how things change in relation to each other.

Finally, it proposes a well-defined problem, that is, one open to solution, specifically a fourth

differential equation, second-order linear partial differential equation, to solve for this final

price to dividend function. This is interesting research because the results to this well-defined

problem may help explain some of the most intractable financial questions in existence. For

example, once a determination of the price-dividend ratio has been made, utilizing the model

to find option prices would follow closely on its heels and the model would then, theoretically,

be able to access and explain the observed behavior of options.
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2. Stochastic Processes and Setting up the Equation for the

One-Dimensional Case

A stochastic process will represent a drift term, the process will drift in this direction over

time, and a Brownian motion. dω will represent Brownian motion and dt will represent the

drift term. (Please see 11.1 for a discussion of Brownian motion and the Brownian motion

multiplication rules, which we will use throughout our research.) We begin with the two

stochastic processes

dc = (x+ x̄)dt+ σdω1, (2.1)

and

dx = (ρ− 1)xdt+ ϕeσdω2. (2.2)

c represents consumption and x represents the stochastic process for expected consumption,

the drift term. x̄, σ, ρ, and ϕe are all constants. It is clear that dx goes to zero since it has

a negative drift if x is positive and a positive drift if x is negative. Therefore, we shall just

consider dx = 0 in our initial condition, and x = some constant. Without loss of generality

(We can just change the constant x̄) we will consider this constant to be zero. Therefore, we

are left with the stochastic process:

dc = x̄dt+ σdω1. (2.3)

and since C = ec this implies that (by Ito’s Lemma (11.56)):

dC

C
= (x̄+

1

2
σ2)dt+ σdω1. (2.4)

Essentially, and intuitively, what we are doing is taking a snapshot of this consumption

process when xi,t, dx = 0. We are essentially studying changes in C, and hence c, at this

point. This is the one-dimensional process that we refer to in our introduction.

3. The Stochastic Process for the Pricing Kernel

We begin with the following relationship (Please see 12.3 for a derivation):

Et[dH(C)] + β
µρ(C(t))− g(H(C))

g′(H(C))
dt = 0. (3.1)

where we define:

µρ(C(t)) =
C(t)ρ

ρ
, (3.2)

and

g(H(C)) =
((1− γ)H)

ρ
1−γ

ρ
. (3.3)

This implies that(remember to use chain rule):

g′(H(C)) = ((1− γ)H)
ρ

1−γ−1. (3.4)

Applying Ito’s Lemma (11.56) to H(C), we see that:

Et[
∂H

∂C
(dC) +

1

2

∂2H

∂C2
(dC)2] + β

µp(C(t))dt− g(H(C))

g′(H(C))
dt = 0. (3.5)
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Substituting, dividing by dt, and using the fact that E[dw] = 0, we see that this equation is

equivalent to:

H ′(x̄+
1

2
σ2)C +

1

2
H
′′
(Cσ)2 +

β

ρ
(1− γ)

[
Cρ

((1− γ)H)ρ/(1−γ)
− 1

]
H. (3.6)

We now propose the following change of variable:

H(C) =
g(C)(1−γ)/ρ

1− γ
. (3.7)

Calculating the derivatives H ′(C) and H ′′(C):

H ′(C) =
1− γ
ρ

g′(C)

g(C)
H(C) (3.8)

H ′′(C) =
1− γ
ρ

[
g′′(C)

g(C)
+

1− γ − ρ
ρ

g′(C)2

g(C)2

]
H(C). (3.9)

Plugging this back into our original differential equation and dividing by H:

σ2

2
C2 g

′′(C)

g(C)
+
σ2

2

1− γ − ρ
ρ

C2 g
′(C)2

g(C)2
+ (x̄+

1

2
σ2)C

g′(C)

g(C)
+ β

Cρ

g(C)
= β. (3.10)

Now, we re-introduce the variable c, which we defined earlier according to the following

relation: C = ec. Use the chain rule to get

dg

dc
=
dg

dC

dC

dc
= ec

dg

dC
(3.11)

and
d2g

dc2
= ec

dg

dC
+ ec

d2g

dC2

dC

dc
= ec

dg

dC
+ e2c d

2g

dC2
. (3.12)

Solve (3.11) and (3.12) for dg/dC and d2g/dC2, respectively, to yield

dg

dC
= e−c

dg

dc
and

d2g

dC2
= e−2c

[
d2g

dc2
− dg

dc

]
.

The differential equation (3.10) is equivalent to

σ2

2

[
g
′′
(c)− g′(c)

]
g(c)

+
σ2

2

1− γ − ρ
ρ

g′(c)2

g(c)2
+ (x̄+

1

2
σ2)

g′(c)

g(c)
+ β

eρc

g(c)
= β. (3.13)

which can be rewritten as the following differential equation

g(c)g
′′
(c) = B1g

′(c)2 +B2(g′(c))(g(c)) +B3g(c)2 +B4(c)g(c). (3.14)

where

B1 = −1− γ − ρ
ρ

, B2 =
−2(x̄)

σ2
, B3 =

2β

σ2
,

B4(c) = −β 2eρc

σ2

We now need the initial conditions for this differential equation. Using (5.39), we see that

g′(c)

g(c)
= (

Et[R
e(c)]−Rb(c)

−(p
′(c)
p(c)

+ ϕdρ13)σ2
+ 1− ρ)

ρ

1− γ − ρ
. (3.15)



8

Using (5.33), we see that er

g′(c)

g(c)
= (

Et[R
e(c)]−Rb(c)

−(−ρ13ϕd ±
√
ρ2

13ϕ
2
d − ϕ2

d + Σ(c̄)2

σ2 + ϕdρ13)σ2

+ 1− ρ)
ρ

1− γ − ρ
. (3.16)

We standardize g(c̄) to be equal to one and then plug in the parameters to get our second

initial condition.

g0 = g(c̄) = 1 (3.17)

and

g1 = g′(c̄) (3.18)

Lemma 1. The initial value problem (??), (3.17) and (3.18) has an analytic solution g(c)

whose power series expansion

g(c) =
∑

gk(c− c̄)k (3.19)

has coefficients given by (3.24) and which converges for

|c− c̄| < 1.2σ (3.20)

Proof. We now assume that this initial value problem has a power series solution:

g(c) =
∞∑
n=0

gn(c− c̄)n where (3.21)

g0 = 1 and g1 = (
Et[R

e(c̄)]−Rb(c̄)

−(p
′(c̄)
p(c̄)

+ ϕdρ13)σ2
+ 1− ρ)

ρ

1− γ − ρ
. (3.22)

Find the power series representations for the coefficients in the differential equation (3.13):

g′(c) =
∞∑
n=0

(n+ 1)gn+1(c− c̄)n ,

g′′(c) =
∞∑
n=0

(n+ 1)(n+ 2)gn+2(c− c̄)n ,

g′′(c)g(c) =
∞∑
n=0

n∑
k=0

(k + 1)(k + 2)gk+2gn−k(c− c̄)n ,

g(c)2 =
∞∑
n=0

n∑
k=0

gkgn−k(c− c̄)n ,

g′(c)g(c) =
∞∑
n=0

n∑
k=0

(k + 1)gk+1gn−k(c− c̄)n ,

g′(c)2 =
∞∑
n=0

n∑
k=0

(k + 1)(n− k + 1)gk+1gn−k+1(c− c̄)n ,

−2β

σ2
eρcg(c) =

−2β

σ2
eρc̄

∞∑
n=0

n∑
k=0

(ρ)k

k!
gn−k(c− c̄)n . (3.23)



9

Substitute all the equations in (3.21) and (3.23) into the differential equation (3.13). Equate

the coefficients of the terms of degree n and solve the equation for (n+ 1)(n+ 2)g0gn+2. The

recurrence relation for the gn’s is given by

(n+ 1)(n+ 2)g0gn+2

=
n∑
k=0

{
2β

σ2

[
gk − eρc̄

(ρ)k

k!

]
gn−k + (k + 1)

[
−2x̄

σ2
gn−k −

1− γ − ρ
ρ

(n− k + 1)gn−k+1

]
gk+1

}

+
n−1∑
k=0

(k + 1)

[
− (k + 2)gk+2gn−k

]
(3.24)

for n = 0, 1, 2, . . . . Having solved for these coefficients, I present the resulting graph depicting

a functional form of the utility function, which should have the same properties as the utility

function, in one-dimension:

The following graph is of the derivative of the above function. Standard economic theory

suggests that as consumption increases utility increases. Obviously, this indicates, for a

differentiable utility function, that the derivative will be positive. This is clearly the result

we notice in the graph below.



10

This graph is of the second derivative. Standard economic theory suggests that the second

derivative of a differentiable utility function should be negative. (The second bite is not

worth as much as the first.) Our utility function clearly has the negative second-derivative

property one would expect from the utility function.
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3.1. Convergence and error analysis. Please note that this subsection is essentially a

modification of Yu Chen’s ”Asset Pricing Model with Duffie-Epstein Preferences” notes.

Lemma 2. Let A ≥ 0 be a real number. If b and d are nonnegative integers with b+ d > 0,

then

lim
n→∞

n−b∑
k=0

Ak

k!
· 1

n− k + d
= 0 . (3.25)

Proof. Since limk→∞A
k/(k− 1)! = 0, there is an integer a > 0 such that Ak/(k− 1)! ≤ 1 for

all k ≥ a.

0 ≤
n−b∑
k=0

Ak

k!
· 1

n− k + d
=

a−1∑
k=0

Ak

k!
· 1

n− k + d
+

n−b∑
k=a

Ak

k!
· 1

n− k + d

≤ 1

n− a+ 1 + d

a−1∑
k=0

Ak

k!
+

n−b∑
k=a

Ak

(k − 1)!
· 1

k(n− k + d)

≤ eA

n− a+ 1 + d
+

n−b∑
k=a

1

k(n− k + d)

We know that

lim
n→∞

n−b∑
k=a

1

k(n− k + d)
= 0 .

Hence the required equation follows from the Squeeze Theorem. �
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Rewrite the recurrence relation (3.24) in the following equivalent form:

(n+ 1)(n+ 2)g0gn+2 = C0

n∑
k=0

gkgn−k − (D0g0)
n∑
k=0

[(ρ)k/k!]gn−k +B0

n∑
k=0

(k + 1)gk+1gn−k

− A0

n∑
k=0

(k + 1)(n− k + 1)gk+1gn−k+1

−
n−1∑
k=0

(k + 1)(k + 2)gk+2gn−k . (3.26)

Here,

C0 = 2
β

σ2
D0 = eρc̄/g0 , B0 =

−2x̄

σ2
, A0 =

1− γ − ρ
ρ

. (3.27)

Dividing the equation (3.26) by g2
0 yields

(n+ 1)(n+ 2)(gn+2/g0)

= C0

n∑
k=0

(gk/g0)(gn−k/g0)−D0

n∑
k=0

[(ρ)k/k!](gn−k/g0) +B0

n∑
k=0

(k + 1)(gk+1/g0)(gn−k/g0)

− A0

n∑
k=0

(k + 1)(n− k + 1)(gk+1/g0)(gn−k+1/g0)

−
n−1∑
k=0

(k + 1)(k + 2)(gk+2/g0)(gn−k/g0) . (3.28)

When n ≥ 2, the equation (3.28) is equivalent to

(n+ 1)(n+ 2)(gn+2/g0)

= C0

n−1∑
k=1

(gk/g0)(gn−k/g0)−D0

n−1∑
k=0

[(ρ)k/k!](gn−k/g0) +B0

n−1∑
k=0

(k + 1)(gk+1/g0)(gn−k/g0)

− A0

n∑
k=0

(k + 1)(n− k + 1)(gk+1/g0)(gn−k+1/g0)

−
n−1∑
k=0

(k + 1)(k + 2)(gk+2/g0)(gn−k/g0)

+ C0(gn/g0)−D0(ρ)n/n! +B0(n+ 1)(gn+1/g0) . (3.29)
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Define g̃n = n2L(gn/g0) for n ≥ 1, where L is a positive number to be determined later.

When n ≥ 2, we can rewrite the equation (3.29) in terms of g̃n.

g̃n+2 =
n+ 2

n+ 1

{
C0

L

n−1∑
k=1

1

k2(n− k)2
g̃kg̃n−k −D0

n−1∑
k=0

(ρ)k

k!
· 1

(n− k)2
g̃n−k

+
B0

L

n−1∑
k=0

1

(k + 1)(n− k)2
g̃k+1g̃n−k −

A0

L

n∑
k=0

1

(k + 1)(n− k + 1)
g̃k+1g̃n−k+1

− 1

L

n−1∑
k=0

k + 1

(k + 2)(n− k)2
g̃k+2g̃n−k

+
C0

n2
g̃n −

LD0(ρ)n

n!
+

B0

n+ 1
g̃n+1

}
(3.30)

Note that
∑∞

k=1(1/k2) = π2/6. By our lemma and our knowledge of power series, we know

that we can find a real number L > 1 and an integer N ≥ 2 such that for all n ≥ N , we have

n+ 2

n+ 1

[
|C0|
L

n−1∑
k=1

1

k2(n− k)2
+ |D0|

n−1∑
k=0

|ρ|k

k!
· 1

(n− k)2
+
|B0|
L

n−1∑
k=0

1

(k + 1)(n− k)2

+
|A0|
L

n∑
k=0

1

(k + 1)(n− k + 1)
+

1

L

n−1∑
k=0

k + 1

(k + 2)(n− k)2

+
|C0|
n2

+
L|D0||ρ|n

n!
+
|B0|
n+ 1

]
< 1 . (3.31)

Apply the following algorithm to construct a sequence {Gn} of nonnegative real numbers.

(1) Use the recurrence relation (3.24) and the initial values g0, g1 to calculate gn, where

2 ≤ n ≤ N + 1.

(2) Calculate Gn = n2L|gn/g0| for 1 ≤ n ≤ N + 1.

(3) Calculate Gn+2, where n ≥ N , by using the recurrence relation:

Gn+2 =
n+ 2

n+ 1

[
|C0|
L

n−1∑
k=1

1

k2(n− k)2
GkGn−k + |D0|

n−1∑
k=0

|ρ|k

k!
· 1

(n− k)2
Gn−k

+
|B0|
L

n−1∑
k=0

1

(k + 1)(n− k)2
Gk+1Gn−k +

|A0|
L

n∑
k=0

1

(k + 1)(n− k + 1)
Gk+1Gn−k+1

+
1

L

n−1∑
k=0

k + 1

(k + 2)(n− k)2
Gk+2Gn−k

+
|C0|
n2

Gn +
L|D0||ρ|n

n!
+
|B0|
n+ 1

Gn+1

}
. (3.32)

Let Mg ≥ 1 be such that Gn ≤ Mn
g for 1 ≤ n ≤ N + 1. By mathematical induction, we can

show that

n2L|gn/g0| ≤ Gn ≤Mn
g or |gn| ≤

|g0|
L
·
Mn

g

n2
for n ≥ 1 . (3.33)
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Lemma 3. Choose a real number L ≥ 1 and an integer N ≥ 2 such that the inequality (3.31)

holds for n ≥ N and set

Mg = max{1, n
√
n2L|gn/g0| : 1 ≤ n ≤ N + 1} and rg = 1/Mg . (3.34)

The power series solution g(c) =
∑∞

n=0 gn(c − c̄)n of the initial value problem (3.14)-(3.18)

converges in the open interval c̄ − rg < c < c̄ + rg, where the gn’s are determined by the

recurrence relation given in (3.24).

Our error analysis, done in Maple, leads us to the conclusion that the utility function

converges in a radius of convergence equal to 1.2 times the standard deviation.

4. The Discount Factor

We start with the solution H(we arrive at this by solving for G, and then solving back for

H through our change of variable) from this ODE. This H satisfies

H(C) = Ut = Et

[∫ ∞
t

f̄(Cs, Us) ds

]
. (4.1)

We will derive an ordinary differential equation for the equilibrium price-dividend ratio in

the DEKP model, given the power series of the lifetime utility function H(C) around C = C̄.

The pricing kernel for the investor is given by

Λ(C,U, t) = e−δt
∂f̄

∂C
(C,U) =

∂

∂C

[
β

ρ
· C

ρ − ((1− γ)U)ρ/(1−γ)

((1− γ)U)ρ/(1−γ)−1

]
=

βCρ−1

((1− γ)U)ρ/(1−γ)−1
.

(4.2)

The first-order partial derivatives of Λ(C,U, t) (Note: when we take derivatives with respect

to C, we are considering C not contained in U) are:

∂Λ

∂C
= (ρ− 1)

Λ

C
and

∂Λ

∂U
=

1− γ − ρ
1− γ

Λ

U
. and

∂Λ

∂t
= (−δ)Λ (4.3)

The second-order partial derivatives of Λ(C,U) are

∂2Λ

∂C2
= (ρ− 1)(ρ− 2)

Λ

C2
,

∂2Λ

∂U2
= −ρ(1− γ − ρ)

(1− γ)2

Λ

U2
,

∂2Λ

∂C∂U
=

(ρ− 1)(1− γ − ρ)

1− γ
Λ

CU
. (4.4)

Invoking Ito’s Lemma (11.56), we note that:

dU = H ′(C)dC +
1

2
H”(C)(dC)2 (4.5)

which implies that:

(dU)2 = (H ′(C))2(dC)2 (4.6)

and

(dU)(dC) = H ′(C)(dC)2 (4.7)
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By Ito’s Lemma, the pricing kernel Λ(t, C, U) follows the stochastic process(Remember that

U = H(C)):

dΛ =
∂Λ

∂t
dt+

∂Λ

∂C
(dC) +

∂Λ

∂U
(dU) +

1

2

∂2Λ

∂C2
(dC)2 +

1

2

∂2Λ

∂U2
(dU)2 +

∂2Λ

∂U∂C
(dU)(dC) (4.8)

This implies that:

dΛ =
∂Λ

∂t
dt+

∂Λ

∂C
(dC) +

∂Λ

∂U
(H ′(C)dC +

1

2
H”(C)(dC)2)

+
1

2

∂2Λ

∂C2
(dC)2 +

1

2

∂2Λ

∂U2
(H ′(C))2(dC)2 +

∂2Λ

∂U∂C
(dU)(dC) (4.9)

= (−δ)Λdt+ (ρ− 1)
Λ

C
(dC) +

1− γ − ρ
1− γ

Λ

U
(H ′(C)dC +

1

2
H”(C)(dC)2)

+
1

2
(ρ− 1)(ρ− 2)

Λ

C2
(dC)2 +

−1

2

ρ(1− γ − ρ)

(1− γ)2

Λ

U2
(H ′(C))2(dC)2

+
(ρ− 1)(1− γ − ρ)

1− γ
Λ

CU
H ′(C)(dC)2 (4.10)

= (−δ)Λdt+ ((ρ− 1)
Λ

C
+

1− γ − ρ
1− γ

Λ

U
H ′(C))dC + (

1

2

1− γ − ρ
1− γ

Λ

U
H”(C)+

1

2
(ρ− 1)(ρ− 2)

Λ

C2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

Λ

U2
(H ′(C))2 +

(ρ− 1)(1− γ − ρ)

1− γ
Λ

CU
H ′(C))(dC)2

(4.11)

Divide Eq.(4.9) by Λ and use the relation U = H(C) to get

dΛ

Λ
= (−δ)dt+ ((ρ− 1)

1

C
+

1− γ − ρ
1− γ

1

H(C)
H ′(C))dC + (

1− γ − ρ
1− γ

1

H(C)

1

2
H”(C)+

1

2
(ρ− 1)(ρ− 2)

1

C2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H(C)2
(H ′(C))2 +

(ρ− 1)(1− γ − ρ)

1− γ
1

CH(C)
H ′(C))(dC)2

(4.12)

From our Brownian motion multiplication rules (11.57), we know that:

(dC)2 = C2σ2dt (4.13)

Use Ito’s rule for multiplication, (dt)2 = 0, dtdω1 = 0, dω1dω2 = adt, where a represents the

correlation between the first and second Brownian motion, dtdω2 = 0 and (dω1)2 = dt, to get

dΛ

Λ
= (−δ + ((ρ− 1)

1

C
+

1− γ − ρ
1− γ

1

H(C)
H ′(C))(x̄+

σ2

2
)C +

(
1− γ − ρ

1− γ
1

H(C)

1

2
H”(C)+

1

2
(ρ− 1)(ρ− 2)

1

C2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H(C)2
(H ′(C))2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

CH(C)
(H ′(C))

)
(C2σ2)dt

+ ((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H(C)
H ′(C))Cσdω1 (4.14)
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We now make the change of variable C = ec. We can use the chain rule to get

dH

dc
=
dH

dC

dC

dc
= ec

dH

dC
(4.15)

and
d2H

dc2
= ec

dH

dC
+ ec

d2H

dC2

dC

dc
= ec

dH

dC
+ e2cd

2H

dC2
. (4.16)

Solve (4.15) and (4.16) for dG/dC and d2G/dC2, respectively, to yield

dH

dC
= e−c

dH

dc
and

d2H

dC2
= e−2c

[
d2H

dc2
− dH

dc

]
.

