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This appendix provides proofs of some results stated in our paper. First, we prove the
existence and uniqueness of the price-dividend function (Proposition 1) to the integral
equation (6) in the vector space S (Definition 1). Second, we calculate the system
of linear equations (22) for the coefficients of the power series for the price-dividend
function. Finally, we use Cauchy’s integral formula to bound all the derivatives of the
price-expected dividend function (23) so that we can calculate the error terms (24), (25)
and (26).
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APPENDIX

We use the following notation in the proofs: C(n) = Y0 |¢|" = [elU=Iol™) - for

1-|e|
52
n=012.. &) = #foxe_Tds forall x € R, 0 = 2o+ 0?(1 + ¢ — a)(1 — 7),
Ky 2202 (6—a) (240 —a) 6Kl Calls A L
K3 = Koe™™1 ™ 2 , Ky = K3 [1—1-2(1) ( o )}, K = Kye2a-ien? Fi-lel
and Ky = %ng*7(1*7)2+7[1*7+’(1]2. @ is defined in (18) which satisfies the integral

equation (19).

A series of lemmas are now proved which are used in the proof of Proposition 1.
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Lemma 2: Let a > 0 and p(z) = 21W __;_Jraa e 22 ds for all v € R. Then p(z) <
2 (2).

Proof: This follows from the fact that ¢ has a unique global maximum at z = 0.
Q.E.D.

Lemma 3: For any real numbers A and k with k > 0, we have
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270 J—oo o

Proof: Note that —555(s — A)? + ks = —55(s — A — ko?)? + % + EA.
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By Lemma 2, we achieve —2— [~ e~ a5 gg < e T AL 4 20 (ko).

2mo J —00
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Q.E.D.

Lemma 4: For any f € S, the function T f defined by
€¢K1$

1) (Tf)() = / f(s)e Tl @O g

2mo
lies in the vector space S. Thus, T' defines a linear transformation from the vector space
S to itself.
Proof: By the definition of S, we can find positive constants M and k such that
|f(z)| < Me*#l. Using Lemma 3, we deduce

K ed)le [e'e] e . )
(@) < e [ ez as

2mo 0o

oKz o8]
< M K3ze®™t / o~ szl (Br+O)2Hhls] g
2mo —oo

< ME3[1+ 20 (ko)|e?k1m+ 5 k(o +0)

k202
< MEKse = THOI[1 4 20 (ko) el?l(kHEDl

The continuity of T'f can be easily checked by applying the standard argument in real

analysis; for example, see Theorem 56 in Kaplan (1956).
Q.E.D.

Now construct a sequence of functions { @, | n =0,1,2,...} by setting Qg = 0 and

K ¢K1CE
(2) Quii(2) = Ko+ =2 / Qn(s)e” 22 m0mHOL g

2ro

and set Q = > 7 [ [Qn+1 — Qnl-

Recall that C(n) = Y1, || = H88 satisfies (a) C(n + 1) = [¢](C(n) + 1), (b)

C(n) < |¢“¢| and (c) lim, . C(n) = |¢||¢‘
Lemma 5: 0 < Qni1(x) — Qu(z) < K0K4e 3 Z" [ CE*+ K10 75 Cl0) oC(n)| K1 ||| for

n=0,1,2,....



Proof: These inequalities can be easily proven by induction on n.
Q.E.D.

Lemma 6: The series Q = >~ [Qn+1 — Qn] is uniformly convergent on any bounded
closed interval.

Proof: Fix a bounded closed interval [a, b]. For any « € [a, b], by Lemma 5 we see

a‘

< S [Quii(@) = Qul@)) < Ko Y Kje= LS COR K0 DI € (O Kal(al +b)
n=0 n=0

The ratio test together with Weierstrass M-test (see Theorem 30 Kaplan (1956)) implies
the uniform convergence of the series Q = > 7 ([Qn+1 — Qn] on [a, b], provided

o2 ?Kio® | oK 0]
lim Kye 2 10(”) +K10|C(n) ,[C(n+1)=C(n)]| K1[(lal+[b]) — = Kye20- oz T e — Ky <1.

n—oo

Q.E.D.

Lemma 7: The function @) lies in the vector space S.
Proof: The continuity of @ follows from Theorem 31 in Kaplan (1956) and Lemma

6. By Lemma 5, we also have

o
Q)] < Ko 3 Ko™t S COPHRaIE € Cmikilie

n=0
(Ko ZKEGU LSS S UL b srgelt )) o lel
n=0

Q.E.D.
Lemma 8: For any x € R, we have lim,,_, ﬁ s [Q(s)—Qn(s)]e*ﬁ[S*(‘Mwﬂ2 ds =

0.
Proof: This is an immediate consequence of Theorem 32 in Kaplan (1956) and Lemma

6.

Q.E.D.



Proof of Proposition 1:

Equivalently, we are going to show that the equation (19) has a unique solution @ in
the vector space S.
Ezistence

Applying the limit as n approaches oo to the equation (2) shows that the function
Q = >0 o[Qni1 — Qn] = lim,_.oc @, is a solution to the equation (19) in the vector
space S.
Uniqueness

Suppose that Q € S is another solution to the equation (19). Then @Q and Q satisfy
the functional equation Q@ — Q = T(Q — Q). By the definition of S, we can also find
positive constants M and k such that |Q(z) — Q(z)| < Me**l. Using the results in the

proof of Lemma 4, we see

Q(z) — O2)] < (T1Q - Q)(z) < MKse™

O 4 20 (k)] e1oH+COIK el

for all z € R. Applying this computation n times gives rise to

Q(x) = Q(x)]

< MKTL {H (| k+C (i )IK1|) o2 +(|p|*k+C (3 )\Kl\)|0|[1 + 2@(0_|¢| k? + O'C( )|K1|)]} e(\g{)\"}g—&—C(n)\Klmz\ )

=0
Note that

lim K3.€(WLkﬂLC(;LWl‘)202HI(JS‘"HC(M‘Mme| [1+2®(c|¢|"k + oC(n)|K])]

n—oo

K2
(S 4 leK40]

= K3e2G-1oD2 1191 [14_2@(?5'1;?)} C K< 1.

