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SOLVING ASSET PRICING MODELS WHEN THE PRICE-DIVIDEND
FUNCTION IS ANALYTIC

By OviIDIU L. CALIN, YU CHEN, THOMAS F. COSIMANO,
AND ALEX A. HIMONAS'

We present a new method for solving asset pricing models, which yields an analytic
price—dividend function of one state variable. To illustrate our method we give a de-
tailed analysis of Abel’s asset pricing model. A function is analytic in an open interval if
it can be represented as a convergent power series near every point of that interval. In
addition to allowing us to solve for the exact equilibrium price—dividend function, the
analyticity property also lets us assess the accuracy of any numerical solution procedure
used in the asset pricing literature.
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1. INTRODUCTION

RESEARCHERS IN FINANCIAL ECONOMICS have sought solutions for asset pric-
ing models in the space of bounded and continuous functions ever since the
seminal work of Lucas (1978).2 This paper seeks solutions to asset pricing prob-
lems in the more regular space of analytic functions. A function f(x), defined
on (2 an open subset of R, is analytic at a point x, € {2 if it can be expressed
as a convergent power series in some neighborhood of x,. If f(x) is analytic
for every x, € £, then it is analytic in £2.> We follow this strategy because of
several observations concerning most applied asset pricing models: First, the
pricing kernel and dividend process are analytic functions on a given set. Sec-
ond, these components of the asset pricing models are incorporated into an
integral equation that maps the unknown future price-dividend function into
the current price—dividend function. Finally, the equilibrium price-dividend
function is the solution to this integral (functional) equation that preserves the
properties of the underlying function. These observations lead us to the con-

"The authors would like to thank Professor Stefano Athanasoulis for numerous discussions
during the early stages of this work and for the simulation implemented in Section 3. We would
like to thank seminar participants at Oxford University Said School of Business, the University
of Notre Dame, the 2003 Summer Econometric Society Meetings, and the 2003 Stanford In-
stitute for Theoretical Economics Workshop on Computational Methods and Applications in
Economics for helpful comments. Discussions with Sebatien Cottrell, Thomas Gresik, Kenneth
Judd, and Ali Khan helped in the preparation of this work. We also benefited from valuable com-
ments of two anonymous referees and the editor. They helped us improve this paper significantly.
Any remaining errors are our responsibility. Tom Cosimano received financial support from the
Center for Research in Financial Services Industry at the University of Notre Dame.

2See Altug and Labadie (1994) for a summary of this work.

3See Rudin (1974, pp. 212-249).
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clusion that the price-dividend function is analytic for several popular asset
pricing models.*

Our procedure consists of the following steps: First, we rewrite the Euler
equation for the asset pricing model as a functional equation and identify the
space (see Definition 1) on which the price—dividend function is a well-defined
function of one state variable, i.e., dividend growth. By well defined we mean
that the conditions of a fixed point theorem hold, thus a continuous and in-
tegrable equilibrium price—dividend function exists and is unique. Second, we
apply a change of variable so that the future price—dividend function is de-
pendent on only the random shock to the state variable and independent of
the current state variable. These steps make the integrand for the integral
equation the product of a continuous and integrable function of the random
variable and an analytic function; see Equation (6). Third, we prove that the
price—dividend function is infinitely differentiable in the open interval where
the function is well defined. Fourth, we complexify the integral, i.e., in the in-
tegral for the asset pricing model we replace the real state variable, x, with
its complex counterpart, z = x + iy. Finally, using the Lebesgue dominated
convergence theorem (DCT) we prove that the complex integral (see Equa-
tion (12)) is analytic in the state variable. Thus, the analytic properties of the
pricing kernel transfer to the function defined by the integral, so that the price—
dividend function is analytic on a given set.

We demonstrate this method for Abel’s (1990) asset pricing model in the
Mehra and Prescott (1985) case and the external habit case.” We feel that
solving these two cases allows the reader to see how the method works and
how it could be generalized to handle more complicated asset pricing mod-
els.® Observe that the second and third steps in our procedure only require
the utility function and dividend process to be analytic on the set where the

“The known solutions to the price-dividend function in asset pricing models with con-
stant absolute (CARA) and relative (CRRA) utility function are all analytic. Wang (1994) and
Athanasoulis and Shiller (2001) provide recent examples for CARA utility, while Campbell
(1986), Labadie (1989), Burnside (1998), Birdarkota and McCulloch (2003), and Tsionas (2003),
among others, provide solution for models with CRRA utility. Our method finds the solutions for
analytic utility functions that offer closed forms for a wider class of probability distributions for
the state variable.