Plugging these values back in, we arrive at the new expression:

dΛ

Λ
= (−δ + ((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))(x̄+

σ2

2
) +

(
1− γ − ρ

1− γ
1

H(c)

1

2
(H”(c)−H ′(c))+

1

2
(ρ− 1)(ρ− 2) +

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H(c)2
(H ′(c))2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

H(c)
(H ′(c))

)
(σ2)

)
dt

+ ((ρ− 1) +
1− γ − ρ

1− γ
1

H(c)
H ′(c))σdω1 (4.17)

5. Equilibrium Price-Dividend Function in the DEKP Model

Cochrane (2005) shows that the equilibrium price of stocks satisfies the Euler equation:

Λ(t)D(t)dt+ Et [d(Λ(t)P (t))] = 0 (5.1)

where P (t) is the price of a stock at time t and D(t) is the dividend paid by this stock at

time t.

Definition 1. Define the price-dividend ratio to be p(t) = P (t)/D(t).

The Euler condition (8.1) is equivalent to

Λ(t)D(t) dt+ Et [d(Λ(t)p(t)D(t))] = 0 . (5.2)

By Ito’s lemma, we have

d(ΛpD)

ΛpD
=
dΛ

Λ
+
dp

p
+
dD

D
+
dΛdp

Λp
+
dDdp

Dp
+
dΛdD

ΛD
. (5.3)

The Euler condition (8.1) is equivalent further to

1

p
dt+ Et

[
dΛ

Λ
+
dp

p
+
dD

D
+
dΛdp

Λp
+
dDdp

Dp
+
dΛdD

ΛD

]
= 0 . (5.4)

We are given a process for dividends:

dD

D
= (φx+ x̄)dt+ ϕdσdω3. (5.5)

Since we are just dealing with initial conditions (x = 0) we rewrite this process as:

dD

D
= (x̄)dt+ ϕdσdω3. (5.6)
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We seek a price-dividend function of the form p = p(c) that represents the equilibrium

behavior of the stock price when the investor has DEKP preferences.

By Ito’s rule, we have

dp = p′(c)dc+
1

2
p”(c)(dc)2 (5.7)

dc2 = σ2dt (5.8)

This implies that:

dp = p′(c)((x̄)dt+ σdω1) +
1

2
p”(c)σ2dt (5.9)

Which implies that:

dp

p
= (

p′(c)

p(c)
(x̄) +

p”(c)

p(c)
σ2)dt+

p′(c)σ

p(c)
dω1 (5.10)

Now, we calculate Et[dΛ/Λ], Et[dp/p], Et[dD/D], Et[dΛdp/Λp], Et[dDdp/Dp], and Et[dΛdD/ΛD].

Et

[
dΛ

Λ

]
=

(
− δ + ((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))(x̄+

σ2

2
) +

(
1− γ − ρ

1− γ
1

H(c)

1

2
(H”(c)−H ′(c))+

1

2
(ρ− 1)(ρ− 2) +

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H(c)2
(H ′(c))2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

H(c)
H ′(c)

)
(σ2)

)
dt

Et

[
dp

p

]
=

((p′(c)(x̄)) + σ2

2
p”(c))dt

p(c)

Et

[
dD

D

]
= x̄ dt

Et

[
dΛdp

Λp

]
= ((((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))

p′(c)σ2

p(c)
))dt

Et

[
dDdp

Dp

]
= (

ϕdσ
2p′(c)

p(c)
ρ13)dt

Et

[
dΛdD

ΛD

]
= (((ρ− 1) + (

1− γ − ρ
1− γ

1

H(c)
H ′(c)))ϕdσ

2ρ13)dt

where ρ13 represents the correlation between the first Brownian motion and the third Brow-

nian motion.
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By (8.2), we obtain the partial differential equation

1

p
dt+

[
(−δ + ((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))(x̄+

σ2

2
)

+

(
1− γ − ρ

1− γ
1

H(c)

1

2
(H”(c)−H ′(c)) +

1

2
(ρ− 1)(ρ− 2) +

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H(c)2
(H ′(c))2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

H(c)
H ′(c)

)
(σ2))+

(p′(c)(x̄) +
σ2

2
p”(c))

1

p(c)
+ x̄+ (((ρ− 1)+

1− γ − ρ
1− γ

1

H(c)
H ′(c))

σ2p′(c)

p(c)
)+

+ (
ϕdσ

2p′(c)

p(c)
ρ13) + ((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))ϕdσ

2ρ13

]
dt = 0 (5.11)

Multiplying by p
dt

, and grouping common terms we see that:

This can be rewritten as(please remember that C = ec):

A1(c) + A2(c)p(c) + A3p
′(c) + A4p

′′(c) = 0 (5.12)

where

A1(c) = 1 + ((ρ− 1) + (
1− γ − ρ

1− γ
1

H(c)
H ′(c)))ϕdσ

2ρ13 + x̄ (5.13)

A2(c) = (−δ + ((ρ− 1) +
1− γ − ρ

1− γ
1

H(c)
H ′(c))(x̄+

σ2

2
) + (

1− γ − ρ
1− γ

1

H(c)

1

2
(H”(c)−H ′(c))+

1

2
(ρ− 1)(ρ− 2) +

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H(c)2
(H ′(c))2 +

(ρ− 1)(1− γ − ρ)

1− γ
1

H(c)
H ′(c))(σ2))

(5.14)

A3 = ϕdσ
2ρ13 + (((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))σ2) + x̄ and A4 =

σ2

2
(5.15)

Using (3.7), and its subsequent derivative equivalents, we can transform this differential

equation to be of the form:

ggp′′ = A1gg + A2gg
′ + A3ggp+ A4gg

′p+ A5gg
′′p+ A6g

′g′p+ A7ggp+ A8gg
′p′ (5.16)

where

A1 = −2(1 + ((ρ− 1)ϕdσσ)ρ13 + x̄)/(σσ) (5.17)

A2 = −2(
(1− γ − ρ)ϕdσ

ρσ
)ρ13/(σσ) (5.18)

A3 = −2
(−δ + (ρ− 1)(x̄+ (1/2)(σ2)))

σ2
+ (1/2)

((ρ− 1)(ρ− 2)σ2))

(σ2)
(5.19)

A4 = −2((1− γ − ρ)σ2)(x̄+ (1/2)(σ2)− 3/2 + ρ)/((σ2)ρ) (5.20)

A5 = − 2

σ2
((σ2)

(1− γ − ρ)

2ρ
) (5.21)
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A6 = −2(((1− γ − ρ)2)/(2ρ2)− (1− γ − ρ)/(2ρ))/(σ2) (5.22)

A7 =
−2((ρ− 1)σ + x̄+ (ϕdσ)ρ13)

(σ2)
(5.23)

A8 =
−2(1− γ − ρ)

ρ
(5.24)

The initial conditions for this ODE are

p0 = p(c̄), p1 = p′(c̄) (5.25)

where p represents the price-dividend ratio from the data. To derive the second initial

condition, we first recall that the instantaneous return on equity is given by:

Re(c)dt =
dP

P
+
D

p
dt (5.26)

The price-dividend ratio p implies that P = pD, which, using Ito’s Lemma, tells us that:

Re(c)dt =
dp

p
+
dD

D
+
dp

p

dD

D
+

1

p
dt (5.27)

This implies that:

Re(c)dt = (
p′(c)

p(c)
(x̄) +

1

2
p”(c)σ2)dt+

p′(c)σ

p(c)
dω1 + (x̄)dt+ ϕdσdω3 + (

ϕdσ
2p′(c)

p(c)
ρ13)dt+

1

p
dt

(5.28)

Combining terms, this implies that:

Re(c)dt = (
p′(c)

p(c)
(x̄) +

1

2
p”(c)σ2 + x̄+ (

ϕdσ
2p′(c)

p(c)
ρ13) +

1

p
)dt+

p′(c)σ

p(c)
dω1 + ϕdσdω3 (5.29)

This immediately implies (since the expected value of any Brownian motion is zero):

E[Re(c)]dt = (
p′(c)

p(c)
(x̄) +

1

2
p”(c)σ2 + x̄+ (

ϕdσ
2p′(c)

p(c)
ρ13) +

1

p
)dt (5.30)

As a side note, we see immediately that the standard deviation on the return to equity is

Σ(c) =

√
p′(c)2σ2

p(c)2
+ 2ρ13

p′(c)σ

p(c)
ϕdσ + ϕ2

dσ
2, (5.31)

which, squaring both sides, implies that

Σ(c)2 =
p′(c)2σ2

p(c)2
+ 2ρ13

p′(c)σ

p(c)
ϕdσ + ϕ2

dσ
2. (5.32)

Using the quadratic formula, we see that

p′(c)

p(c)
= −ρ13ϕd ±

√
ρ2

13ϕ
2
d − ϕ2

d +
Σ(c)2

σ2
. (5.33)

Thus, we arrive at our second initial condition

p1 = p′(c̄) = p0(−ρ13ϕd ±
√
ρ2

13ϕ
2
d − ϕ2

d +
Σ(c̄)2

σ2
). (5.34)
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From (5.27) we see that the expected return on equity is given by the equation:

Et[R
e(c)]dt =

dt

p
+ Et

[
dp

p
+
dD

D
+
dDdp

Dp

]
. (5.35)

Recall that −Rb(c)dt = Et[dΛ/Λ]. This implies that:[
Et[R

e(c)]−Rb(c)
]
dt =

dt

p
+ Et

[
dΛ

Λ
+
dp

p
+
dD

D
+
dDdp

Dp

]
(5.36)

From (8.2), we see that:[
Et[R

e(c)]−Rb(c)
]
dt =

dt

p
+ Et

[
dΛ

Λ
+
dp

p
+
dD

D
+
dDdp

Dp

]
= −Et

[
dΛdp

Λp
+
dΛdD

ΛD

]
. (5.37)

So

Et[R
e(c)]−Rb(c) = −(((ρ− 1) +

1− γ − ρ
1− γ

1

H(c)
H ′(c))

p′(c)σ2

p(c)
)

− ((ρ− 1) + (
1− γ − ρ

1− γ
1

H(c)
H ′(c)))ϕdσ

2ρ13, (5.38)

which, using (3.8), we see that

Et[R
e(c)]−Rb(c) = −((ρ− 1) + (

1− γ
ρ
− 1)

g′(c)

g(c)
)(
p′(c)

p(c)
+ ϕdρ13)σ2 (5.39)

Lemma 4. The initial value problem (??), (5.25) and (??) has an analytic solution p(c)

whose power series expansion

p(c) =
∑

pk(c− c̄)k (5.40)

has coefficients given by (5.41)

(n+ 1)(n+ 2)g2
0pn+2 = A1

N∑
k=0

k∑
j=0

gk−jgj + A2

N∑
k=0

k∑
j=0

(j + 1)gk−jgj+1 + A3

n∑
k=0

k∑
j=0

pn−kgk−jgj+

A4

n∑
k=0

k∑
j=0

pn−k(j + 1)gk−jgj+1 + A5

n∑
k=0

k∑
j=0

(j + 2)(j + 1)pn−kgj+2gk−j+

A6

n∑
k=0

k∑
j=0

(k − j + 1)(j + 1)pn−kgj+1gk−j+1 + A7

n∑
k=0

k∑
j=0

(n− k + 1)pn−k+1gk−jgj

+
n∑
k=0

k∑
j=0

(n− k + 1)(j + 1)pn−k+1gk−jgj+1

−
n∑
k=1

k∑
j=0

(n− k + 1)(n− k + 2)pn−k+2gk−jgj.

(5.41)
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The following graph depicts our results for the price-dividend ratio as a function of con-

sumption. There is a postive relation between the price-dividend ratio and consumption as

one might expect.:

6. Ordinary Differential Equation with the DEKP Preferences

We now return to the two-dimensional case. That is, we do not make any assumptions

about the x process. Assume that the consumption C(t) of the investor follows the stochastic

process:

dC

C
= dc = (x+ x̄)dt+ σdω1 (6.1)

where

dx = (ρ− 1)xdt+ ϕeσdω2. (6.2)

We try to get an expression for C in terms of x and randomness. First, we integrate from 0

to t our expression for dx.

x(t)− x(0) = (ρ− 1)

∫ t

0

xdt+ ϕeσ

∫ t

0

dω2 (6.3)

Rearranging terms we see that:∫ t

0

xdt =
x(t)− x(0)− ϕeσ

∫ t
0
dω2

ρ− 1
(6.4)



22

Now, integrating (6.1), we see that:

ln(C(t))− ln(C(0)) = x̄t+

∫ t

0

xdt+ σ

∫ t

0

dω1 (6.5)

Plugging in (6.4), we arrive at a relationship between C and x

ln(C(t)) = ln(C(0)) + x̄t+
x(t)− x(0)− ϕeσ

∫ t
0
dω2

ρ− 1
+ σ(ω1(t)− ω1(0)) (6.6)

Here x̄ = ln C̄. which implies that:

C(t) = eln(C(0))+x̄t+
x(t)−x(0)−ϕeσ

∫ t
0 dω2

ρ−1
+σ(ω1(t)−ω1(0)) (6.7)

At this point, it is clear that C is a function of the state process x, and t, and unless we get

rid of one of the Brownian motions, it is clear that we will not be able to write C solely as a

function of x.

We now try to derive a partial differential equation for H(C, x). We begin with equation

(12.53), and our H function defined earlier:

Et[dH(C, x)] + β
µp(C(t))− g(H(C, x))

g′(H(C, x))
dt = 0 (6.8)

where we define:

µp(C(t)) =
C(t)p

p
, (6.9)

and

g(H(C, x)) =
((1− γ)H)

ρ
1−γ

ρ
. (6.10)

This implies that(remember to use chain rule):

g′(H(C, x)) = ((1− γ)H)
ρ

1−γ−1 (6.11)

Applying Ito’s Lemma to H(C, x), we see that:

Et[
∂H

∂C
(dC)+

∂H

∂x
dx+

1

2

∂2H

∂C2
(dC)2+

1

2

∂2H

∂x2
dx2+

∂2H

∂C∂x
(dC)(dx)]+β

µp(C(t))dt− g(H(C, x))

g′(H(C, x))
dt = 0

(6.12)

From our Brownian motion rules we know that:

(dC)2 = C2σ2dt (6.13)

(dx)(dC) = aϕeCσ
2dt (6.14)

where a represents the correlation between dw1 and dw2

dx2 = σ2ϕ2
edt (6.15)
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Using the results from our Brownian motion rules above, plugging in (6.9), (6.10), and (6.11),

dividing by dt, and using the fact that E[dw]=0, we arrive at:

σ2

2
C2∂

2H

∂C2
+

1

2
σ2φ2

e

∂2H

∂x2
+

(x+ x̄)C
∂H

∂C
+(ρ− 1)x

∂H

∂x
+ wϕeσ

2C
∂2H

∂C∂x
+
β

ρ
(1− γ)

[
Cρ

((1− γ)H)ρ/(1−γ)
− 1

]
H = 0 .

(6.16)

This is the PDE, which ultimately describes the situation. To make our situation easier(i.e.

this PDE is very difficult to solve), we assume the functional form(note: this is an educated

guess because it makes sense to think of C as a sort of scaling factor) and hope that this

reduces to a nonlinear ODE:

H(x,C) =
C1−γ

1− γ
(h(x))

1−γ
ρ (6.17)

The first-order partial derivatives of H(x,C) are

∂H

∂C
= (1− γ)

H

C
and

∂H

∂x
=

(1− γ)H

ρ

h′

h
(6.18)

The second-order partial derivatives of H(x,C) are

∂2H

∂C2
= (−γ)(1− γ)

H

C2
,

∂2H

∂x2
=

1− γ
ρ

(
H

(
hh′′ + 1−γ−ρ

ρ
(h′)2

h2

))
∂2H

∂C∂x
=

(1− γ)2H

ρC

h′

h
. (6.19)

Plugging these values in, we arrive at the differential equation:

σ2

2
(−γ)(1− γ)H +

1

2
σ2φ2

e

1− γ
ρ

(
H

(
hh′′ + 1−γ−ρ

ρ
(h′)2

h2

))
+

(x+ x̄)(1− γ)H + (ρ− 1)x
(1− γ)H

ρ

h′

h
+ wϕeσ

2 (1− γ)2H

ρ

h′

h
+
β

ρ
(1− γ)

[
1

h
− 1

]
H = 0 .