We can find a positive integer N and a positive real number § < 1 so that for any n > N,

(9" k+C(n)| K1 )20

Kse 2 +(|¢|"k+0(n)|K1|)\0\[1 + 28 (0 |k + oC(n)|K1|)] < 6.

Then for all n > N, we have
Q) — Q(x)]

N—-1 . _
< MKV { GWH\wmcunmnww[l +2B(o|d| 'k + aC<z’)IK1|)]} 57N (ol k+C(m)| K Dle]
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n PISTI ' N
Since lim,,_oo 0" N = 0 and lim,,_, », e{?"F+COIKDIZl — ¢ =Tl | | we obtain Q(x) = Q(x)

for all x € R. This completes the proof of Proposition 1

Solving for the coefficients in the analytic Price-Dividend Function

The integral equation (6) may be written as

P(z) = Koef1® + Koef1e=* T2 I(z).

52
where [(z) = = [~ e 7502 P(xg 4 ¢a + s)ds. To solve the integral equation we

2o J—00

posit that P(z) is analytic in which case it has the functional form (21). Consequently

we may write P(xg + ¢x + s) as

P(zo + ¢z + 5) = efi(@otorts) Z b(zo + ¢x + 5 — x.)".
k=0

26

Using the Binomial theorem*® we may rewrite this equation as

n k k o
Plao + g 4 5) = O (3 37 (Yo + gr =2 s').
k=0 =0
Substituting this result into /(z) we obtain

I(z) = efaleoton) Z%Z() (x0 + ¢ — )",

k=0 =0

82 .
where v; = 217m ffooo UKD =57 6 Js. The evaluation of the integral 4; entails the

use of a change of variable followed by the evaluation of all the moments of the normal

distribution. ~; = Ksza; where K; = -y and a; = Zézo ()(02[1 — v+
J

K1) (V20) (1 + (1)) (1/2)T[55].

k .
We can now write I(z) as Kyefi(oton) son p, S~ ( ) (2o + ¢z — x,)¥%a; so that

S

the integral equation becomes

n

k
k
e K1) = Ky + Kgef1@oten) N " g, Z ( )(xo + ¢z — x,)" Z bi(x — z,)F



Next we find the undetermined coefficients b;, ¢ = 0,...n. In order to do this, we
collect all the functions of x on the left hand side of this equation and use Taylor’s
theorem to take an n'* order Taylor expansion around z,. This produces a system of
(n + 1) linear equations in the variables b;, i = 0,...n

Define the following functions q(z) = Ki(z¢ + ¢z), rix(z) = (20 — 2. + ¢z)*, and
w; ,(z) = exp(g(x))rip(z) = >, l,wl(l,l(x*)(x — z,)!. Substituting for w;;(z) into the
integral equation gives us

k

Ko+ Kg Z b Z (k) <l0 l—l'wfl,l(ac*)(x - x*)l> a; = % bi(z — x,)"

i
= =0

Finally, equate the coefficients on the left and right hand side of this equation to yield

by = KO—I—K(;Zbkzk:() Z(k)(x*)azandbl K6Zbkz<)— ll(m*)az,

k=0 =0
where [ = 1,...,n. These Equations are an n + 1 system of linear equations in the b;’s.
Analytic error of the Taylor polynomial approzimation
The complex function Q(z) = e %12 P(2) is analytic and it is expressible as a Taylor
series

— Z Qk—fz")(z — z,)*®  for any complex number z,
k=0 '

where z, = x,. We may use Cauchy’s integral formula to estimate the error of the Taylor

polynomial approximation Q(z) ~ > ;_, QW,Z* (z — z,)F near z = z,.
Write C) for the circle of radius r > 0 centered at z = 2z, in the complex plane.

Cauchy’s integral formula (see Corollary 5.9 in Conway (1973)) gives

Q™ (2,) :k—!f V&dz for k=0,1,2,....
Cr

27 — 2, )kH1

Each point z = x + iy on C, satisfies x, —r <z < x,+r and —r <y <r. Set

A=Ky Y Kje E S CoPHi S .

n=0



Using the result in the proof of Lemma 7, we obtain 0 < Q(s) < Ael Tl for all s € R,

and
1Q(2)] < Ko+ Kg\ed’\/z_l(‘”””y)\ s) ‘G_ﬁ[s_m_e_i‘byp ds
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1-|¢|
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< Ko+ AK3e I +2(1—\1¢\>2 [1 + 29 (%ﬂ '

252 2
loK1|(r+zsl|+10) | ¢2r2 | ¢ Kio

Define B, = Ky + AKze —[g] T2 Taaign? [1 + 29 (%)] Cauchy’s integral

formula for Q) (z,) together with the above estimate to |Q(z)| gives rise to

® k! Q(z) L] 2 Q(z, +re®)
QP (=)l < 27 7{% (2 — 2z, )kt dz| = 277

(=
0 (rew)k—l-l
S SR )

ire® do ‘

do <
- 27 rk rk

This bound allows us to estimate the analytic error (24).

FOOTNOTES

k
26The binomial theorem states that we may write (zo+ ¢z +s—2.)% = 3¢ ( > (zo+

px — 3, )F st