SWhile we have not included the internal habit case, the earlier version of this paper demon-
strated that this model is analytic as well. See Athanasoulis, Calin, Cosimano, and Himonas
(2003) (ACCH). A copy of this paper and computer programs for the numerical analysis may
be obtained at http://www.nd.edu/ tcosiman/. The parameterization that includes internal habit
persistence in Abel’s model is problematic: it leads to negative marginal utility for some values of
consumption growth with internal habit persistence. Consequently, this case demonstrates that
this procedure works only when the integral equation is well defined.

®0Our method also applies to other asset pricing models such as, for example, Epstein and
Zin (1989, 1990, 1991), Campbell and Cochrane (1999), Cecchetti, Lam, and Mark (1990, 2000),
and Constantinides and Duffie (1996), among several others. The additional complexity of those
models makes the proofs more involved, although this methodology can handle these cases.
For example, Chen, Cosimano, and Himonas (2003) applies this methodology to the Campbell
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price—dividend function is well defined. Consequently, this method can handle
many different types of analytic dividend processes and utility specifications.
Thus, our procedure is general enough to apply to many of the asset pricing
problems found in the literature.

Knowing the set on which the price-dividend function is analytic is impor-
tant for the evaluation of the accuracy of numerical solutions to asset pricing
models.” In each case of Abel’s asset pricing models we know that the price—
dividend ratio is a convergent power series on the set where the price—dividend
function is analytic. In addition, we know the radius of convergence for this
power series. This allows us to use a high-order Taylor polynomial to represent
the price—dividend function in the neighborhood of a point where the price—
dividend function is analytic. The error in the Taylor approximation can be
made smaller than machine epsilon, i.e., less than 107'%, as long as the size
of the neighborhood of the point is sufficiently less than the radius of conver-
gence or there are a sufficient number of coefficients for the Taylor series.®
This numerical solution allows us to establish the accuracy of a state of the art
numerical method for solving these asset pricing models.

We begin, in the next section, by outlining Abel’s asset pricing model. We
follow this by identifying the space where the price—dividend function is well
defined. Next, we prove that the price—dividend function is infinitely differ-
entiable. We then summarize the properties of analytic functions followed by
the proof that the price—dividend function is analytic. We conclude this section
by computing and analyzing the error of a polynomial approximation to the
price—dividend function motivated by the analyticity of the solution. Section 3
provides the numericalcomparisons between our numerical approximation and
the Gauss quadrature procedure for Abel’s asset pricing model. We conclude
the paper in Section 4.

2. SOLVING ASSET PRICING MODELS

The classic case for the equity premium puzzle is the Mehra and Prescott
(1985) model.” The Mehra and Prescott model is subsumed by Abel’s (1990)

and Cochrane model. We cannot apply this methodology to asset pricing models with the Kalman
filter, as in Wang (1994), or with an ARCH model, as in Engle (1982), since these models have
two state variables. We plan to address these problems in future research.

"The perturbation method (see Judd (1996, 1998), Judd and Guu (2001), and Jin and Judd
(2002)) is based on the solution being analytic; however, this procedure does not identify the set
where the price—dividend function is analytic. As a result, the accuracy of the solution cannot
be identified. This explains why Collard and Juillard (2001) compares the perturbation method
results with Burnside’s (1998) explicit formula for Mehra and Prescott’s model.

8“Machine epsilon” is the largest € so that the computer cannot tell the difference between
a and a + € for a given number a. See Judd (1998, p. 30).

See Mehra and Prescott (2003) for an update on the equity premium puzzle literature.
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model, which also includes habit persistence, both internal and external. In this
section we first prove the unique equilibrium price-dividend function is contin-
uous, integrable, and infinitely differentiable. We go on to prove the theorem
that the price—dividend function for Abel’s model is analytic when the price—
dividend function is well defined. The price—dividend function is well defined
as long as the integral equation is a mapping from a vector space of integrable
functions to the same vector space and it yields a unique integrable solution.