(6.20)

Now, dividing by (1 − γ)H, and rearranging terms, we arrive at the following ordinary

differential equation.

h(x)h′′(x) = A(x)(h(x))2 +B(x)h(x)h′(x) + C(h′(x))2 +Dh(x) (6.21)

where

A(x) =
−2ρ

σ2ϕ2
e

((x+ x̄)− β

ρ
− σ2γ

2
) = c11x+ c12 (6.22)

B(x) =
−2ρ

σ2ϕ2
e

(
(ρ− 1)x

ρ
+ ϕeσ

2 (1− γ)w

ρ
) = c21x+ c22 (6.23)

C = (
−(1− γ − ρ)

ρ
) = c3 (6.24)
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and

D =
−2ρ

σ2ϕ2
e

(
β

ρ
) = c4 (6.25)

We now apply a change of variable µ = ax (this is similar to the change of variable that Yu

Chen did in Numerical Solutions of Portfolio Decision Problems, when he let µ = ε ∗σmu ∗x.

This implies that h(x) = h(µ
a
), which implies that h′(µ) = 1

a
h′(x) and h′′(µ) = 1

a2h
′′(x). From

this we can see that:

h(µ)h′′(µ) = A(µ)(h(µ))2 +B(µ)h(µ)h′(µ) + C(h′(µ))2 +Dh(µ) (6.26)

where

A(µ) =
−2ρa2

σ2ϕ2
e

((
µ

a
+ x̄)− β

ρ
− σ2γ

2
) = c11x+ c12 (6.27)

B(µ) =
−2ρa

σ2ϕ2
e

(
(ρ− 1)µ

a

ρ
+ ϕeσ

2w(1− γ)

ρ
) = c21x+ c22 (6.28)

C = (
−(1− γ − ρ)

ρ
) = c3 (6.29)

and

D =
−2ρa2

σ2ϕ2
e

(
β

ρ
) = c4. (6.30)

We now derive initial conditions. We first note the relationship between h(0) and H(0),

where we let L(0) = (1− γ)H(0)

h(0) =

(
L(0)

C(0)1−γ

) ρ
1−γ

(6.31)

This is well defined, because(as we will see later), the utility function H(x,C), is defined as

negative. We also note that H(0) is simply J(0) from Marianne’s thesis. J(t), according to

Marianne’s thesis, is simply (we switch their H with a G to avoid confusing notation):

J(W (t), µ(t)) = e−νtG(µ(t))−
1−γ
1−ψ

W (t)1−γ

1− γ
(6.32)

This implies that J(0) is:

J(0) = G(0)−
1−γ
1−ψ

W (0)1−γ

1− γ
(6.33)

Equating J(0) with our H(0), we see that:

G(0)−
1−γ
1−ψ

W (0)1−γ

1− γ
=
C1−γ

1− γ
(h(x))

1−γ
ρ (6.34)

Therefore, we still must find G(0). According to page 22 of Marianne’s thesis, we see that:

G0 = G(µ(0)) = βψ
W (0)

C(0)
. (6.35)

From (6.34), this immediately implies that:

(βψ
W (0)

C(0)
)−

1−γ
1−ψ

W (0)1−γ

1− γ
=
C1−γ

1− γ
(h(x))

1−γ
ρ (6.36)
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We want to solve for h(0). Therefore, moving terms to the other side:

h(0) = ((βψ
W (0)

C(0)
)−

1−γ
1−ψ

W (0)

C(0)

1−γ

)
ρ

1−γ (6.37)

Using the properties of exponents, we see that:

h(0) = (β
W (0)

C(0)
)−

ψρ
1−ψ (6.38)

This is clearly well defined.

We now seek the second initial condition. From (7.2), we remember that:

∂H

∂x
=

(1− γ)H

ρ

h′

h
(6.39)

This implies that:
∂h

∂x
= h1 =

ρ

(1− γ)H(0)
h(0)

∂H

∂x
(0) (6.40)

To derive the second initial condition, we then look at the partial derivative of J with respect

to µ, which is equivalent to the partial derivative of H with respect to x.

∂J

∂µ
= −e−νt 1− γ

1− ψ
W (t)1−γ

1− γ
G(µ(t))−

1−γ
1−ψ−1G′ (6.41)

= −e−νt 1− γ
1− ψ

W (t)1−γ

1− γ
G(µ(t))−

1−γ
1−ψ

G′

G
= − 1− γ

1− ψ
J
G′

G
(6.42)

We still need to find G′. From Marianne’s Thesis (p.23), we know that:

G′(0) =
(1− ψ)

ρσµ(1− γ)

(
1

σS
− α(0)γσS

µ(0)

)
G((0)). (6.43)

Plugging this all in, we see that:

h1 =
ρ

(1− γ)H(0)
h(0)(− 1− γ

1− ψ
H(0)

(1−ψ)
ρσµ(1−γ)

(
1
σS
− α(0)γσS

µ(0)

)
G((0))

G(0)
) (6.44)

Canceling terms, we see that:

h1 =
1

(1− γ)
h(0)(

−1

σµ

(
1

σS
− α(0)γσS

µ(0)

)
) (6.45)

All the coefficients(there is no forcing term) are affine functions, and therefore analytic with

infinite radius of convergence. Applying the Cauchy-Kovalevsky Theorem, this means that

h(x) is also analytic with some radius of convergence (to determine this radius of convergence

we use Yu Chen’s program). We write h(x) as such:

h(x) =
∞∑
j=0

ajx
j (6.46)

We will now find the power series expansions of the h(x)h′′(x), (h(x))2, h(x)h′(x), and

(h′(x))2. We will then plug in these power series into our differential equation. We will
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then equate the coefficients associated with xj. This will give us a recurrence relationship to

determine each aj in our power series expansion for h(x)

We know that:

h′(x) =
∞∑
j=0

(j + 1)aj+1x
j (6.47)

Using (6.46) and (6.47) we see that:

(h(x))2 =
∞∑
j=0

(

j∑
k=0

akaj−k)x
j (6.48)

which implies that:

(c11x+ c12)(h(x))2 =
∞∑
j=0

(c11

j−1∑
k=0

akaj−k−1 + c12

j∑
k=0

akaj−k)x
j (6.49)

Additionally,

(h′(x))2 =
∞∑
j=0

(

j∑
k=0

(k + 1)(j − k + 1)ak+1aj−k+1)xj (6.50)

h(x)h′′(x) =
∞∑
j=0

(

j∑
k=0

(k + 1)(k + 2)ak+2aj−k)x
j (6.51)

h(x)h′(x) =
∞∑
j=0

(

j∑
k=0

(k + 1)ak+1aj−k)x
j (6.52)

which implies that:

(c21x+ c22)h(x)h′(x) =
∞∑
j=0

(c21

j−1∑
k=0

(k + 1)ak+1aj−k−1 + c22

j∑
k=0

(k + 1)ak+1aj−k)x
j (6.53)

Plugging (6.53), (6.51) ,(6.50), (6.49), and (6.46) into our ODE, and then equating the

coefficients for xj, we see that:

j∑
k=0

(k + 1)(k + 2)ak+2aj−k = (c11

j−1∑
k=0

akaj−k−1 + c12

j∑
k=0

akaj−k) + (c21

j−1∑
k=0

(k + 1)ak+1aj−k−1+

c22

j∑
k=0

(k + 1)ak+1aj−k) + c3(

j∑
k=0

(k + 1)(j − k + 1)ak+1aj−k+1) + c4aj (6.54)

This immediately implies our recurrence relation to determine each aj:

(j + 1)(j + 2)aj+2a0 = (c11

j−1∑
k=0

akaj−k−1 + c12

j∑
k=0

akaj−k) + (c21

j−1∑
k=0

(k + 1)ak+1aj−k−1

+ c22

j∑
k=0

(k + 1)ak+1ak−j) + c3(

j∑
k=0

(k + 1)(j − k + 1)ak+1aj−k+1) + c4aj −
j−1∑
k=0

(k + 1)(k + 2)ak+2aj−k

(6.55)



27

We have solved this. This function, which should have the same properties as our utility,

exhibits a clear positive relation with consumption. This is certainly what we would expect:

We now try to develop the differential equation for the price-dividend ratio:

7. The Stochastic Process for the Pricing Kernel

We will derive an ordinary differential equation for the equilibrium price-dividend ratio in

the DEKP model, given the power series of the lifetime utility function H(C) around C = C̄.

The pricing kernel for the investor is given by

Λ(C,U, t) = e−δt
∂f̄

∂C
(C,U) =

∂

∂C

[
β

ρ
· C

ρ − ((1− γ)U)ρ/(1−γ)

((1− γ)U)ρ/(1−γ)−1

]
=

βCρ−1

((1− γ)U)ρ/(1−γ)−1
.

(7.1)

The first-order partial derivatives of Λ(C,U, t) are

∂Λ

∂C
= (ρ− 1)

Λ

C
and

∂Λ

∂U
=

1− γ − ρ
1− γ

Λ

U
. and

∂Λ

∂t
= (−δ)Λ (7.2)
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The second-order partial derivatives of Λ(C,U) are

∂2Λ

∂C2
= (ρ− 1)(ρ− 2)

Λ

C2
,

∂2Λ

∂U2
= −ρ(1− γ − ρ)

(1− γ)2

Λ

U2
,

∂2Λ

∂C∂U
=

(ρ− 1)(1− γ − ρ)

1− γ
Λ

CU
. (7.3)

After algebraic massaging, plugging in for our stochastic processes, and using our Brownian

motion rules, we arrive at the following stochastic process for Λ:

dΛ

Λ
= B1dt+B2dω1 +B3dω2 (7.4)

where

B1 = (−δ + ((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)(x+ x̄)C +

1− γ − ρ
1− γ

1

H

∂H

∂x
(ρ− 1)x

+
1− γ − ρ

1− γ
1

H

1

2

∂2H

∂C2
+

1

2
(ρ− 1)(ρ− 2)

1

C2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
(
∂H

∂C
)2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

CH

∂H

∂C
(C2σ2) + (

1− γ − ρ
1− γ

1

H

∂2H

∂x∂C
+

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
2
∂H

∂C

∂H

∂x
+

1

CH

∂H

∂x
)ϕeσ

2Ca

+ (
1− γ − ρ

1− γ
1

H

1

2

∂2H

∂x2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
(
∂H

∂x
)2)ϕ2

eσ
2) (7.5)

and

B2 = ((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)Cσ and B3 = (

1− γ − ρ
1− γ

1

H

∂H

∂x
)ϕeσ (7.6)

8. Equilibrium Price-Dividend Function in the DEKP Model

We begin with the Euler condition:

Λ(t)D(t)dt+ Et [d(Λ(t)P (t))] = 0 (8.1)

where P (t) is the price of a stock at time t and D(t) is the dividend paid by this stock at

time t.

Following algebraic manipulation, we arrive at an equivalent expression:

1

p
dt+ Et

[
dΛ

Λ
+
dp

p
+
dD

D
+
dΛdp

Λp
+
dDdp

Dp
+
dΛdD

ΛD

]
= 0 . (8.2)

where p is the price dividend ratio.

We now assume that p is a function of x and c = ln(C) the two underlying state processes.

From this we can calculate dp using Ito’s Lemma. After employing Ito’s Lemma, a little

algebraic massaging, and plugging in for the stochastic processes we arrive at:

dp

p
= D1

dt

p
+D2dω1 +D3dω2 (8.3)
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where

D1 =(
∂p

∂c
(x+ x̄) +

∂p

∂x
(ρ− 1)x+

1

2

∂2p

∂x2
σ2φ2

e

+
1

2

∂2p

∂c2
σ2 +

∂2p

∂c∂x
aσ2φe) (8.4)

D2 =
σ

p
and D3 =

ϕeσ

p
(8.5)

We have our equation for the dividend process (given):

dD

D
= (φx+ x̄)dt+ ϕdσdω3 (8.6)

We now have expressions for everything in the Euler equation. Plugging in, and after some

algebraic massaging, we arrive at:

A1 + A2p+ A3
∂p

∂c
+ A4

∂p

∂x
+ A5

∂2p

∂x2
+ A6

∂2p

∂c2
+ A7

∂2p

∂c∂x
= 0 (8.7)

where

A1 =1 + (
1− γ − ρ

1− γ
1

H

∂H

∂x
)ϕ2

eσ
2 + ((ρ− 1)

1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)Cϕeσ

2a

+ ϕdσ
2b+ ϕeϕdσ

2z + (((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)Cσ2)

+ (
1− γ − ρ

1− γ
1

H

∂H

∂x
)ϕeσ

2a (8.8)

A2 =((
1− γ − ρ

1− γ
1

H

∂H

∂C
)Cϕdσ

2b+

(
1− γ − ρ

1− γ
1

H

∂H

∂x
)ϕeϕdσ

2z + φx+ x̄

(−δ + ((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)(x+ x̄)C +

1− γ − ρ
1− γ

1

H

∂H

∂x
(ρ− 1)x

+
1− γ − ρ

1− γ
1

H

1

2

∂2H

∂C2
+

1

2
(ρ− 1)(ρ− 2)

1

C2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
(
∂H

∂C
)2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

CH

∂H

∂C
(C2σ2) + (

1− γ − ρ
1− γ

1

H

∂2H

∂x∂C
+

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
2
∂H

∂C

∂H

∂x
+

1

CH

∂H

∂x
)ϕeσ

2Ca

+ (
1− γ − ρ

1− γ
1

H

1

2

∂2H

∂x2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
(
∂H

∂x
)2)ϕ2

eσ
2)) (8.9)

A3 = (x+ x̄) A4 = (ρ− 1)x A5 =
1

2
σ2φ2

e A6 =
σ2

2
A7 = aσ2φe (8.10)
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p0, the first initial condition, is equal to the power series defined by 4. We start with the

formula for the return on equity.

Re(x, c) =
dp

p
+
dD

D
+
dp

p

dD

D
+

1

p
dt. (8.11)

From my thesis, we recall that

dp

p
= D1

dt

p
+D2dω1 +D3dω2. (8.12)

where

D1 =(
∂p

∂c
(x+ x̄) +

∂p

∂x
(ρ− 1)x+

1

2

∂2p

∂x2
σ2φ2

e

+
1

2

∂2p

∂c2
σ2 +

∂2p

∂c∂x
aσ2φe) (8.13)

D2 =
∂p
∂c
σ

p
and D3 =

∂p
∂x
ϕeσ

p
. (8.14)

and that
dD

D
= (φx+ x̄)dt+ ϕdσdω3. (8.15)

Using our Brownian motion rules, this implies that (where aij represents the correlation

between dωi and dωj)

dp

p

dD

D
= (

ρ13
∂p
∂c
ϕdσ

2

p
+
ρ23

∂p
∂x
ϕeϕdσ

2

p
)dt. (8.16)

Plugging (8.12), (8.15) and (8.16) into (8.11) we see that

Re(x, c) = (
ρ13ϕdσ

2

p
+
ρ23ϕeϕdσ

2

p
+φx+x̄+

1

p
+
D1

p
)dt+

σ ∂p
∂c

p
dω1+

ϕeσ
∂p
∂x

p
dω2+ϕdσdω3. (8.17)

This immediately implies that

E[Re(x, c)] = (
ρ13ϕdσ

2

p
+
ρ23ϕeϕdσ

2

p
+ φx+ x̄+

1

p
+
D1

p
)dt. (8.18)

We also know that the standard deviation of σ
p
∂p
∂c
dω1 + ϕeσ

p
∂p
∂x
dω2 + ϕdσdω3 is

Σ(x, c) =

√
σ2(∂p

∂c
)2

p2
+ 2ρ12

∂p
∂c
σ

p

∂p
∂x
ϕeσ

p
+ 2ρ13

∂p
∂c
σ2ϕd

p
+ 2ρ23ϕdσ

∂p
∂x
ϕeσ

p
+
ϕ2
eσ

2 ∂p
∂x

2

p2
+ ϕ2

dσ
2.

(8.19)

Plugging in (5.31), which we will label Σ1, and p1 for the price dividend ratio we found in

the one-dimensional case, we see that

Σ(x, c) =

√
Σ2

1 + 2ρ12

∂p1
∂c
σ

p1

∂p
∂x
ϕeσ

p1

+ 2ρ23ϕdσ
∂p
∂x
ϕeσ

p1

+
ϕ2
eσ

2 ∂p
∂x

2

p2
1

. (8.20)

This implies that

ϕ2
eσ

2

p2
1

∂p

∂x

2

+ (2ρ12

∂p1
∂c
σ

p1

ϕeσ

p1

+ 2ρ23ϕdσ
ϕeσ

p1

)
∂p

∂x
+ Σ2

1 − Σ2(x, c) = 0. (8.21)
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Applying the quadratic formula, we know that

∂p

∂x
=
−(2ρ12

∂p1
∂c

σ

p1

ϕeσ
p1

+ 2ρ23ϕdσ
ϕeσ
p1

) +

√
(2ρ12

∂p1
∂c

σ

p1

ϕeσ
p1

+ 2ρ23ϕdσ
ϕeσ
p1

)2 − 4(ϕ
2
eσ

2

p21
)(Σ2

1 − Σ2(x, c))

2ϕ
2
eσ

2

p21

(8.22)

9. The Main Result

We have arrived at the final differential equation. The solution to this differential equation

will describe the motion of the price-dividend ratio in the two-dimensional case. Before we

state the main theorem it is necessary to give a little background information. Our first

initial condition is our solution to the one-dimensional model. We derived our second initial

condition in a fashion similar to the way that Cosimano and Chen derive their condition for

the Wachter model. As always, p represents the price-dividend ratio, c, x reflect consumption

and the variable that affects expected growth of consumption respectively, c̄, x̄ are constants

that reflect the average consumption and the average drift term, or expected growth, of

consumption respectively and a represents the coefficients of the power series of the price-

dividend ratio.

Theorem 1. The initial value problem

B1
∂2p

∂x2
= B2 +B3p+B4

∂p

∂c
+B5

∂p

∂x
+B6

∂2p

∂c2
+B7

∂2p

∂c∂x
(9.23)

p(x̄, c) = p0(c) (9.24)

∂p

∂x
(x̄, c) = p1(c) (9.25)

where the coefficients Bj are given by

B1 =
1

2
σ2φ2

e (9.26)

B2 =− 1− (
1− γ − ρ

1− γ
1

H

∂H

∂x
)ϕ2

eσ
2 + ((ρ− 1)

1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)Cϕeσ

2a

+ ϕdσ
2b+ ϕeϕdσ

2z + (((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)Cσ2)

+ (
1− γ − ρ

1− γ
1

H

∂H

∂x
)ϕeσ

2a (9.27)
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B3 =− ((
1− γ − ρ

1− γ
1

H

∂H

∂C
)Cϕdσ

2b+

(
1− γ − ρ

1− γ
1

H

∂H

∂x
)ϕeϕdσ

2z + φx+ x̄

(−δ + ((ρ− 1)
1

C
+

1− γ − ρ
1− γ

1

H

∂H

∂C
)(x+ x̄)C +

1− γ − ρ
1− γ

1

H

∂H

∂x
(ρ− 1)x

+
1− γ − ρ

1− γ
1

H

1

2

∂2H

∂C2
+

1

2
(ρ− 1)(ρ− 2)

1

C2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
(
∂H

∂C
)2

+
(ρ− 1)(1− γ − ρ)

1− γ
1

CH

∂H

∂C
(C2σ2) + (

1− γ − ρ
1− γ

1

H

∂2H

∂x∂C
+

−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
2
∂H

∂C

∂H

∂x
+

1

CH

∂H

∂x
)ϕeσ

2Ca

+ (
1− γ − ρ

1− γ
1

H

1

2

∂2H

∂x2
+
−1

2

ρ(1− γ − ρ)

(1− γ)2

1

H2
(
∂H

∂x
)2)ϕ2

eσ
2)) (9.28)

B4 = −(x+ x̄), B5 = (1− ρ)x, B6 =
−σ2

2
, B7 = −aσ2φe (9.29)

and the initial conditions are given by,

p0 =
∑

pk(c− c̄)k (9.30)

and

∂p

∂x
=
−(2ρ12

∂p1
∂c

σ

p1

ϕeσ
p1

+ 2ρ23ϕdσ
ϕeσ
p1

) +

√
(2ρ12

∂p1
∂c

σ

p1

ϕeσ
p1

+ 2ρ23ϕdσ
ϕeσ
p1

)2 − 4(ϕ
2
eσ

2

p21
)(Σ2

1 − Σ2(x, c))

2ϕ
2
eσ

2

p21

(9.31)

has an analytic solution p, whose power series at (x̄, c̄)

p(x, c) =
∞∑

j,k=0

aj,k(x− x̄)j(c− c̄)k (9.32)

has a radius of convergence.

Proof. That the solution is analytic in a domain containing region G follows from the

Cauchy-Kovalevsky Theorem that we state in the appendix . We shall explain why the

Cauchy-Kovalevsky theorem applies in this situation. First, we know that our initial con-

ditions are analytic because we know that our power series p0 is analytic. This comes from

the fact that p0 comes out of a second-order linear differential equation, whose coefficients

are analytic. We have done error analysis on the coefficients in that differential equation and

have proved that our g function, which appears in the coefficients of ps differential equation

converges with a radius of convergence at least as big as 1.2 times the standard deviation.

(By g we mean the power series solution g(c) =
∑∞

n=0 gn(c− c̄)n of the initial value problem

(3.13)). We solved for the coefficients of the power series to the solution h by the recurrence

relation (6.55) and it appears that there is a radius of convergence of at least .8 times the

standard deviation. However, we have yet to do the error analysis. But, based on analytic
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coefficients and analytic initial conditions, it appears that the price-dividend function is ana-

lytic and has a radius of convergence. This follows from 3. The next step is to write down the

recurrence relationship and produce explicit bounds for the coefficients. Therefore, our main

result, is that we have created a well-defined problem to solve for the price-dividend ratio un-

der the assumptions of a multi-dimensional consumption process, Duffie-Epstien preferences

and Kreps-Porteus Utility.
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10. Part II: The Black-Scholes Model

In the upcoming section we will describe the Black Scholes Model. This model was a

revolutionary one; it gave a closed form solution for the pricing of call options. It is incredibly

beautiful and any discussion of major contributions to mathematical finance certainly begins

with this model.

The owner of a call option has the right to purchase a stock s(t), for a strike price K, at

a future time T . We will denote this call option V = V (s, t) since we assume that it is a

function of the stock price s and time t. We also assume that the stock price follows the

following stochastic differential equation:

ds = asdt+ σsdw. (10.1)

where dw is the increment of a Brownian motion (it has a mean of zero and a variance of dt),

a and σ are positive constants and dt is an increment of time. We also assume that there

is a constant riskless rate of return r, that there are no transaction costs, the market flows

continuously and there are no dividends.

We let B(t) represent the number of currency invested in the riskless asset, O(t) represent

the number of options the investor holds and N(t) represent the number of stocks held. The

value of the investors portfolio, at time t, is therefore:

π(t) = N(t)S(t) +O(t)V (t) +B(t). (10.2)

which implies that:

dπ(t) = N(t)dS(t) +O(t)dV (t) + dB(t). (10.3)

From Ito’s Lemma, we know that

dV = Vsds+ Vtdt+
1

2
Vss(ds)

2. (10.4)

From (10.1), and our Brownian Motion multiplication rules, we know that

(ds)2 = σ2s2dt. (10.5)

Plugging (10.5) and (10.1) into (10.4), we see that

dV = [Vt + asVs +
σ2s2

2
Vss]dt+ [σsVs]dw (10.6)

By definition of a risk free asset we know that

dB = rBdt (10.7)

Plugging in (10.7), (10.6), and (10.1) into (10.3) we see that

dπ = [Nas+O(Vt + asVs +
σ2s2

2
Vss) + rB]dt+ [OσsVs +Nσs]dw (10.8)

If we choose stocks and options such that

N = −OVs, (10.9)

then the portfolio is riskless and will earn the riskless rate of return r. That is

dπ = πrdt. (10.10)
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Plugging (10.9) into (10.2), we see that

π = O[V − sVs] +B. (10.11)

Furthermore, plugging (10.9) into (10.8), we see that

dπ = [O(Vt +
σ2s2

2
Vss) + rB]dt. (10.12)

Finally, plugging (10.11) and (10.12) into (10.10), we see that

[O(Vt +
σ2s2

2
Vss) + rB]dt = (O[V − sVs] +B)rdt (10.13)

Canceling terms, and rearranging the equation, we arrive at the Black-Scholes Partial differ-

ential equation
∂V

∂t
+ rs

∂V

∂s
+
σ2s2

2

∂2V

(∂s)2
− rV = 0. (10.14)

where V is the price of a call option, s is the stock price, and r is the riskless rate of

return(e.g. the return on a government bond). This PDE is also subject to the following

boundary conditions:

V (s, T ) = lim
t↑T

V (s, t) = [s−K]+. (10.15)

where K represents the strike price, and T is the exercise time

V (0, t) = lim
s↓0

V (s, t) = 0 ∀ tε[0, T ] (10.16)

Additionally,

lim
s↑∞

(V (s, t)− (s− e−r(T−t))) = 0. (10.17)

We now apply the change of variable:

V (s, t) = e−rτG(x, y) (10.18)

where x and y are functions of s and t, and τ = T − t Taking partial derivatives(by the

definition of a total derivative), we see that:

Vs = e−rτ [Gxxs +Gyys]. (10.19)

Vt = re−rτG+ e−rτ [Gxxt +Gyyt]. (10.20)

Vss = e−rτ [Gxxx
2
s +Gxyxsys +Gxxss +Gyxxsys +Gyyy

2
s +Gyyss]. (10.21)

Substituting (10.18) through (10.21), we arrive at an equivalent partial differential equa-

tion(by combining like terms and dividing through by e−rτ :

σ2s2

2
x2
sGxx+

σ2s2

2
xsysGxy+

σ2s2

2
y2
sGyy+[

σ2s2

2
xss+rsxs+xt]Gx+[

σ2s2

2
yss+rsys+yt]Gy = 0.

(10.22)

In order to put this in the form of the heat equation (i.e. Gxx = Gy), we need the following

equalities to hold:
σ2s2

2
x2
s +

σ2s2

2
yss + rsys + yt = 0, (10.23)

σ2s2xsys = 0, (10.24)

σ2s2

2
y2
s = 0, (10.25)
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σ2s2

2
xss + rsxs + xt = 0. (10.26)

Looking at (10.25) we see that y can not depend on s, if we want to transform this PDE

to the heat equation. Additionally, we must satisfy the following two conditions:

σ2s2

2
x2
s + yt = 0, (10.27)

σ2s2

2
xss + rsxs + xt = 0. (10.28)

Looking at (10.23), and recalling that y is only a function of t, we see immediately that

sxs must not be a function of s. Recalling that x must also be a function of t, we use the

very simple change of variable:

x(s, t) = ln(s) + γτ. (10.29)

This implies that(in order to transform the PDE to the heat equation):

σ2

2
+ yt = 0, (10.30)

−σ2

2
+ r − γ = 0. (10.31)

This implies that γ = r − σ2

2
and y(t) = σ2τ

2
Therefore, we arrive at the heat equation with

the boundary condition:

G(x(s, T ), y(T )) = [ex −K]+. (10.32)

(This can be seen immediately after looking at the initial boundary condition, looking at our

change of variables, and then plugging in for t = T ) We now use a separation of variables

technique: We assume that G can be written like:

G(x, y) = X(x)Y (y). (10.33)

This implies that we have the following differential equation:

X ′′(x)Y (y) = X(x)Y ′(y). (10.34)

This immediately implies that we have the following pair of ordinary differential equa-

tions(where k is a constant):

X ′′ + kX = 0. (10.35)

Y ′ + kY = 0. (10.36)

Letting a =
√
k, we see that :

X(x) = C1e
iax. (10.37)

Y (y) = C2e
−a2y. (10.38)

and

G(x, y) = ceiax−a
2y. (10.39)

And, since c can take on any value, we know that

G(x, y) =

∫ ∞
−∞

c(a)eiax−a
2yda. (10.40)

where c, C1, and C2 are arbitrary constants.
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We can see that this is true by applying the differential operator(the one for the differential

equation) to that integral, and then bringing that differential operator inside the integral.

If y = 0, (i.e. if T = t) we see that

f(x) =

∫ ∞
−∞

c(a)eiaxda. (10.41)

Applying the inverse Fourier transform, we see that:

c(a) =
1

2π

∫ ∞
−∞

f(x)e−iaxdx. (10.42)

Plugging this into our equation for G, we see that:

G(x, y) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(u)e−i(u−x)a−a2yduda. (10.43)

By Fubini’s Theorem, we can reverse the order of integration (by Fubini-Tonelli). Then, we

see that we have a Fourier pair:

G(x, y) =
1

2π

∫ ∞
−∞

f(u)

∫ ∞
−∞

e−i(u−x)a−a2ydadu. (10.44)

which implies that:

G(x, y) =
1

2π

∫ ∞
−∞

f(u)

∫ ∞
−∞

ê−a2y(u− x)dadu. (10.45)

On page six of Professor Himonas’ notes, we are told that, in one dimension:

ê
−λ
2
|x|2(ζ) = (

2π

λ
)

1
2 e−

|ζ|2
2λ . (10.46)

From that, we see that (10.44) is equivalent to:

G(x, y) =
1

2
√
πy

∫ ∞
−∞

f(u)e
−(u−x)2

4y du. (10.47)

Plugging in our boundary condition, which only allows positive values for the option, we see

that:

G(x, y) =
1

2
√
πy

∫ ∞
ln(K)

(eu −K)e
−(u−x)2

4y du. (10.48)

Switching back to V , and plugging in for x and y, we see that:

V (s, t) =
e−rτ

σ
√

2πτ

∫ ∞
ln(K)

(eu −K)e
−(u−ln(s)−(r−σ

2

2 )τ)2

2σ2τ du. (10.49)

By the linearity of integrals, we see that:

V (s, t) =
e−rτ

σ
√

2πτ

∫ ∞
ln(K)

eue
−(u−ln(s)−(r−σ

2

2 )τ)2

2σ2τ du− e−rτ

σ
√

2πτ

∫ ∞
ln(K)

(K)e
−(u−ln(s)−(r−σ

2

2 )τ)2

2σ2τ du.

(10.50)

We will now try to transform these integrals to be of the normal distribution form: We add

and subtract (ln(s) + rτ), to the exponent under the first integral. This makes the first

integral look like(One can see this by first adding (ln(s) + rτ) to the exponential function

outside the integral, then by expanding the term inside, by subtracting (ln(s) + rτ), and,

finally, by combining terms):
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s

σ
√

2πτ

∫ ∞
ln(K)

e
−(u−ln(s)−(r+σ2

2 )τ)2

2σ2τ du. (10.51)

Now, if we let p =
(u−ln(s)−(r+σ2

2
)τ)√

σ2τ
, then we immediately see that the first integral is equal

to:

s√
2π

∫ ln(s/K)+(r+σ2

2 )τ

σ
√
T

−∞
e
−p2

2 dp. (10.52)

Based on the definition of the normal distribution, this is equal to: sΦ(
ln(s/K)+(r+σ2

2
)τ

σ
√
τ

).

Similarly, we see that the second integral, if we make the substitution w =
(u−ln(s)−(r−σ

2

2
)τ)√

σ2τ
,

is equal to:

Ke−rτ√
2π

∫ ln(s/K)+(r−σ
2

2 )τ

σ
√
τ

−∞
e−

w2

2 dw. (10.53)

And, this is clearly equal to:

Ke−rτΦ(
ln(s/K) + (r − σ2

2
)τ

σ
√
τ

). (10.54)

Therefore, we have solved the PDE, and have our equation for the price of a call option:

V (s, t) = sΦ(
ln(s/K) + (r + σ2

2
)τ

σ
√
τ

) +Ke−rτΦ(
ln(s/K) + (r − σ2

2
)τ

σ
√
τ

). (10.55)

It is important to note the difference between the equation we just solved and the famous

heat differential equation. (It looks like a flip of the initial conditions.) We can see this

difference through the following two diagrams

t

T

q(0, t) = q
0
(t)

x

q(x, t) = ?

Heat Problem

q(x, 0) = q
0
(x)

t

T

V(0, t) = 0

S

V
T
(S) = [S - K]+

V
0
(S) = ?

V(S, t) = ?

BSM-PDE
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Appendix

11. Necessary Mathematics

The two tools most often used in this paper are:

Definition 2. (Ito’s Lemma in two dimensions) Let f(t,x,y) be a function whose partial

derivatives ft, fx, fy, fxx, fxy, fyx, and fyy are defined and continuous. Let X(t) and Y (t) be

Ito processes (essentially of the form dX(t) = µ(t)dt + σ(t)dW (t), where W is a Brownian

motion). The two dimensional Ito’s formula in differential form is:

df(t,X(t), Y (t)) = ftdt+ fxdx+ fydy +
1

2
fxxdxdx+ fxydxdy +

1

2
fyydydy (11.56)

Please note, that this comes out of our Brownian motion rules, which tell us that

(dt)(dt) = 0, (dt)(dW ) = 0, and(dW )(dW ) = dt. (11.57)

That is why we do not include additional terms.

We now state the Cauchy-Kovalevsky theorem, which is used throughout our research.

Theorem 2. The initial value problem (i.v.p.) for the following m-th order nonlinear partial

dierential equation in Rn+1

∂mt u = F (x, t, {∂αx∂
j
t }u|α|+ j ≤ m, j < m)

∂jtu(x, 0)uj(x), 0 ≤ j ≤ m+ 1 x ∈ Rn, t ∈ R,
(11.58)

has a unique solution in the space of analytic functions near zero in Rn+1, if all uj are analytic

near zero in Rn, and F is analytic near (0, 0, {∂αxuj(0)}|α|+ j ≤ m, j < m)

Specifically, for the main theorem, we use a special case of the Cauchy Kovalevsky Theorem.

This theorem is taken from Professor Himonas’ notes ”Analyticity for Second-Order Linear

Partial Differential Equations”.

Theorem 3. Let us consider an initial value, second-order, linear partial differential equation

of the form

∂2u

∂t2
= A(x, t)

∂2u

∂x2
+B(x, t)

∂2u

∂x∂t
+ C(x, t)

∂u

∂x
+D(x, t)

∂u

∂t
+ E(x, t)u+ g(x, t) (11.59)

u(x, 0) = u0(x), and
∂du

∂dt
(x, 0) = u1(x) (11.60)

where the coefficients are analytic functions around (0, 0). Then, there is a unique analytic

solution to this initial value problem near (0, 0). If the coefficients and the forcing term

are analytic in the square {(x, t) ∈ R2|x| < r, |t| < r} and the coefficients are bounded in

absolute value by M and the forcing term is bounded in absolute value by L then the region

of analyticity contains the set {(x, t) ∈ R2 : |x+ ρt| < r(1− M(ρ+1)
ρ2

)}, where ρ > 1 and large

enough so that M(ρ+1)
ρ2

) < 1.

Before proceeding, we will introduce a definition.

Definition 3. By a metric space, we mean a pair (X, d), where X is a set, and d is a non-

negative real function d(x, y) defined for all x, yεX which has the following three properties:
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(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ d(x, y) + d(y, z)

The first result is quite simple, but one of the most famous results from functional analysis.

Theorem 4. (Contraction Mapping Theorem) Let (S, d) be a complete metric space and

suppose that T : S → S is a contraction. (i.e. for some modulus β ∈ (0, 1), d(Tz1, T z2) ≤
βd(z1, z2) for all z1, z2 ∈ S.) then T has a unique fixed point ẑ; that is, there exists a unique

ẑ such that

T (ẑ) = ẑ. (11.61)

Proof: (Existence) Choose z0 ∈ S and construct a sequence {zn}∞n=1 with each element in

S such that zn+1 = Tzn so that

zn = T nz0. (11.62)

Remember that T nz = T (T n−1z) for any n = 1, 2, . . . (with T 0z = z). Since T is a contraction,

we know that

d(z2, z1) = d(Tz1, T z0) ≤ βd(z1, z0). (11.63)

This implies that (after repeated iteration of this argument)

d(zn+1, zn) ≤ βnd(z1, z0), n = 1, 2, . . . (11.64)

Therefore, for any m > n,

d(zm, zn) ≤ d(zm, zm−1) + . . .+ d(zn+2, zn+1) + d(zn+1, zn)

≤ (βm−1 + . . .+ βn+1 + βn)d(z1, z0)

≤ βn

1− β
d(z1, z0),

(11.65)

where the first inequality uses the triangle inequality(one of the properties of a metric), the

second uses (11.64) and the third uses the geometric series and the fact that 1+β+β2 + . . . >

1 + β + β2 + . . .+ βm−n−1.

(11.65) implies that for large enough n,m zm, zn will approach each other. This implies

that {zn}∞n=1 is a Cauchy sequence. By definition, since S is complete, every Cauchy sequence

in S has a limit point in S and therefore zn → ẑ ∈ S.

We will now show that this ẑ is a fixed point. For any natural number n we have (by the

triangle inequality and then the definition of a contraction)

d(T ẑ, ẑ) ≤ d(T ẑ, T nz0) + d(T nz0, ẑ)

≤ βd(ẑ, T n−1z0) + d(T nz0, ẑ).
(11.66)

But, since we know that zn → z it is clear that both terms on the right hand side go to zero

as n → ∞, which implies that d(T ẑ, ẑ) = 0, which, from the definition of a metric, implies

that T ẑ = ẑ which implies that ẑ is a fixed point.
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We now prove uniqueness. Suppose that there exist two fixed points z1, z2 ∈ S with z1 6= z2.

This implies that

0 < d(z1, z2) = d(Tz1, T z2) ≤ βd(z1, z2), (11.67)

where the equality uses the definition of a fixed point and the inequality uses the definition

of a contraction. It is clear that we arrive at a contradiction since, from the definition of a

contraction, β < 1. This implies that the fixed point is unique.