2.1. Abel’s Asset Pricing Model

There are four assumptions to the models of Mehra and Prescott or Abel:
(1) There is a representative agent that has an analytic utility function on a
given set, (2) financial markets are complete, (3) financial markets are friction-
less, and (4) individuals are free to trade the risky stock and one period bonds
which are in zero net supply. Models with these assumptions and some vari-
ant of them are solved for numerically in the literature, and we wish to get the
actual analytic solution to the asset prices here.!’

Abel’s model has the following specific structure. Individuals have the utility
function

[Ct/vt]liy

(1) .

b

where v, = [c,p_ICtl__{’ 1%, ¢,y is the consumer’s own consumption in period ¢ — 1,
and C,_; is aggregate per capita consumption in period ¢ — 1. The parameters
have the restrictions y > 0, a > 0, and p > 0. Abel parameterizes the model
by setting « and p to 0 or 1, depending on the case. Note that when o = 0 we
have Mehra and Prescott’s model. When o = 1 and p = 0 we are in the case of
relative consumption of catching up with the Joneses. This case is also called
external habit in which the habit is external to the individual’s choice. When
a =1 and p =1 we are in the internal habit case and individuals own lagged
consumption affects their choice of consumption.

The only source of real income is the dividend from the risky security so that
¢, = C, = D,. The dividend process for the risky security is

(2) Dz+1 =D, eXP[Xo + ({bxz +vil,

where v ~ NIID(0, 6?), so that x, is the current continuously compounded
growth rate of the dividend and x, is the constant growth rate per period so that
dividend growth follows an AR(1) process subject to a normally distributed
random shock.

0With constant relative risk averse utility, this model has been solved for by Campbell (1986),
Labadie (1989), Burnside (1998), Birdarkota and McCulloch (2003), and Tsionas (2003).
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Abel shows that the Euler equation for equity is

P, Dt+1 Pt+1
3 —=E|\M—11
( ) Dt t|: t+1 Dl ( + Dt+1 )

where the intertemporal rate of substitution is given by

Dz+l)y<vt+1>Y1 H,.,
4 M, = —_.
( ) . B( D, Uy E/.(H 1)

We also have H,., =1 — Bap(D2/Di1) (D1 /D), >0, p >0,
and v, ., = D?.

Examination of the Euler equation (3) and intertemporal rate of substitution
(4) reveals that they are homogeneous of degree 1 in the stock price, current
dividends, and next period’s dividends. Consequently, we seek a solution to the
equilibrium price—dividend function, P(x), which is dependent on the current
dividend growth, x. Here we drop the subscript for time since we seek a func-
tion of current dividend growth. We work with the price—dividend ratio rather
than expected returns although we are able to convert these price—dividend
ratios into expected returns and compare the results in the literature to ours.

By substituting the intertemporal rate of substitution (4) and dividend
process (2) into the Euler equation for equity (3), we derive the fundamen-
tal integral equation for Abel’s asset pricing model:

1 Kyexp[Kx]
V270 1 —Kyexp[Kx]

o 1
X /_ eXp[—m[V —o’(1— ‘)’)]2]

x [1 - Ky exp[K;(xo + ¢x +v)]]
X [14 P(xo+ ¢x +v)]dv.

S) P(x) =

Here we define Ky = Bexp(xo(1 —y) + "72()/ -1, Ki=1—-v)(¢ —a), and
Kz = apKo.

2.2. Existence and Uniqueness of Price-Dividend Function

The proof of existence and uniqueness of the price—dividend function must
confront two problems with the fundamental integral equation for Abel’s asset
pricing model. The first problem recognized by Abel is the possibility of a neg-
ative marginal utility of consumption as reflected in the term 1 — K, exp[Kx].
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For the Mehra—Prescott case and the external habit case this does not present
an issue since K, = 0. However, it does present a problem for the internal habit
case. For the parameters considered here the marginal utility would be nega-
tive for dividend growth larger than 1.2 standard deviations.!" This condition
is violated by the assumption of a normal distribution for the dividend growth
shock. Limiting our attention to the Mehra and Prescott and external habit
cases allows us to avoid this issue, and thus to focus more clearly on the is-
sue of when the price—dividend function is analytic. The second problem deals
with the existence of a bounded solution. The price—dividend function is not
bounded given the normal distribution for dividend growth and K; > 0." In-
stead of looking for a solution in the vector space of bounded functions, we
examine the following vector space where the integral in (6) exists.