Before proceeding, we will introduce a few definitions.

Definition 4. A point x is called an interior point of a set M if x has an open neighbor-

hood(i.e. in a metric space the points y such that d(x, y) < r for some r) consisting of points

in M . A set consisting entirely of interior points is called an open set.

Alternatively,

Definition 5. A point x ∈ X is called a contact point of M ⊂ X if every neighborhood of

x contains at least one point of M . If a set M contains all of its contact points then it is

considered closed.

We now prove two applications of the contraction mappings. We will use these applications

in the upcoming economic proofs.

Theorem 5. Let (S, d) be a complete metric space and T : S → S be a contraction mapping

with T ẑ = ẑ.

(1) If S ′ is a closed subset of S, and T (S ′) ⊂ S ′, then ẑ ∈ S ′.
(2) Moreover, if T (S ′) ⊂ S ′′ ⊂ S ′, then ẑ ∈ S ′′.

Proof: Take z0 ∈ S ′, and construct the sequence {T nz0}∞n=1. Each element of this sequence

is in S ′, since T (S ′) ⊂ S ′. The contraction mapping theorem implies that T nz0 → ẑ. Using

the definition of a closed set, this implies that ẑ ∈ S ′. This completes the proof of the first

claim.

From the first part, we know that ẑ ∈ S ′. Then T (S ′) ⊂ S ′′ ⊂ S ′ implies that ẑ = T ẑ ∈
T (S ′) ⊂ S ′′, proving the second claim.

It is often difficult to determine whether a particular operator is a contraction. The

following theorem gives straightforward conditions for a contraction. This will help us in

many economic problems. From now on, we will use the notation (f +c)(x) ≡ f(x)+c where

f is a real valued function and c is a real number.

Theorem 6. (Blackwell’s Sufficient Conditions for a Contraction) Let X ⊆ Rk, and B(X)

be the space of bounded functions f : X → R defined on X equipped with the sup norm

|| · ||. Suppose that B′(X) ⊂ B(X), and let T : B′(X)→ B′(X) be an operator satisfying the

following two conditions:

(1) Monotonicity: For any f, g ∈ B′(X), f(x) ≤ g(x) for all x ∈ X implies (Tf)(x) ≤
(Tg)(x) for all x ∈ X; and



42

(2) Discounting: There exists β ∈ (0, 1) such that

[T (f + c)](x) ≤ (Tf)(x) + βc for all f ∈ B(X), c ≥ 0, and x ∈ X. (11.68)

Then T is a contraction with modulus β on B′(X).

Proof: By the definition of the sup norm ||f − g|| = maxx∈X |f(x)− g(x)|. Then for any

f, g ∈ B′(X) ⊂ B(X),

f(x) ≤ g(x) + ||f − g|| for any x ∈ X,
(Tf)(x) ≤ T [g + ||f − g||](x) for any x ∈ X,
(Tf)(x) ≤ (Tg)(x) + β||f − g|| for any x ∈ X,

(11.69)

where the second line uses monotonicity of the T operator and the third line uses the

discounting property. (Please remember that ||f − g|| is a number.) We now apply the

converse argument,

g(x) ≤ f(x) + ||g − f || for any x ∈ X,
(Tg)(x) ≤ T [f + ||g − f ||](x) for any x ∈ X,
(Tg)(x) ≤ (Tf)(x) + β||g − f || for any x ∈ X.

(11.70)

Combining (11.69) and (11.70) we see that

||Tf − Tg|| ≤ β||f − g||, (11.71)

proving that T is a contraction on B′(X).

Before stating the next theorem, we will introduce a few definitions

Definition 6. Let T be a set and X be the collection of open subsets of T . T is a topological

space if

(1) The empty set and T are contained in X.

(2) The union of any collection of sets in T is also in T . (closed under unions)

(3) The intersection of a finite number of elements of T is also in T . (closed under finite

intersection)

Definition 7. Consider a collection of open sets (
⋃
a∈A Ua) such that C = (

⋃
a∈A Ua). If

X ∈ (
⋃
a∈A Ua), then C is considered to be an open cover of X.

Definition 8. We define a set X to be compact if whenever there is a collection of open

sets (
⋃
a∈A Ua) such that X = (

⋃
a∈A Ua) there is a finite set B(i.e. B has a finite number of

elements), where B ⊂ A, such that X =
⋃
a∈B Ua.

Theorem 7. (Weierstrass’s Theorem) Consider the topological space (X, τ) and a contin-

uous function f : X → (R). If X ′ is a compact subset of (X, τ), then maxx∈X′ f(x) and

minx∈X′ f(x) exist.
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Proof: Let {Vα}α∈A′ be an open cover for f(X ′). Since f is continuous, f−1(Vα) is open

for each α ∈ A′. Since X ′ is compact, every open cover has a finite subcover. Therefore,

there exists a finite A′′ ⊂ A′ such that X ′ ⊂
⋃
α∈A′′ f

−1(Vα). By definition f(f−1(Y ′′)) ⊂ Y ′′

for any Y ′′ ⊂ Y we have

f(X ′) ⊂
⋃
α∈A′′

(Vα), (11.72)

and thus {Vα}α∈A′′ is a finite subcover of {Vα}α∈A′ , which implies that f(X ′) is compact.

But, it is well known that a compact subset of R contains a minimum and a maximum.

Before proceeding, we will state a few definitions.

Definition 9. The power set of X is the set of all subsets of X.

Definition 10. A correspondence F from X to the power set of Y is upper hemicontinu-

ous at x ∈ X if for every sequence {xn}∞n=1 → x and every sequence {yn}∞n=1 with yn ∈ F (xn)

for every n, there exists a convergent sequence {ynk} of {yn}∞n=1 such that {ynk} → y ∈ F (x).

Definition 11. F is lower hemicontinuous at x ∈ X if F (x) is nonempty-valued and for

every y ∈ F (x) and every sequence {xn}∞n=1 → x, there exists some N ∈ N and a sequence

{yn}∞n=1 with yn ∈ F (xn) for all n ≥ N , and {yn}∞n=1 → y.

The following graph should help one understand the definition of upper hemicontinuous and

lower hemicontinuous. The function is upper hemicontinuous and lower hemicontinuous at

x1, upper hemicontinuous but not lower hemicontinuous at x2 and it is lower hemicontinuous

but not upper hemicontinuous at x3.

F(x)

0 x
1

x
2

x
3

x

Definition 12. Let (X, dx) and (Y, dy) be metric spaces, and consider the correspondence

F from X to the power set of Y . Then F has a closed graph at x ∈ X if for every sequence

{xn, yn}∞n=1 → (x, y) such that yn ∈ F (xn) for each n, we also have y ∈ F (x). In addition, F

has a closed graph on the set X if it is closed at each x ∈ X.

The final mathematical result we will cite is Berge’s Maximum Theorem.
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Theorem 8. (Berge’s Maximum Theorem) Let (X, dx) and (Y, dy) be metric spaces. Consider

the maximization problem
sup
y∈Y

f(x, y)

subject to

y ∈ G(x),

(11.73)

where G is a correspondence from X to Y or a function from X to the power set of Y (not

including the null set). f : X x Y → R. Suppose that f is continuous and G is compact-valued

and continuous at x. Then

(1) M(x) = maxy∈Y {f(x, y) : y ∈ G(x)} exists and is continuous at x, and

(2) π(x) = argmaxy∈Y {f(x, y) : y ∈ G(x)} is nonempty-valued, compact-valued, upper

hemicontinuous, and has a closed graph at x.

Proof: 7 tells us that a maximum exists and that π(x) is nonempty. (f is continuous on

a compact valued set.) Now, let us consider a sequence {yn}∞n=1 → y such that yn ∈ π(x)

for each n. Since G(x) is closed (remember that in a metric space compact implies closed)

y ∈ G(x). Moreover, by definition, f(x, yn) ∈ M(x) for each n. Since f is continuous, it

follows that f(x, y) = M(x). Thus, y ∈ π(x) and, thus, π(x) is closed. As a closed subset

of a compact set, it is also compact. Next, we take {xn}∞n=1 → x, {yn}∞n=1, with yn ∈ G(xn)

for all n, with a convergent subsequence {ynk} → y. Since G(x) is upper hemicontinuous

y ∈ G(x) (continuous clearly implies upper hemicontinuous). Take any z ∈ G(x). Since

G(x) is continuous and thus lower hemicontinuous, there exists {znk} → z with znk ∈ G(xnk)

for all nk. Again, ynk ∈ π(xnk), M(xnk) = f(xnk , ynk) ≥ f(xnk , znk). Moreover, since f is

continuous M(x) = f(x, y) ≥ f(x, z). This holds for all z ∈ G(x), y ∈ π(x), and therefore

π(x) is upper hemicontinuous. Since π(x) is upper hemicontinuous it follows immediately

that at x ∈ X every sequence {xn, yn}∞n=1 → (x, y) and yn ∈ F (xn) for each n. It follows

that y ∈ F (x) because F has a closed set on the graph on the set X.

11.1. Brownian Motion. In the following section, we will be following Real Analysis by

Folland, and Probability Theory. Both are graduate math textbooks.

The notation dω is used throughout this document. This differential refers to a Brownian

motion. In the upcoming section, we will attempt to define this Brownian motion in order

to make sense of what we were working with. We shall consider this Brownian motion in

one-dimension. We shall consider the position of a particle undergoing Brownian motion

in this one-dimension at a time greater than zero to be a random variable. But, what is a

random variable? In order to define a random variable, we must first define a σ-algebra, and

a measurable function:

Definition 13. (σ-algebra) Given a set S, a σ-algebra F is a non-empty set of subsets of S

that satisfies:

(1) if AiεF for i ≥ 1, then
⋃∞
i=1 AiεF

(2) if AεF , then the complement of A is in F as well
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Definition 14. (Measurable Function) A function from (ω, F ) to (δ, A), where ω and δ are

sets and A and F are sigma algebras, is measurable if the pre-image of any set in A is in

F (i.e. if the inverse function applied to any set in A is in F ).

Definition 15. (Random Variable) A random variable is a real-valued measurable function

from (ω, F ) to (δ, R), where ω and δ are sets, and A and F are sigma algebras.

Our Brownian motion random variable must satisfy the following conditions:

(1) We will assume that Xt=0 = 0. This is just a matter of normalization. (e.g. if X0 = α,

we could look at X0 − α = 0 for our Brownian motion.

(2) We shall assume that the motion of the particle after some time t should only depend

on Xt. (i.e. There should be no lingering affects). Therefore, we make the assumption

that if 0 ≤ t0 < t1 < . . . < tn, then the random variables Xtj −Xtj−1
for (1 ≤ j ≤ n)

are independent.

(3) There is a constant C > 0 such that for 0 < s < t,Xt −Xs has a normal distribution

with mean zero (does not have a tendency to go in either direction) and variance

C(t-s). (This will be explained.)

The variance of a random variable X is E[(X−E[X])2], or essentially the expected valued

of the squared differences of the mean. Expectations are essentially integration functions over

every possible realization of a random variable. Therefore, it follows immediately that there

is a linearity of expectations(by the linearity of integrals). This implies that the variance

is equal to E[X2] − 2E[X]E[X] + E[X]E[X]. Therefore, it follows immediately that the

variance of a random variable X is E[X2]− (E[X])2.

Where did this last condition come from? First, we assume that the motion of Xt is

homogeneous in time. (i.e. the distribution of Xt − Xs should only be dependent on the

length of t − s, not on what s and t are specifically.) Let us divide the interval [s,t] into

n equal subintervals [t0, t1], . . . , [tn−1, tn], where t0 = s, tn = t. We can therefore write

Xt − Xs = Σn
j=1(Xtj − Xtj−1

). Then, it follows that Xt − Xs is a sum of n independent

identically distributed random variables (This is clear from the second condition above, and

our homogeneous in time assumption). Since n is arbitrary, the central limit theorem (to be

stated and proved rigorously below) tells us that the distribution of Xt −Xs is normal.

11.2. Central Limit Theorem.

Definition 16. The Central Limit Theorem: Let X1, X2, . . . be independent identically

distributed with an expected value of µ, and a variance of σ2. If Sn = X1 + X2 + . . . + Xn,

then Sn−nµ
σn

1
2

converges (as n→∞) to the normal distribution.

We will attempt to prove this result. First, we will define the characteristic function,

which, after some massaging, will give us all of the moments of the distribution. The char-

acteristic function can be defined as E[eitX ], where X is the random variable. We prove that

the characteristic functions of Sn−nµ
σn

1
2

converges to the characteristic function of the normal

distribution e
−t2
2 . Finally, we prove why this implies a convergence of the distributions.

It suffices to prove this result when µ = 0. (Note: We can just consider X ′i = Xi − µ) Let

us look at the characteristic function ax(t) = E[eitX ]. We know that

ax(0) = E[ei(0)X ] = 1 (11.1)
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Due to the assumption that µ = 0

a′x(0) = E[iXei(0)X ] = 0, (11.2)

and

a′′x(0) = E[i2X2ei(0)X ] = −σ2 (11.3)

Plugging (11.1), (11.2), (11.3) into our Taylor expansion for ax(t), we see that:

aX1(t) = E[eitX1 ] = 1− σ2t2

2
+ o(t2) (11.4)

Independence implies that E[XY ] = E[X]E[Y ]. This implies that (essentially just look at

what happens to the Taylor expansion if X is replaced by X1/(σ
√

(n)):

E[eitSn/σn
1
2 ] = E[eit(X1+X2+...+Xn)/σn

1
2 = (1− t2

2n
+ o(

1

n
))n (11.5)

We shall now try to prove that if cn → c , where c is an element of the complex numbers,

then (1 + cn
n

)n → ec. To do this, we shall first prove two lemmas.

Theorem 9. Lemma Let z1, . . . , zn and w1, . . . , wn be complex numbers of modulus less than

or equal to one. Then |
∏n

m=1 zm −
∏n

m=1wm |≤
∑n

m=1 | (zm − wm) |

We attempt a proof by induction. This is clearly true for n = 1. Now assume that this is

true for n = k. We will prove that this is true for n = k + 1

|
k+1∏
m=1

zm −
k+1∏
m=1

wm |=| zk+1

k∏
m=1

zm − zk+1

k∏
m=1

wm + zk+1

k∏
m=1

wm − wk+1

k∏
m=1

wm | (11.6)

But, from the triangle inequality, this is less than

| zk+1

k∏
m=1

zm − zk+1

k∏
m=1

wm | + | zk+1

k∏
m=1

wm − wk+1

k∏
m=1

wm | (11.7)

Factoring out, (11.7), this is clearly equivalent to:

| zk+1 || (
k∏

m=1

zm −
k∏

m=1

wm) | + | zk+1

k∏
m=1

wm − wk+1

k∏
m=1

wm | (11.8)

But, each zi, wi has modulus less than one. Factoring out, this implies that (11.7) is less than

(remember that the multiplication of numbers less than one is less than one):

|
k∏

m=1

zm −
k∏

m=1

wm | + | zk+1 − wk+1 | (11.9)

But, equipped with our assumption, it follows that:

|
k+1∏
m=1

zm −
k+1∏
m=1

wm |≤
k+1∑
m=1

| (zm − wm) | (11.10)

And, therefore, we have proved the lemma by induction.

Additionally, we require the assistance of another lemmma in order to prove this theorem:

Theorem 10. Lemma If b, a complex number, with | b |< 1 then | e−b − (1− b) |≤| b |2
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To prove this we first provide a Taylor expansion of e−b − (1− b)

e−b − (1− b) =
b2

2
− b3

3!
+
b4

4!
− . . . (11.11)

This immediately implies that

| e−b − (1− b) |≤ | b |
2

(1 +
1

2
+

1

22
+ . . .) (11.12)

But, we quickly recognize (1+ 1
2

+ 1
22 + . . .) as a geometric series equal to 2(factor of 1

2
), which

implies that:

| e−b − (1− b) |≤| b |2 (11.13)

Let us go back to the first lemma. Let zm = (1 − cn
n

) and wm = e
−cn
n . Then, with the

assistance of the first lemma we know that:

| (1− cn
n

)n − e−cn |≤
n∑

m=1

| (1− cm
m

)− e
−cm
m | (11.14)

Now, employing the second lemma, we see immediately that (since
∑n

m=1 | (1 − cm
m

) −
e
−cm
m |=

∑n
m=1 | (e

−cm
m − (1− cm

m
)) |):

| (1− cn
n

)n − e−cn |≤ n | cn
n
|2 (11.15)

As n → ∞, it is clear that this goes to zero, and therefore, we have proved the theorem.

We know that the characteristic functions converge to the normal distribution characteristic

function, but how does this imply that the distributions converge to the normal distribution?

In order to do this, we start with a definition of tight and then state, prove, and show the

implications of such a theorem:

Definition 17. If a sequence of distribution is tight, it means that for any ε > 0, there

exists an M such that limn→∞ sup(1− Fn(M) + Fn(−M)) ≤ ε where the Fn are cumulative

probability distribution.

Theorem 11. (Theorem) Let µn, 1 ≤ n ≤ ∞, be probability measures with characteristic

functions an.

(1) If µn → µ∞, then an(t)→ a∞(t) for all t

(2) If an(t) converges pointwise to a limit a that is continuous at 0, then the associated

sequence of distribution µn is tight and converges to a limit µ with characteristic

function a

a = E[eitX ] This expectation is based on the probability measures, which converge (by

assumption), and eitX is bounded and continuous, therefore the characteristic functions con-

verge.

The second part of the proof is substantially longer. A distribution is defined by its density

function f . The cumulative probability distribution function F (x) tells us the probability

that a random variable is less than x. Written explicitly:

F (x) =

∫ x

−∞
f(y)dy (11.16)
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Now that we have an understanding of what tight is, we should fully understand the theorem,

and understand why a proof of this theorem would imply a convergence of the distributions,

and, therefore, a proof of the central limit theorem. We start by noting that:∫ u

−u
(1− eitX)dt = 2u−

∫ u

−u
(cos(tx) + isin(tx))dt (11.17)

We know that [−u, u] is a symmetric interval, and that sin(x) is an odd function. Therefore,

we see immediately that: ∫ u

−u
(1− eitX)dt = 2u− 2sin(ux)

x
(11.18)

We now divide both sides by u, and integrate with respect to µn(dx)(We remember that∫∞
−∞ µn(dx) = 1, and that an(t) =

∫∞
−∞ e

itXµ(dx)∫ u
−u(1− an(t))dt

u
= 2(

∫ ∞
−∞

(1− sin(ux)

ux
)µn(dx)) (11.19)

Let us now look at the Taylor expansion for sin(x)
x

sin(x)

x
= 1− x2

3!
+
x4

5!
− . . . (11.20)

It is immediately obvious that when x < 1, sin(x)
x

< 1. Additionally, we know that sin(x) ≤ 1

so sin(x)
x
≤ 1 for x ≥ 1. This implies that:

2(

∫ ∞
−∞

(1− sin(ux)

ux
)µn(dx)) ≥ 2(

∫
|x|≥ 2

u

(1− 1

| ux |
)µn(dx)) ≥ µn(x :| x |> 2

u
) (11.21)

Now let us label a∞ as the characteristic function of µ∞ We know that a∞(t)→ 1 as t→ 0,

Therefore we can easily see (apply a quick L’Hopital rule) that:∫ u
−u(1− a∞)dt

u
→ 0 as t→ 0 (11.22)

The Dominated Convergence Theorem(which we will prove below) tells us that:

Theorem 12. (Dominated Convergence Theorem) If fn → f almost everywhere, | fn |≤ g

for all n, and g is integrable, then
∫
fndµ→

∫
fdµ

With the Dominated Convergence Theorem, the fact that an(t) → a∞(t) for each t, and

the fact that a∞ is integrable, we know that there exists some N , such that for n ≥ N :

3ε ≥
∫ u
−u(1− an(t))

u
dt ≥ µnx :| x |> 2

u
(11.23)

The second inequality comes from (11.19) and (11.21). This immediately implies that the

sequence is tight. I am a little unsure about the remainder of the proof, but my understanding

is this: The fact that the sequence is tight implies that it converges to some distribution (say

µ), and from the first part of the proof we know that this distribution is the one that has

characteristic function a∞. Since, any subsequence converges to this limit we know that the

entire sequence converges to µ.

In the interest of completeness, we must now prove the Dominated Convergence Theorem.

To prove this, we first prove the Monotone Convergence Theorem, and Fatou’s lemma.
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Theorem 13. (Monotone Convergence Theorem) If fn is a sequence in L+ such that fj ≤
fj+1 for all j, and f = limn→∞ fn then

∫
f = limn→∞

∫
fn

Before we proceed to a proof, recall that an Lp space can be defined as(where X is a set

M is a σ-algebra and µ is the probability measure:

Lp(X,M, µ) = f : X → C : f is measurable and || f ||<∞ (11.24)

where || f || can be defined as:

|| f ||= [

∫
| f |p dµ]

1
p (11.25)

Let us also quickly define an indicator function. An indicator function on a set C with

E ∈ C, where xεC will be denoted fE(x), and will take the value 1 if x is an element of E

and will take the value zero if x is not an element of E. A simple function is simply(no pun

intended) a linear combination of indicator functions.

Proof:
∫
fn is an increasing sequence of numbers, so the limit exists(

∫
f) and

∫
fn ≤

∫
f

for all n, so limn→∞
∫
fn ≤

∫
f . Now let α be a number between zero and one., and let φ be

a simple function with 0 ≤ φ ≤ f . Additionally, let En = x : fn(x) ≥ αφ(x). It is clear that

En is an increasing sequence of measurable sets whose union is the entire set (say X). This

is clear because the fns have a limit of f . From this definition, we can immediately see that∫
fn ≥

∫
En
fn ≥ α

∫
En
φ. And since En ∈ En+1, it follows that the measure of the union of

all the Ens is the same as the measure of the limn→∞En. This implies that:

lim

∫
En

φ =

∫
X

φ (11.26)

This immediately implies that:

lim

∫
fn ≥ α

∫
φ (11.27)

This is true for all α, and, hence, true for α = 1. And, taking the supremum of all of the

simple φ ≤ f , we see that lim
∫
fn ≥

∫
f , which immediately implies that lim

∫
fn =

∫
f .

Theorem 14. (Fatou) If fn is a sequence of nonnegative measurable functions on a measure

space (X,M, µ) then ∫
lim inf fn ≤ lim inf

∫
fn (11.28)

Now we shall try to prove this. We know that:

lim inf fn = lim
k→∞

(infn≥kfn) (11.29)

Now, it is clear that the infirmas of these fns are increasing as the k is increasing. This is due

to the fact that the groups are getting smaller, and thus potentially smaller values(infirmas)

are being thrown out of the group. Therefore, since this sequence (infn≥kfn)∞k=1 is monotone

increasing, by the Monotone Convergence Theorem we have:∫
lim inf fn =

∫
lim
k→∞

infn≥kfn = lim
k→∞

∫
infn≥kfn (11.30)
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From the definition of infirma, we know for any n ≥ k:∫
inf n≥kfn ≤

∫
fn (11.31)

Therefore, we have: ∫
inf n≥kfn ≤ inf n≥k

∫
fn (11.32)

Therefore, it follows from the Monotone Convergence Theorem that:∫
lim inf fn ≤ lim inf

∫
fn (11.33)

and we have proved Fatou’s theorem.

Theorem 15. (Dominated Convergence Theorem) Let fn : X → C (X,C are non-empty

sets) be a sequence in L1 such that:

a. fn → f almost everywhere

b.| fn |≤ g, n = 1, 2, ..., for for some g ∈ L1 Then

lim
n→∞

∫
fn =

∫
lim
n→∞

fn =

∫
f (11.34)

Proof: We know that f is in L1 because g is in L1, and | fn |≤ g. Now by taking real and

imaginary parts, we cam assume that the fns are real-valued. Thus,

| fn |≤ g ⇐⇒ −g ≤ fn ≤ g ⇐⇒ g + fn ≥ 0and g − fn ≥ 0 (11.35)

We now apply Fatou’s lemma to both g + fn and g − fn and we obtain:∫
(g + f) =

∫
lim inf(g + fn) ≤ lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn∫

(g − f) =

∫
lim inf(g − fn) ≤ lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn

(11.36)

The initial equalities follow from the fact that fn → f almost everywhere. The inequalities

follow from Fatou’s lemma. The second equalities follow from the fact that g is independent

of n, and in order to achieve an infirma we must add the smallest value and subtract the

largest one.

Anyways, these two inequalities imply that(by subtracting
∫
g, and dividing by negative

one in the second inequality):

lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn (11.37)

And, this clearly implies that:

lim
n→∞

∫
fn =

∫
lim
n→∞

fn =

∫
f (11.38)

Thus we have rigorously proved the Central Limit Theorem.

We would now like to explain the variance of Xt−Xs. The v represent the variance function

v(Xt −Xs) = v(
n∑
1

(Xtj −Xtj−1
)) (11.39)
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v(Xt −Xs) = v(
n∑
1

(Xtj −Xtj−1
)) (11.40)

By the linearity of expectations we see that: (which is essentially the same thing as the rule

in calculus that
∫

(a+ b)dx =
∫
adx+

∫
bdx, when the integrals are finite)

v(
n∑
1

(Xtj −Xtj−1
)) =

n∑
j=1

v(Xtj −Xtj−1
) (11.41)

But the Xtj −Xtj−1
are identically distributed which implies that:

n∑
j=1

v(Xtj −Xtj−1
) = nv(Xt1 −Xt0) (11.42)

It immediately follows that if t − s = b(t′ − s′), and b is rational(remember it needs to be

broken down into intervals), then:

v(Xt −Xs) = bv(Xt′ −Xs′) (11.43)

And, this, of course, implies that the variance of Xt −Xs is proportional to t− s
Additionally, we have successfully defined an abstract Brownian motion process. We will

now take a break from Brownian motion, and set up some important economics concepts

which will be important in the formation of my problem.
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12. Economic Appendix

12.1. Characterizing the Solution to the Utility-Maximization Problem. For this

description we follow Acemoglu’s text: Introduction to Modern Economic Growth

We begin with the problem:

V (x(0)) = sup
{x(t+1)}∞t=0

∞∑
t=0

βtU(x(t), x(t+ 1))

subject to

x(t+ 1) ∈ G(x(t)), for all t ≥ 0

x(0) given

where β ∈ [0, 1) and x ∈ X ⊂ Rk.

(12.1)

Additionally, we let G be a correspondence from X to X. Please recall that the difference

between a correspondence and a function is that a correspondence maps elements to sets

while a function maps elements to elements. U is a function from X x X → R. U is an

ordinal function that measures the utility, or happiness, that a representative feels. β is a

discount factor that captures the fact that people do not care as much about future periods

as the current period. We consider x(t) to be a state variable, or something that describes the

state of the world, and x(t + 1) to be a control variable, or something that a representative

chooses based on the state of the world.(i.e. something he or she controls). An example of

a state variable is current wealth, while an example of a control variable is how much an

investor chooses to invest in for the next period. G is a correspondence that tells us what

choice variables are available given a certain state variable. This is clearly an optimization

problem. We want to maximize the utility over all time periods, which is represented by the

infinite sum. We are trying to find the optimal sequence, sup {x(t+ 1)}∞t=0 ∈ X∞ ∈ `∞, in

the set X∞ which is in the set of bounded sequences, `∞. To ease notation in the future, we

define

φ(x(t)) = {{x(s)}∞s=t : x(s+ 1) ∈ G(x(s)) for s = t, t+ 1, . . .}. (12.2)

We use the supremum notation in place of the maximum notation because there is no guar-

antee that we will find a feasible sequence that maximizes the sum. (i.e. we may just find

feasible sequences that get arbitrarily close to an optimal sequence). This problem is very

difficult to solve. We will show that given certain assumptions this optimization is the same

as

V (x) = sup
y∈G(x)

{U(x, y) + βV (y)}. (12.3)

It is clear that in this example we try to find a policy function, or a function that relates

the state variable with the choice variable. That is, a policy function π will be such that

y = π(x),

To prove this equivalence and additional theorems we first state five assumptions.
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(1) G(x) is nonempty for all x ∈ X; and for all x(0) ∈ X and x∈ φ(x(0)), limn→∞
∑n

t=0 β
tU(x(t), x(t+

1)) exists and is finite. Please note that bold font will be used to indicate vectors in

this document.

(2) X is a compact subset of Rk, G is nonempty-valued, compact-valued, and continuous.

Moreover, U : XG → R is continuous, where XG = {(x, y) ∈ X x X : y ∈ G(x)}.
(3) U is concave and G is convex. Additionally, if x 6= x1,

U(αx+ (1− α)x1, αy + (1− α)y1) > αU(x, y) + (1− α)U(x1, y1). (12.4)

(4) For each y ∈ X, U(., y) is strictly increasing in each of its first k arguments, and G is

monotone in the sense that x ≤ x1 implies that G(x) ⊂ G(x1).

(5) U is continuously differentiable on the interior of its domain XG.

Let us first define Ū

Ū(x) =
∞∑
t=0

βtU(x(t), x(t+ 1)), (12.5)

where x is any feasible vector in the constraint set, φ(x(0))

Lemma 5. We suppose that the first assumption holds. Then, for any x(0) ∈ X and any x

in φ(x(0)),

Ū(x) = U(x(0), x(1)) + βŪ(x′), (12.6)

where x′ = (x(1), x(2), . . .).

Proof : Since Ū(x) exists and is finite (the first assumption)

Ū(x) =
∞∑
t=0

βtU(x(t), x(t+ 1))

= U(x(0), x(1)) + β
∞∑
s=0

βsU(x(s+ 1), x(s+ 2))

= U(x(0), x(1)) + βŪ(x′).

(12.7)

Remark: It is important to note that this proof is substantially different than the one we

will be considering later because we are dealing with feasible sequences and, thus, are not

using sup notation.

Theorem 16. Suppose that the first assumption holds. Then for any x ∈ X, V (x) is a

solution to (12.1) if and only if it is a solution to (12.3).

Proof: (12.1)=⇒ (12.3) We begin by noting that if β = 0 the result is trivial. Therefore,

it suffices to assume β > 0. Let x(0) ∈ X and x(1) ∈ G(x(0)). Let us first assume that V

is a solution to (12.1). We shall try to prove that this implies (12.3) Now, by the definition

of supremum, which means least upper bound, we know that for any ε > 0 there exists an

x′ε∈ φ(x(1)) such that Ū(x′ε) ≥ V (x(1))− ε. Additionally, for xε= (x(0), x′ε, . . .) ∈ φ(x(0)) we

know from the definition of a supremum that Ū(xε) ≤ V (x(0)). By lemma 5, we know that

V (x(0)) ≥ U(x(0), x(1)) + βŪ(x′ε)

≥ U(x(0), x(1)) + βV (x(1))− βε.
(12.8)
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But, ε is arbitrary which implies that

V (x(0)) ≥ U(x(0), x(1)) + βV (x(1)). (12.9)

By the definition of supremum and the fact that we assumed V is a solution to (12.1),

there exists a feasible infinite sequence, for any ε > 0, x′ε= (x(0), x′ε(1), x′ε(2), . . .) ∈ φ(x(0))

such that:

Ū(x′ε) ≥ V (x(0))− ε. (12.10)

Define x
′′
ε = (x′ε(1), x′ε(2), . . .) ∈ φ(x′ε(1)) By lemma 5, we know that

V (x(0))− ε ≤ U(x(0), x′ε(1)) + βŪ(x′′ε )

≤ U(x(0), x′ε(1)) + βV (x′ε(1)).
(12.11)

This is true for any ε > 0. Therefore, (12.9), (12.11) and the definition of supremum

implies that V is a solution to (12.3).

(12.3)=⇒ (12.1) We now go in the reverse direction. We assume that V is a solution to

(12.3). By the definition of supremum and under the assumption that x(1) ∈ G(x(0)),

V (x(0)) ≥ U(x(0), x(1)) + βV (x(1)). (12.12)

By recursively substituting for V (x(1)), V (x(2)), . . . we have that

V (x(0)) ≥
n∑
t=0

U(x(t), x(t+ 1)) + βn+1V (x(n+ 1)). (12.13)

Additionally, if we define x= (x(0), x(1), . . .), we have

Ū(x) = lim
n→∞

n∑
t=0

βtU(x(t), x(t+ 1)). (12.14)

Additionally, by the first assumption we know that

lim
n→∞

βn+1V (x(n+ 1)) = lim
n→∞

[βn+1 lim
m→∞

m∑
t=n

βtU(x(t), x(t+ 1))] = 0. (12.15)

This implies that:

V (x(0)) ≥ Ū(x). (12.16)

for any x∈ φ(x(0)).

From the definition of supremum and the fact that V is a solution to (12.3) we know that

for ε > 0 and for any ε′ = ε(1− β) > 0, there exists a xε ∈ G(x(0)) such that

V (x(0)) ≤ U(x(0), xε(1)) + βV (xε(1)) + ε′. (12.17)
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We now choose xε(t) ∈ G(x(t− 1)) with xε(0) = x(0). We define xε= (x(0), xε(1), xε(2), . . .).

By substituting recursively, we again see that

V (x(0)) ≤
n∑
t=0

U(xε(t), xε(t+ 1)) + βn+1V (x(n+ 1)) + ε′(1 + β + . . .+ βn)

≤ Ū(xε) + ε.

(12.18)

where the second inequality follows from the geometric series and because the limn→∞
∑n

t=0 U(xε(t), xε(t+

1)) = Ū(xε) and limn→∞ β
n+1V (x(n + 1)) = 0. This shows that if V is a solution to (12.3)

then it is a solution to (12.1). Because we have gone in both directions, we have shown the

equivalence of the two problems.

Therefore, the proof is complete.

It is far more interesting to discuss the optimal paths to (12.1) and (12.3) than the optimal

solutions to (12.1) and (12.3). Therefore, we prove the following theorem.

Theorem 17. Given a feasible solution, x̂ ∈ φ(x(0)), it is an optimal plan for (12.1) if and

only if it is an optimal solution for (12.3).

Proof:(12.1)=⇒ (12.3) Let us assume that x̂ is a solution to (12.1). We define x̂t =

(x̂(t), x̂(t+ 1), . . .). We want to show that for any t ≥ 0

Ū(x̂t) = V (x̂(t)) (12.19)

t = 0 is true for our assumption that x̂ is a solution to (12.1). As is standard in induction

proofs, we assume that (12.19) for t = k and prove that it is true for t = k+ 1. From lemma

5 we know that

V (x̂(k)) = Ū(x̂k)

= U(x̂(k), x̂(k + 1)) + βŪ(x̂k+1).
(12.20)

We define xk+1 = (x̂(k+ 1), x(k+ 2), . . .) ∈ φ(x̂(k+ 1)). By definition, xk = (x̂(k), xk+1) ∈
φ(x̂(k)). By the definition of supremum, we know that

V (x̂(k)) ≥ Ū(xk)

= U(x̂(k), x̂(k + 1)) + βŪ(xk+1).
(12.21)

Comparing (12.20) with (12.21), we immediately see that

Ū(x̂k+1) ≥ Ū(xk+1) (12.22)

for all xk+1 ∈ φ(x̂k+1). Therefore, x̂k+1 attains the supremum starting from x̂(k + 1) and we

have proved (12.19) by induction.

Using lemma 5, (12.19) implies that

V (x̂(t)) = Ū(x̂t)

= U(x̂(t), x̂(t+ 1)) + βŪ(x̂t+1)

= U(x̂(t), x̂(t+ 1)) + βV (x̂(t+ 1)).

(12.23)
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which implies that x̂ is a solution to (12.3).

(12.3)=⇒ (12.1) We now go in the other direction. We assume that x̂ ∈ φ(x(0)) is a

solution to (12.3). Substituting for V (x̂(1)), V (x̂(2)), . . . , V (x̂(n)) yields

V (x(0)) =
n∑
t=0

βtU(x̂, x̂(t+ 1)) + βn+1V (x̂(n+ 1)). (12.24)

Additionally, by the first assumption we know that

lim
n→∞

βn+1V (x(n+ 1)) = lim
n→∞

[βn+1 lim
m→∞

m∑
t=n

βtU(x(t), x(t+ 1))] = 0. (12.25)

which implies that

V (x(0)) = lim
n→∞

n∑
t=0

βtU(x̂(t), x̂(t+ 1))

= Ū(x̂).

(12.26)

which implies that x̂ solves (12.1) which completes the proof.

We now want to show that this value function V is unique and that there exists an optimal

plan.

Theorem 18. (Existence of Solutions) We now assume that the first and the second assump-

tions hold. Then there exists a unique continuous bounded function V : X → R that satisfies

(12.3). Furthermore, for any x(0) ∈ X an optimal plan x̂ ∈ φ(x(0)) exists.

Proof: We define C(X) to be the set of continuous functions defined on X. They have

the sup norm, ||f(x)|| = supx∈X |f(x)|. By assumption, we know that X is compact, and

therefore all functions in C(X) are bounded. For V ∈ C(X), we define the operator T as

TV (x) = max
y∈G(x)

{U(x, y) + βV (y)}. (12.27)

A fixed point of this operator will clearly be a solution to (12.3). First, we will prove

the existence of a fixed point. The right-hand side of (12.27) requires a maximization of a

continuous function(the sum of two continuous functions is continuous) over a compact set,

which by Weierstrass’s Theorem (7) implies that there exists a solution. Thus, our operator

T is well defined. Now, because G(x) is a nonempty-valued continuous correspondence by our

first assumption and U(x, y) and V (y) are continuous by assumption, Theorem (8) implies

that

max
y∈G(x)

{U(x, y) + βV (y)} (12.28)

is continuous in x. Therefore, TV (x) ∈ C(X), and T : C(X)→ C(X).
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We will now try to prove that T is a contraction using Blackwell’s sufficient conditions for

a contraction. Theorem (6) We first show monotonicity. Let us assume that V1(x) ≤ V2(x)

for any x ∈ X.