DEFINITION 1: Let S denote the real vector space that consists of all contin-
uous functions f satisfying |f(x)| < M, explk|x|] for some positive constants
M; and k;, where the constants may depend on f.

Within the space & we seek the solution to the integral equation
P(x) = Kyexp[K;x]

Koexp(Kix] (~ [ 1 2
(6) +—«/ﬁo- /ocexp[ 20_2[5‘ P(x)] ]P(s)ds.

Here, we modify the integral equation (5) by making the change of variable
s = Xy + ¢x + v so that ¢ (x) = ¢x + xo + o>(1 — y)."* This change of variable
is helpful in the proof of differentiability and when the price—dividend function
is analytic, since we never have to explicitly differentiate the price—dividend
function in the integrand.

First we establish that the second term on the right-hand side of (6) defines
a linear transformation from the space S into S (see Lemma 4). Then we show

Tn ACCH (2003) we did examine internal habit cases in which the coefficient of relative risk
aversion was near 1 so that the random shock could be less than 3 standard deviations.

12This problem explains why it is generally necessary to bound the support of the random
shocks to dividend growth. See, for example, Altug and Labadie (1994). There are several ways
to address this problem: (1) Truncate the distribution for dividend growth; (2) change the integral
equation by assuming the price—dividend function is fixed above a given level since higher levels
of dividend growth are never observed; (3) the procedure adopted here. The first procedure is
tedious since we have to keep track of the change of limits of integration in all the proofs. The
second procedure was used in the earlier version of this paper. We adopted the current procedure
since it yields the largest radius of convergence.

3Notice that x is the state variable. In addition, s is the variable of integration, i.e., the random
disturbance to the state variable.
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that this linear transformation has a unique fixed point in S, as long as

S

o1 = 1) — )2+ ¢ — )
2
$K20 |¢>K19|)
1,
A 192 1-1l) =

where 0 = xy+ 0*(1 + ¢ — a)(1 —y) and P(x) = \/% 5 exp[—s?/21ds for all
x € R.™ Thus, we have the following result, whose proof is included in the Ap-
pendix for completeness sake. The Appendix is available at the Supplementary
Material web site for Econometrica.

X exp (xOK 1+

+

PROPOSITION 1: If K5 < 1, where Ks is given by (7), then there is a unique
solution to the equation (6) in the vector space S.

This result corresponds to the typical analysis of asset pricing models in that
a solution is found in a general space of continuous functions, however, we
modify the analysis by looking in the space S in which functions are integrable
with respect to the measure exp[—#xz] dx rather than bounded functions.
Next, we show differentiability of the price—dividend function.

2.3. Differentiability of Price-Dividend Function

While the existence and uniqueness of the price—dividend function are well
known, there is only limited information about the differentiability of the
price—dividend function for general models. Most analysis on differentiability
deals with the policy and value functions from a generic dynamic programming
problem." By focusing on a specific integral equation, in our case the one from
Abel’s asset pricing model, we can obtain much more information about the
differentiability of the price—dividend function.

PROPOSITION 2: If K5 < 1, then the solution to the integral equation (6) for the
price—dividend function is infinitely differentiable for all dividend growth, x € R.

YHere, 2d((|¢pK;|o)/(1 —|¢])) is the probability that dividend growth is in the interval
[— (oK |lo)/(1—|@]), (|¢Ki|o) /(1 — |$])]. For the parameter values considered below 0 <
K5 <.9304 in the Mehra—Prescott case and 0 < K5 < .9782 in the external habit case.

5Blume, Easley, and O’Hara (1982) develop conditions for policy and value functions to have
an rth-order derivative. In addition, Santos (1991, 1992, 1993, 1994, 1999) finds conditions for the
existence of the first two derivatives of general policy and value functions.
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PROOF: It suffices to show that for any positive integer n, we always have

dﬂ [e°] 1 )
T /OO P(s) exp[—r._z[s — i (x)] :|ds

00 an 1
= / P(s) exp[—ftz[s - l!/(x)]z] ds.