TV1(x) = max
y∈G(x)

{U(x, y) + βV1(y)}

≤ max
y∈G(x)

{U(x, y) + βV2(y)}

= TV2(x),

(12.29)

where the second line follows from the assumption. We shall now prove discounting. Let

f ∈ C(X)

[T (f + c)](x) = max
y∈G(x)

{U(x, y) + β(f(y) + c)}

= max
y∈G(x)

{U(x, y) + βf(y)}+ βc

= Tf(x) + βc.

(12.30)

The second line follows from the fact that maxx∈X(f(x) + c) = maxx∈X(f(x)) + c where c is

a constant.

Therefore, we know that T is a contraction. This implies that there exists a unique fixed

point V ∈ C(X), that is the solution to (12.3). By Theorem (16), this implies that it is also

a solution to (12.1). We shall now show the existence of an optimal plan. By Weierstrass’s

Theorem, we know that since U and V are continuous and G(x) is compact-valued that there

exists y ∈ G(x) that achieves the maximum. We can define the set of maximizers for (12.3)

to be

π(x) = arg max
y∈G(x)

{U(x, y) + βV (y)}. (12.31)

If we define x̂ = (x(0), x̂(1), x̂(2), . . .), with x̂(t + 1) ∈ π(x̂(t)) for all t ≥ 0. Then from

Theorem 17, we know that this plan is also an optimal plan for (12.1).

Next, we want to show when this optimal plan is unique. To do this we first must show

that the value function is strictly concave.

Theorem 19. (Concavity of the Value Function) Suppose that our first three assumptions

hold. Then the unique V : X → R that solves (12.3) is strictly concave.

Proof: Let C ′(X) ⊂ C(X) be the set of bounded, continuous, concave functions on X

and let C ′′(X) ⊂ C ′(X) be the set of strictly concave functions. It is clear that C ′(X) is a

closed subset of the complete metric space C(X), but C ′′(X) is not a closed subset (consider

a set of strictly concave functions approaching a linear functional). Now, let T be defined as

follows

TV (x) = max
y∈G(x)

{U(x, y) + βV (y)}. (12.32)
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As was proven in the previous theorem, T is a contraction and therefore has a unique fixed

point in C(X). By Theorem 5, we know that proving that T (C ′(X)) ⊂ C ′′(X) ⊂ C ′(X)

would be sufficient to establish that the unique fixed point is in C ′′(X), which would, of

course, imply that the value function is strictly concave. Let V ∈ C ′(X) and for x1 6= x2 and

α ∈ (0, 1), let

xα ≡ αx1 + (1− α)x2. (12.33)

Let y1 ∈ G(x1) and y2 ∈ G(x2) be solutions to problem (12.3) with the state vectors x1 and

x2, respectively. Then

TV (x1) = U(x1, y1) + βV (y1), and

TV (x2) = U(x2, y2) + βV (y2).
(12.34)

The third assumption tells us that G(x) is convex. Therefore, yα ≡ αy1 + (1−α)y2 ∈ G(xα),

so that

TV (xα) ≥ U(xα, yα) + βV (yα)

> α[U(x1, y1) + βV (y1)] + (1− α)[U(x2, y2) + βV (y2)]

= αTV (x1) + (1− α)TV (x2),

(12.35)

where the first line follows from the fact that yα ∈ G(xα) is not necessarily the maximizer

starting with the state xα. The second line uses the third assumption (the strict concavity of

U and the concavity of V ) and the third line uses the definition from (12.34). This implies

that for any V ∈ C(X ′), TV is strictly concave, and thus T [C ′(X)] ⊂ C ′′(X). Thus, we

know that the unique fixed point, say V̂ , is in C ′′(X), and, thus, is strictly concave.

We now state and prove the important result that the optimal plan is unique.

Theorem 20. Suppose the first three assumptions hold. Then there exists a unique optimal

plan x̂ ∈ φ(x(0)) for any x(0) ∈ X. Moreover, the optimal plan can be expressed as x̂(t+1) =

π(x̂(t)), where π : X → X is a continuous policy function.

Proof: The third assumption implies that U(x, y) is concave in y, and thus we know from

Theorem 19 that V (y) is strictly concave in y. Therefore, the right-hand side of (12.3) is

strictly concave. Since G(x) is convex for each x ∈ X(the third assumption), there exists a

unique maximizer y ∈ G(x) for each x ∈ X. Therefore, the policy correspondence, π(x), is a

function (it is single valued). Since it is hemicontinuous this immediately implies that it is

continuous.

Before stating the next theorem it is important to review the definition of a subgradient.

First, please recall that a function f : C → R is convex if for any two points x, y in the

convex set C and for any t ∈ [0, 1], we have that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (12.36)

Please recall that a set is convex if for any two points x, y in a convex set, the line joining

the two points is composed of points in that convex set.
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It may be helpful to first describe a subderivative. This is essentially the case of a subgra-

dient in R. It may be easier to understand. We will later make an extension. A subderivative

of a convex function f : U → R at x0, where x0 is a point in the open interval U , is a real

number a such that

f(x)− f(x0) ≥ a(x− x0). (12.37)

Since f is a convex function, it is clear that a ∈ [b, c] where b, c are defined as follows

b = lim
x→x−0

f(x)− f(x0)

x− x0

, (12.38)

c = lim
x→x+

0

f(x)− f(x0)

x− x0

. (12.39)

From this it is easier to see the definition of a subgradient. A vector x̂ is said to be a

subgradient of a convex function f at a point x if

f(z) ≥ f(x)+ < x̂, z − x > (12.40)

for any z. (when f is a function on the real line) There is a geometric meaning to this as

well. Consider the affine transformation(a dilation plus translation)

h(z) = f(x)+ < x̂, z − x > (12.41)

This is a hyperplane to the convex set epi f at the point x, f(x).

The next theorem gives us an important property of the value function. This will allow for

important qualitative analysis.

Theorem 21. (Monotonicity of the Value Function) Suppose that the first, second and fourth

assumptions hold. Let V : X → R be the unique solution to (12.3). Then V is strictly

increasing in its arguments.

Proof. Let C ′(X) ⊂ C(X) be the set of bounded, continuous, nondecreasing functions

on X, and let C ′′(X) ⊂ C(X) be the set of strictly increasing functions. C ′(X) is clearly a

closed subset of the complete metric space, but, alternatively, C ′′(X) is clearly not closed.

We again define T by

TV (x) = max
y∈G(x)

{U(x, y) + βV (y)}. (12.42)

We have already proved that this is a contraction. By Theorem 5, we know that proving that

T (C ′(X)) ⊂ C ′′(X) ⊂ C ′(X) would be sufficient to establish that the unique fixed point is in

C ′′(X), which would, of course, imply that the value function is a strictly increasing function.

Let V ∈ C ′(X) be any nondecreasing function. In view of the fourth assumption and the

fact that V is non-decreasing, maxy∈G(x){U(x, y)+βV (y)} is strictly increasing which implies

that TV ∈ C ′′(X).

The next proof is very important because it will enable us to solve for the value function

and the optimal plan.
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Theorem 22. (Differentiability of the Value Function) Suppose that the first, second, and

fifth assumptions hold. Let π(·) be the policy function defined in Theorem 20 and assume that

x ∈ Int X and π(x) ∈ Int G(x). Then V (·) is differentiable at x, with gradient given by

DV (x) = DxU(x, π(x)). (12.43)

From Theorem 20 we know that the policy correspondence π(x) is a continuous function.

By hypothesis π(x) ∈ G(x) and from the second assumption G(x) is continuous. Thus, there

exists a neighborhood N(x) of x such that π(x) ∈ Int G(x) for all x ∈ N(x). We now define

W (·) on N(x) by

W (x1) = U(x1, π(x)) + βV (π(x)) for all x1 ∈ N(x). (12.44)

We know that V (π(x)) is a fixed number independent of x1. Additionally, by the third and

fifth assumptions, we know that U is concave and differentiable. This immediately implies

that W (·) is concave and differentiable. Furthermore, since π(x) ∈ G(x1) for all x1 ∈ N(x),

it follows that

W (x1) ≤ max
y∈G(x1)

{U(x1, y) + βV (y)} = V (x1) for all x1 ∈ N(x), (12.45)

with equality at x1 = x.

Since, V (·) is concave, −V (·) is convex, and by a standard result in convex analysis, it

possesses subgradients. Moreover, any subgradient −p of −V at x must satisfy

p(x1 − x) ≥ V (x1)− V (x) ≥ W (x1)−W (x) for all x1 ∈ N(x), (12.46)

The first inequality uses the definition of a subgradient and the second inequality uses the

fact that W (x1) ≤ V (x1), with equality at x. Therefore, every subgradient −p of −V is also

a subgradient of −W . Since W is differentiable at x, its subgradient p must be unique, and

we also know that any convex function with a unique subgradient at an interior point x is

differentiable at x. This reasoning establishes that −V is differentiable, which implies that V

is differentiable. We shall show why the gradient takes that particular form in the upcoming

discussion.

We shall now try to show the conditions that the solution to (12.3) must satisfy certain

conditions. We start with (12.3)

V (x) = sup
y∈G(x)

{U(x, y) + βV (y)}.

From Theorem 19 we know that the right-hand side is strictly concave, and from Theorem 22

we know that it is also differentiable. This implies that for a y ∈ Int G(x) to be an interior

solution it is necessary and sufficient for it to satisfy the first-order conditions. In particular,

ŷ solutions, must solve the Euler conditions:

DyU(x, ŷ) + βD(ŷ), (12.47)
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where the subscript y indicates that we are differentiating with respect to the second vector

argument. We then differentiate with respect to the first argument. This leads us to

DV (x) = DxU(x, ŷ) + (DyU(x, ŷ) + βD(ŷ))
dy

dx
= DxU(x, ŷ).

(12.48)

The second line clearly comes from (12.48).

This is not sufficient to solve the problem. We must also impose the transversality condi-

tion.

lim
t→∞

βt
∂U(x̂(t), x̂(t+ 1))

∂x
x̂(t) = 0. (12.49)

This condition is absolutely necessary. Consider a Ponzi scheme. It clearly will satisfy the

first order conditions in every period, but is clearly not feasible. We must impose some

growth constraint. (i.e. a Ponzi scheme will blow up for t large enough.)

The final theorem we will prove tells us that if the two conditions discussed above are

satisfied then we have an optimal solution.

Theorem 23. (Euler Equations and the Transversality Condition) Let X ⊂ Rk
+, and suppose

that the first thru fifth assumptions hold. Then a sequence {x̂(t)}∞t=0 such that x̂(t + 1) ∈
Int G(x̂(t)), t = 0, 1, . . . , is optimal for (12.3) (and thus (12.1)) given x(0) if and only if it

satisfies (12.47) and (12.49).

Proof. (12.47) and (12.49) =⇒ optimality. First we shall prove sufficiency. Consider

an arbitrary x(0) and let x̂ ≡ (x(0), x̂(1), . . .) ∈ φ(x(0)) be a feasible sequence satisfy-

ing (12.47) and (12.49). First, we will show that x̂ yields a higher value than any other

x = (x(0), x(1), ...) ∈ φ(x(0)). For any x ∈ φ(x(0)), define

δx ≡ lim
T→∞

inf
T∑
t=0

βt[U(x̂(t), x̂(t+ 1))− U(x(t), x(t+ 1))] (12.50)

as the lim inf as the difference of the values of the objective function evaluated at the feasible

sequences x̂ and x as T goes to infinity. There is no guarantee that the limit exists (e.g. the

limit could approach multiple values). That is why we use the limit of the infirmas (because,

by definition, this will be the smallest of the limits).

From the second and fifth assumptions, U is continuous, concave and differentiable. Since

U is concave

δx ≥ lim
T→∞

inf
x

T∑
t=0

βt[DxU(x̂(t), x̂(t+ 1))(x̂(t)− x(t))

+DyU(x̂(t), x̂(t+ 1))(x̂(t+ 1)− x(t+ 1))]

(12.51)
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for any x∈ φ(x(0)). Since x̂(0) = x(0), DxU(x̂(0), x̂(1))(x̂ − x(0)) = 0. Using this and the

fact that
lim inf(xn + yn) ≥ lim inf xn + lim inf yn

lim inf(xn − yn) ≥ lim inf xn − lim sup yn,

we arrive at the following inequalities

δx ≥ lim
T→∞

inf
T∑
t=0

βt[DyU(x̂(t), x̂(t+ 1))+

βDxU(x̂(t+ 1), x̂(t+ 2))](x̂(t+ 1)− x(t+ 1))

− lim
T→∞

sup βTDxU(x̂(T + 1), x̂(T + 2))x̂(T + 1)

+ lim
T→∞

inf βTDxU(x̂(T + 1), x̂(T + 2))x(T + 1).

Since x̂ satisfies 12.47, all the terms in the first line are equal to zero. Additionally, since it

satisfies the transversality condition, the third line equals zero. From our fourth assumption,

we know that U is increasing in x, which implies that DxU ≥ 0. Moreover, x ≥ 0 by

hypothesis, so the last term is nonnegative, which implies that δx ≥ 0 for any x ∈ φ(x(0)).

Therefore, x̂ yields a higher value than any other feasible sequence.

We shall now prove necessity. We define

δ′x ≡ lim
T→∞

sup
T∑
t=0

βt[U(x̂(t), x̂(t+ 1))− U(x(t), x(t+ 1))] ≥ 0. (12.52)

Suppose that {x̂(t+ 1)}∞t=0, with x̂(t+ 1) ∈ Int G(x̂(t)) for all t constitutes an optimal plan,

which implies that δ′x is nonnegative for any x∈ φ(x(0)). Consider x∈ φ(x(0)) such that

x(t) = x̂(t)− εz(t), where z(t) ∈ Rk for each t and ε is a real number. For ε sufficiently small,

such an x∈ φ(x(0)) can be found because x̂(t + 1) ∈ G(x̂(t)) for all t and G is concave and

continuous. Using Taylor’s theorem, little o-notation and the fact that

lim sup
x

(xn + yn) ≤ lim supxn + lim sup yn, (12.53)

we see that

δ′x ≡ lim
T→∞

sup
T∑
t=0

βt[DxU(x̂(t), x̂(t+ 1))εz(t)

+DyU(x̂(t), x̂(t+ 1))εz(t+ 1)]

+ lim
T→∞

sup
T∑
t=0

βto(ε, t).

Please remember that o(ε, t) goes to zero faster than ε → 0 as ε → 0 for any t. If 12.47 is

violated at some t1, then we could take y(t) = 0 for all t 6= t1 and choose ε and z(t1) such

that DxU(x̂(t1), x̂(t1 + 1))εz(t1) < 0 and ε → 0. This will guarantee that δ′x < 0, which is a

contradiction. Therefore, 12.47 must be satisfied.
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Next, we suppose that 12.47 is satisfied but that 12.49 is violated. We choose x(t) =

(1− ε)x̂(t) and we repeat the same steps as above. This leads us to

δ′x ≤ −ε lim
T→∞

inf βTDxU(x̂(T ), x̂(T + 1))x̂(T + 1)

+ lim
T→∞

sup
T∑
t=0

βto(ε, t),
(12.54)

where all the other terms have been canceled by 12.47. We now want to prove that

lim
ε→0

lim
T→∞

sup
T∑
t=0

βt
o(ε, t)

ε
= 0 (12.55)

By definition, limε→0
o(ε,t)
ε

= 0 for each t and there exists M <∞ such that for ε sufficiently

small, |o(ε, t)/ε| < M for each t. For any a > 0, choose T̄ such that MβT+1

1−β ≤
a
2

for all T > T̄ .

Then

lim
T→∞

sup
T∑
t=0

βt|o(ε, t)
ε
| ≤

T̄∑
t=0

βt|o(ε, t)
ε
|+ a

2
(12.56)

for ε sufficiently small. The inequality follows from our choices and the geometric series.

Furthermore, since
∑T̄

t=0 β
t|o(ε, t)/ε| is a finite sum, there exists a ε̄ such that for ε ≤ ε̄,∑T̄

t=0 β
t|o(ε, t)/ε| < a

2
. This implies that the left-hand side of (12.56) is less than a. Since a is

arbitrary, we see that (12.55) follows. Note that if the transversality condition is violated then

the first term in (12.54) can be made either negative or positive by choosing ε to be either

positive or negative. This combined with (12.55) implies that δ′x < 0, which is a contradiction.

Therefore we have finished the necessity of the two conditions and have therefore finished the

proof.

12.2. Elasticity of Intertemporal Substitution and The Coefficient of Relative Risk

Aversion. Throughout this section, we will be following Professor Cosimano’s notes, and

several economic textbooks including Asset Pricing, Macroeconomics and Intermediate Mi-

croeconomics. We start by making the assumption that our utility function is defined re-

cursively. Let U represent utility, and c represent consumption. We call W an aggregator,

because it combines current consumption with future expected utility.

U(c0, c1, . . .) = W (c0, U(c1, c2, . . .)) (12.1)

We want to talk about the coefficient of risk aversion.

Definition 18. (Risk Averse) We say that an investor is risk averse if they will not accept

an actuarially fair (one with an expected value of zero) gamble.

Now, let U be the utility function. A utility function is a measure of happiness that a rep-

resentative investor (an investor that represents an average investor in the economy) receives

from consumption. For now, we will just state three properties of this utility function. First,

we assume that the first derivative is positive (more consumption equals more happiness).

Second, we assume that the second derivative is negative.(The second hamburger does not

provide as much utility as the first) Therefore, the utility function is concave. Finally, we
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assume that the utility function satisfies the transitive property. That is, if bundle A provides

more utility than bundle B, and bundle B provides more utility than bundle C, then bundle

A provides more utility than bundle C.
U

0

B

U(ez c)2

U(epc)

U(ez c)1

ez c1 epc ez c2c
c

2 1A = pU(ez c) + (1-p)U(ez c)

We define the risk premium p as the amount an investor must pay so that (where a is a

probability, and thus an element of [0, 1]):

U(C̄ep) = aU(ez1C̄) + (1− a)U(ez2C̄). (12.2)

Definition 19. p will allow us to define a certainty equivalent.(one where you adjust the C

values in order to make the expected utility equal to a certain utility.)

We will now try to derive an expression for p:

First, we note that (this approximation, which comes directly from Taylor series, will be

used throughout the proof):

ex ≈ 1 + x, (12.3)

We will now take a first-order Taylor approximation of the left side of (12.2)

U(C̄ep) ≈ U(C̄) + U ′(C̄)(C̄ − epC̄). (12.4)

Using (12.3), we see that:

U(C̄ep) ≈ U(C̄) + U ′(C̄)(−pC̄). (12.5)

We now take a second-order Taylor approximation to the right side of (12.2):

aU(ez1C̄) + (1− a)U(ez2C̄) ≈ a[U(C̄) + U ′(C̄)(ez1C̄ − C̄) +
1

2
U ′′(C̄)(ez1C̄ − C̄)2] (12.6)

+ (1− a)[U(C̄) + U ′(C̄)(ez2C̄ − C̄) +
1

2
U ′′(C̄)(ez2C̄ − C̄)2]. (12.7)

Using (12.3), we see that:

aU(ez1C̄) + (1− a)U(ez2C̄) ≈ a[U(C̄) + U ′(C̄)(z1C̄) +
1

2
U ′′(C̄)(z1C̄)2] (12.8)

+ (1− a)[U(C̄) + U ′(C̄)(z2C̄) +
1

2
U ′′(C̄)(z2C̄)2]. (12.9)

This can be rewritten as:

U(C̄) + U ′(C̄)(az1C̄ + (1− a)(z2C̄)) +
1

2
U ′′(C̄)(a(z1C̄)2 + (1− a)(z2C̄)2), (12.10)

which is equivalent to:

U(C̄) + E[z](C̄)U ′(C̄) +
1

2
(C̄)2E[z2]U ′′(C̄). (12.11)
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But, we know that E[z] = 0, and that E[z2] = V (z), where V represents the variance.

Therefore, we know that:

U(C̄) + E[z]C̄U ′(C̄) +
1

2
E[z2](C̄)2U ′′(C̄) ≈ U(C̄) +

1

2
(C̄)2V (z)U ′′(C̄) (12.12)

Equating (12.12) and (12.5), we arrive at an expression for the risk premium p

p ≈ −1

2
C̄V (z)

U ′′(C̄)

U ′(C̄)
. (12.13)

We immediately see that this is directly proportional to the coefficient of relative risk

aversion.

Definition 20. The coefficient of relative risk aversion R(C) can be defined as R(C) =
−CU ′′(C)
U ′(C)

.

Definition 21. A utility function exhibits constant relative risk aversion if R(C) is constant.

The coefficient of absolute risk aversion can be derived by employing the same exact

method, and substituting an additive random variable C̄ + z for the multiplicative one ezC̄.

One will arrive at a risk premium p = −1
2
V (z)−U

′′(C)
U ′(C)

.

Definition 22. The coefficient of absolute risk aversion A(C) can be defined as A(C) =
−U ′′(C)
U ′(C)

.

We will now try to derive a function that has a constant relative risk aversion. We start

by assuming that absolute risk aversion has the following functional form (B > 0):

A(C) =
1

A+BC
. (12.14)

This functional form is convenient and exhibits decreasing absolute risk aversion(this is a

necessary property since people like Bill Gates are more willing to take on risk than your

average middle class earner):

A′(C) =
−B

(A+BC)2
. (12.15)

It is clear that if there is to be constant relative risk aversion then A must equal zero.

Remembering that A(C) = −U ′′(C)
U ′(C)

, we now integrate A(C), and the functional form we

assumed for it (with A = 0) and arrive at the expression:

ln(U ′(C)) =
− ln(BC)

B
+D. (12.16)

This implies that:

U ′(C) = eD(BC)
−1
B . (12.17)

Integrating again, we arrive at an expression for U(C)

U(C) = eD
(BC)1− 1

B

1− 1
B

+R, (12.18)
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Where R is a constant. Note, R is not affected by a change in C, and therefore we can ignore

it when looking at our functional form. Essentially, the functional form we have derived for

a utility function with a constant coefficient of relative risk aversion is:

U(C) = ACα (12.19)

Where A, and α are constants.

Before we continue, let us lay some more economic foundation.

Definition 23. Elasticity is the ratio of the percent change in one variable to the percent

change in another variable.

For example, the price elasticity of demand tells us the percent change of demand with

a one-percent increase in the price. In this example, it is clear that the magnitude of the

price elasticity of demand for water will be lower than the magnitude of the price elasticity

of demand for ketchup. People need water to survive, but they may be willing to substitute

away from ketchup.

We shall be looking at the elasticity of substitution.

Definition 24. The elasticity of substitution describes how the ratio of two inputs changes

with respect to a change in their marginal utilities, or the derivative of utility (in this case

with respect to consumption).

In differential notation this can be written as:

d(
c

z
)/
c

z
/d(

Uc
Uz

)/
Uc
Uz
. (12.20)

One can quickly see that this is equivalent to:

d(ln( c
z
))

d(ln(Uc
Uz

))
. (12.21)

This is not sufficient to define the intertemporal elasticity of substitution, however. It is

clear that we can increase the ratio of c
z
, by changing z or c. The way in which we change this

(e.g. increasing c, or decreasing z), could effect the marginal utility ratio in different ways.

This problem is solved by restricting our class of utility functions to homothetic functions.

Definition 25. A homothetic function is one such that (where U is a utility function, λ is

a scalar, and c is a consumption process) U(λc) ≥ U(λc′) implies U(c) ≥ U(c′).

Let us now consider time separable homothetic utility functions. For example, U(c1, c2, . . . , cn) =

Σn
i (βiu(ci)) where i represents a specific time period, and u could, for example, take the form

of (12.19). This is a very common and popular class of utility functions. We will show that

the intertemporal elasticity of substitution and the coefficient of relative risk aversion are

inter-related for this utility function. To do this we set out to compute the intertemporal

elasticity of substitution.

First, since the utility function is time separable, changing a ci will have no impact on

u(cj) for i 6= j. We will just consider a change in ci to change d( ci
cj

). Therefore, d( ci
cj

) = d(ci)
cj

,
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and d(
Uci
Ucj

) = d(u′(ci))
u′(c2)

. This implies that the intertemporal elasticity of substitution is equal

to

d(
ci
cj

)/
ci
cj
/d(

(Uci)

Ucj
)
Uci
Ucj

=

d(ci)
cj
cj
ci

/
d(Uci)

Ucj

Ucj
Uci

=
d(ci)

ci
/
d(Uci)

Uci
=

=
d(ci)

d(Uci)

Uci
ci

=
1

u′′(ci)

u′(ci)

ci

(12.22)

From the last equality, we can clearly see that the intertemporal elasticity of substitution,

in this situation, is equal to the negative of the inverse of the coefficient of relative risk

aversion. This is not true empirically.

Many economists argue that the fact that the CRRA and the intertemporal elasticity

of substitution are tied together places too large of a restriction on the model. Therefore,

Epstein and Zin used a utility function that separated these two variables. (We will use the

same utility function.)

Epstein and Zin wanted their utility function to exhibit some sort of constant elasticity

of substitution.(This is a result of convenience and data-fitting). Therefore, they picked the

following aggregator W .

W (c, z) = [(1− β)cp + βzp]
1
p (12.23)

Please note that p and β are constants.

Taking partial derivatives, first with respect to c, and then with respect to z we see that:

Wc =
1

p
[(1− β)cp + βzp]

1
p
−1(1− β)p(cp−1)

= [(1− β)cp + βzp]
1
p
−1(1− β)(cp−1). (12.24)

Wz =
1

p
[(1− β)cp + βzp]

1
p
−1(β)p(zp−1)

= [(1− β)cp + βzp]
1
p
−1(β)(zp−1). (12.25)

This implies that:
Wc

Wz

=
1− β
β

(
c

z
)p−1. (12.26)

Taking the natural log of both sides we see that:

ln(
Wc

Wz

)− ln(
1− β
β

) = (p− 1) ln(
c

z
) (12.27)

This immediately implies that the elasticity of substitution is constant since:

d(ln( c
z
)

d(ln(Wc

Wz
))

=
1

p− 1
(12.28)

And, as stated earlier, p is a constant.

Additionally, they used an expected utility function with a constant relative risk aversion

as a certainty equivalent.(They raised the function to a power to preserve homotheticity.

They let z = E[xa]
1
a , where E is the expectation operator.(Please note that this z brings in
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a coefficient of relative risk aversion that can be separated from the intertemporal elasticity

of substitution.) This immediately leads us to the utility function

Ut = [(1− β)cpt + β(Et[U
a
t+1])

p
a ]

1
p (12.29)

This utility is clearly in discrete time. In continuous time, this process assumes the form:

dUt = (−f(ct, Ut)− A(Ut)
σ2
V (t)

2
)dt+ σv(t)dBt (12.30)

We know that we can apply the implicit function theorem to (12.29), in order to get a

solution(Please note: We do not know the boundary points of this solution, and that is an

unresolved issue.)

m(bUt+1 | Ft) = G(ct, Ut) (12.31)

where the b represents the distribution(all it’s possible values and probabilities) of U , and

| Ft essentially means given the information at time t. (e.g. we know that m( Ut | Ft) = Ut
because it is a known quantity.) Subtracting this quantity from both sides, we see that:

m(bUt+1 | Ft)−m(bUt | Ft) = G(ct, Ut)− Ut (12.32)

Changing the interval from one to dt we see that

m(bUt+dt | Ft)−m(bUt | Ft) = G(ct, Ut, dt)−G(ct, Ut, 0) (12.33)

We now assume differentiability, to show that:

d(m(bUt+s | Ft)) |s=0

ds
= −f(c, U) (12.34)

To make this transformation, Duffie and Epstein assume that U has a stochastic differential

representation of the form

dUt = µtdt+ σtdBt (12.35)

Somehow, Duffie and Epstein differentiate m( Ut+s | Ft) |s=0 , and show that:

m(bUt+s | Ft) |s=0= µt +
1

2
A(Ut)σtσt (12.36)

which immediately implies that:

µt = −f(ct, Ut)− A(Ut)σtσt (12.37)

They then define, where v = u:

f(c, U) =
β(cp − Up)

pUp−1
and m( U) = [E(Uα)]

1
α and A(U) =

−γ
U

(12.38)

and the equivalent aggregator (f̄ , Ā)

f̄(C,U) =
β

p

Cp − ((1− γ)U)
1−p
1−γ

((1− γ)U)
p

1−γ−1
(12.39)

and Ā = 0 (12.40)

To see why this is what we might expect, and to derive an important condition, which will

be used later in the paper, let us go back and analyze the recursive utility function (this time
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with an interval of dt, and with 1− γ substituted for a, and 1− p substituted for p). We will

be algebraically manipulating this equation to arrive at a condition:

12.3. Condition for the Utility Function.

U(t) = [(1− e−βdt)c1−p
t + e−βdt(Et[U(t+ dt)1−γ])

1−p
1−γ ]

1
1−p (12.41)

This is equivalent to:

U(t)1−p

1− p
= (1− e−βdt) c

1−p
t

1− p
+ e−βdt

(Et[U(t+ dt)1−γ])
1−p
1−γ

1− p
(12.42)

We will now define some functions to make the algebra easier:

uα(x) ≡

{
x1−α

1−α if 0 < α 6= 1 ,

ln(x) if α = 1 ,
(12.43)

and

g(x) = up(u
−1
γ (x)) ≡

{ ((1−γ)x)1/θ

1−p if γ, p 6= 1 ,

uρ(e
x) if γ = 1, p 6= 1

ln((1− γ)x)/(1− γ) if p = 1, γ 6= 1 .

(12.44)

where

θ =
1− γ
1− p

.

Additionally,

J(C(t), t) = uγ(U(C(t), t)) =

{
U(C(t),t)1−γ

1−γ if 0 < γ 6= 1 ,

ln(U(t)) if γ = 1 ,

which implies that:

g(J(C(t), t)) = up(u
−1
γ (uγ(U(C(t), t)))) = up(U(C(t), t)) =

{
U(t)1−ρ

1−ρ if 0 < ρ 6= 1 ,

ln(U(C(t), t)) if ρ = 1 .

We also calculate:

g(Et[J(t+dt)]) = up(u
−1
γ (Et(J(t+dt)))) =

((1−γ)Et[J(t+dt)])1/θ

1−θ if γ, p 6= 1 ,

uρ(e
Et[J(t+dt)]) if γ = 1, p 6= 1

ln((1− γ)Et[J(t+ dt)])/(1− γ) if p = 1, γ 6= 1 .
(12.45)

This implies that (12.42) is equivalent to:

g(J(t)) = (1− e−βdt)up(c(t)) + e−βdtg(Et[J(t+ dt)]). (12.46)

This can be rewritten as:

g(J(t)) = (1− e−βdt)up(c(t)) + e−βdtg(Et[J(t) + dJ(t)]). (12.47)

From our Taylor formula for ex, we know that around dt = 0 (Please note that we use the

fact that (dt)2 = 0)

e−βdt = e−β0 − βe−β0dt = 1− βdt (12.48)

This implies that:

g(J(t)) = (βdt)up(c(t)) + e−βdtg(Et[J(t) + dJ(t)]) (12.49)
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We now take a Taylor approximation of e−βdtg(Et[J(t) + dJ(t)]) around dt = 0 and dJ(t):

e−βdtg(Et[J(t)+dJ(t)]) = e−β0g(J(t)+0)+e−β0g′(J(t))(Et[dJ(t)]−0)+(−βe−β0)g(J(t))(dt−0).

(12.50)

Please remember that Et[J(t)] = J(t) because the expectation of the present is what is

actually occurring! Plugging (12.50) into (12.49), we see that:

g(J(t)) = (βdt)up(c(t)) + e−β0g(J(t)) + g′(J(t))Et[dJ(t)] + (−βdt)g(J(t)) (12.51)

Canceling, we see that:

(βdt)up(c(t)) + g′(J(t))Et[dJ(t)] + (−βdt)g(J(t)) = 0 (12.52)

Solving for Et[dJ(t)], we see that:

Et[dJ(t)] =
−β(up(c(t))dt− g(J(t)))dt

g′(J(t))
(12.53)

This agrees with our equivalent aggregator((12.39)), because

Et[dJ(t)] + f̄(c(t), U(t)) +
1

2
Ā(U(t))σv(t)σv(t) = 0 (12.54)

except that p is used in place of 1− p.
From this condition, it is clearer to see where f and A come from.

12.4. Euler Condition. Throughout this section, we will be following the work of Asset

Pricing I will use (12.53) in my research. The other big equation that I will derive and use

is the Euler equation in continuous time. This is a more intuitive description of the Euler

condition than the one presented earlier. We shall first try to derive the discrete time version

of this formula:

Pt = Et[β
u′(Ct+1)

u′(Ct)
xt+1] (12.1)

where Pt is the price of the asset at time t, u is utility, C is consumption, and xt+1 is the

payoff at the asset at the payoff of the asset at time t + 1. Intuitively this means that the

price of an asset today is equal to the expected discounted value of the payoff of the asset in

the next time period.

We define a utility function over both times t and t+ 1

U(Ct, Ct+1) = u(Ct) + βEt[u(Ct+1)] (12.2)

Naturally, we try to maximize this function. But, we impose two restrictions:

Ct = yt − Pta (12.3)

and

Ct+1 = yt+1 + xt+1a. (12.4)

where a represents the amount of an asset purchased, and y represents the consumption level

if the investor bought none of the asset.

Thus, we are left with the objective to maximize (we will choose a):

u(yt − Pta) + Et[βu(yt+1 + xt+1a)]. (12.5)
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This leads to the first order condition:

Ptu
′(Ct) = Et[βu

′(Ct+1)xt+1] (12.6)

But, this is equivalent to (12.1).(Please note that Pt can be brought inside the expectation

operator because E[Pt] = Pt)

We now let xt+1 = Pt+1 + Dt+1. That is, we let the payoff at time t + 1 be equal to the

price of the asset at that time plus the dividends received at that time. Thus, our equation

becomes

u′(Ct)Pt = Et[βu
′(Ct+1)Dt+1 + Pt+1] (12.7)

Decreasing the time interval from 1 to ∆t so that we arrive at:

u′(C(t))P (t) =e−δ∆tEt[u
′(C(t+ ∆t)) · (D(t+ ∆t) + P (t+ ∆t))] (12.8)

=e−δ∆tEt[u
′(C(t+ ∆t))D(t+ ∆t)] + Et[u

′(C(t+ ∆t))P (t+ ∆t)].

Now multiply by e−δt to obtain

e−δtu′(C(t))P (t) = e−δ(t+∆t)Et[u
′(C(t+ ∆t))D(t+ ∆t)] + Et[u

′(C(t+ ∆t))P (t+ ∆t)].

(12.9)

Bring all terms to the right hand side of the equal side to yield

0 = Et[e
−δ(t+∆t)u′(C(t+ ∆t))D(t+ ∆t)]

+ Et[e
−δ(t+∆t)u′(C(t+ ∆t))P (t+ ∆t)− e−δtu′(C(t))P (t)]. (12.10)

In continuous time dividends are paid at a rate D(t) per unit of time subject to a stochastic

process. For example, assume

dD(t) = D(t)dt+D(t)σdω(t),

where dω is Brownian motion. Integrating this relation we obtain

D(t+ ∆t) =

∫ t+∆t

t

D(s)ds+

∫ t+∆t

t

D(s)σdω(s).

Here, we use the fact that the investor does not receive a dividend payment D(t) at time t,

since they are not the owner until the next instant. Now multiply by e−δ(t+∆t)u′(C(t+ ∆t))

to find

e−δ(t+∆t)u′(C(t+ ∆t))D(t+ ∆t) =e−δ(t+∆t)u′(C(t+ ∆t))(

∫ t+∆t

t

D(s)ds

+

∫ t+∆t

t

D(s)σdω(s)).

Finally, take condition expectations

Et
[
e−δ(t+∆t)u′(C(t+ ∆t))D(t+ ∆t)

]
=Et

[
e−δ(t+∆t)u′(C(t+ ∆t))

∫ t+∆t

t

D(s)ds

]
(12.11)

+ Et

[
e−δ(t+∆t)u′(C(t+ ∆t))

∫ t+∆t

t

D(s)σdω(s)

]
.

The last term is zero since Et [dω(s)] = 0.
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In these circumstances, we can substitute (12.11) into (12.10) to find

0 = Et

[
e−δ(t+∆t)u′(C(t+ ∆t))

∫ t+∆t

t

D(s)ds

]
+ Et[e

−δ(t+∆t)u′(C(t+ ∆t))P (t+ ∆t)− e−δtu′(C(t))P (t)] (12.12)

Let ∆t→ 0+ so that

0 = e−δtu′(C(t))D(t) dt+ Et[d(e−δtu′(C(t))P (t))]. (12.13)

By the definition of Λ(t) ≡ e−δtu′(C(t)),

0 = Λ(t)D(t)dt+ Et[d(Λ(t)P (t))],

Definition 26. We refer to Λ as the continuous time stochastic discount factor.
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