. ax"

By the definition of & we can find positive constants M and k with
|P(x)| < M exp[k|x|]. The nth partial derivative of exp[—#[s — ¥ (x)]*] with
respect to x is expressible as

1 ! .
eXP[—ﬁ[s - lﬂ(x)]z} Y fis,
i=0

where the f; are polynomials. It is easy to check that s* < expl[i|s|] for any inte-
ger i > 0, where we regard s’ =1 for all s € R. Given any real numbers a < b,
we have

b n
/ P(s) J exp[—i[s—lp(x)]z} ds

ax" 202

n b 1
=M 1fix0)l f eXp[—ﬁ[s — PP+ i+ k)lSI] ds.
i=0 @

A lemma proved in the Appendix shows that the improper integrals
[ exp(—zlﬁ[s — ¢(x)]* + (i + k)|s|)ds are all uniformly convergent when
x lies in any bounded closed interval. Thus, the integral [ P(s)Z; exp(—55 x
[s — ¢(x)]?) ds is uniformly convergent on any bounded closed interval for x.
By Theorem 58 in Kaplan (1956) the solution to (6) is infinitely differentiable

for x e R. O.E.D.

2.4. Analyticity of Price-Dividend Function

We now present a summary of the properties of an analytic function.'
A function f(x) is (real) analytic in an open interval (a, b) if it can be ex-

16This discussion is based on Chapter 10 of Rudin (1974). For this discussion we follow math-
ematical convention, and use f and x to represent a generic function and variable, respectively.
This notation makes it easier to read the original source.
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pressed as a convergent power series near every point of the interval (a, b).
More precisely, f(x) is analytic in (a, b) if for every x, € (a, b) there is a posi-
tive real number r, which may depend on x,, such that

(8) f(x)=Zbk(x—x0)k for |x— x| <r.

k=0

The biggest such r is called the radius of convergence of the power series (8).
By taking the kth-order derivative and evaluating it at x, we find that b, =
(f®(x0))/ k! so that (8) is a Taylor series. A C* function f(x) is analytic near
a point x, if and only if there exist positive constants My, M, and & such that

9) [f®x)| < MoM*k!, |x—x| <8 forall k=0,1,2,....

Condition (9) is called the Cauchy estimates. If this condition is satisfied, then
writing f(x) = P,(x) + R,;1(x), where

n (k)
(10)  Pux)=)_ ! k(,x‘)) (x — x)*
k=0 '

is the nth order Taylor polynomial and R, ,;(x) is the remainder,

fn+1(x*)(x _ X())n+1
(n+1)!

(11) R,.1(x)= for some x, between x, and x,

we can see that the remainder goes to zero as n — oo. This shows that f(x) is
equal to its Taylor series about x, for |x — x¢| < r withr=1/M.

This discussion tells us that to prove that the price—dividend function is ana-
Iytic, it suffices to show that Cauchy estimates (9) for the price—dividend func-
tion hold."” However, these estimates do not necessarily yield the radius of
convergence. The most natural way to accomplish this is by the method of
complexification, that is, in the price—dividend function we substitute the real
variable x with the complex variable z = x + iy.

When a function f(x) is analytic, the power series representation of f(x)
(Equation (8)) can be complexified by replacing x with z = x + iy to obtain

% £k
f(z)= Z f k(‘ZO) (z—z0)k for |z—z)<r, zo=x,+i0.
k=0 :

7ACCH (2003) provides these estimates. Also, Chen, Cosimano, and Himonas (2003) demon-
strate how to obtain estimates for Campbell and Cochrane’s (1999) asset pricing model.
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Here f*(z) denotes the kth order complex derivative of f(z). We mention
that the usual calculus formulas for real differentiation hold true for complex
differentiation too. Separating the function f into its real and imaginary parts
we write f(z) = fi(x, y) + ifa(x, y). Then we have

G O BV ilC

= = k(z —z))¥ 1,
ox  dx ox k! ( )

k=0

while

&f afl f9f2 290: f(k)(z(]) . k—1
—_ = = _— k _ .
dy dy +l(9y — k! th(z = 20)

This means that an analytic function must satisfy the pair of partial differential
equations

3_ﬁ=ﬁ_ﬁ and ﬁ—flz—ﬁ—fz.
Jax dy ady ox

These are called the Cauchy-Riemann equations (see Ahlfors (1979, p. 26)).
This leads to the following characterization: f is said to be holomorphic (or
analytic) in D if it satisfies the Cauchy—Riemann equation

N
0z  Jx dy

After complexifying the price—dividend function, we can identify the largest
domain D in the complex plane where the price—dividend function is (complex)
analytic (or holomorphic). Finally, to find the radius of convergence of the
Taylor series of the price—dividend function about a point x, we compute the
distance of x, from the boundary of D.

THEOREM 1: The price-dividend function P is real-analytic in the open interval
(—00, 00). Moreover, its Taylor series expansion about a point x, € (—o0, 00) has
radius of convergence equal to co.

PROOF: Since P satisfies the integral equation (6) and since by Proposition 1
it belongs to the space S, to prove Theorem 1 it suffices to show that the func-

tion

*© 1
F(X)=/ CXP[—ﬁ[S—¢(X)]2}[1+P(S)]ds
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is analytic in (—o0, 0c0) and its Taylor series about any point has infinite radius
of convergence, considering that K,exp[K,x] has the same properties.'® For
this, in F(x) we replace x with z = x + iy (i.e., we complexify) and we show
that the integral expression defining F(z),

(12) F(z) =/ eXp[—L[s— w(Z)]Z][l + P(s)]ds,

202
makes sense, and it is a holomorphic (or (complex) analytic) function on
the entire complex plane. This follows immediately from the following mo-
re general result, applied with f(z) = ¢(z) = ¢z + xo + o*(1 — y) and
g(s) =1+ P(s). O.E.D.

LEMMA 1: If p is a positive number, f(z) is a holomorphic function in the
entire complex plane C, and g(t) is a measurable function such that

(13) Ig(s)| < Moexplkolsl], seR,

for some positive constants My and k, then the formula

(14) F(z)= / exp[—pls — f(2)]g(s) ds

defines a holomorphic function in C.

PROOF: We need to show that F'(z) has continuous first-order partial deriv-
atives which satisfy the Cauchy—Riemann equations

15 —+i—=0.
as) T

Let zy = x( + iy be a fixed point in C. Since f(z) is bounded on any compact
subset of C, we have that there exists M > 0 depending on z, such that

(16) lexp[—pls — f(2)F]| < Mexpl—(p/2)s’], s€R, |z—z|<L.
Similarly, using the formulas
J 2 é’f 2
—exp[—pls = f(2)F] =2pls — ()]~ () exp[ —pls — [(2)T]

and

Jd J
Py exp[—pls — f(2)*] =2pls — f(z)]%(z) exp[—pls — f(2)F],

18The sum and product of analytic functions are analytic. See Rudin (1974).
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we obtain that

< Mexp[—(p/2)s*] and

J
a1 | Zewpl-pls- )

<Mexp[—(p/2)s*], seR, |z—z|<1,

a 2
‘Eexp[—p[s — f(2)1]

if we adjust the constant M. Using inequality (16) and our hypothesis that
g(s) satisfies (13), we obtain that F(z) is a well-defined function for all z € C.
Also, using inequalities (17) and the DCT (see Folland (1984, pp. 53-54)) we
obtain that the partial derivatives of F(z) with respect to x and y are well
defined near every point z, € C, are continuous, and that we can pass the dif-
ferentiation inside the integral sign. Since exp[— p[s — f(z)]*] is holomorphic,
it satisfies the Cauchy—Riemann equations

g .9 -
<£ +15) exp[—pls — f(2)’] =0

and we have that

J 0 _(T(9 .9 e 2
(5+l5)F(2)_/_m(ax+l&y)eXp[ pls — f(2)7]g(s) ds
:/OOO-g(s)ds=0,

which proves (15). This completes the proof of Lemma 1. Q.E.D.

2.5. The Analytic Method for Computing the Price-Dividend Function

By Theorem 1 the price—dividend function, P(x), is analytic and its Taylor
series about every point has infinite radius of convergence. In the integral
equation (6) there is a common term exp[K;x] that captures the role of
expected dividend growth, x, + ¢x, on the price—dividend ratio.!” It is more
convenient to compute the Taylor series for

(18) O(x) = exp[— K x]P(x)
instead of P(x). We refer to Q(x) as the price—expected-dividend function. The

function Q(x) has the same analytic properties as the price—dividend function,
since exp[— K x] is also real-analytic in the open interval (—o0, 00).

YStrictly speaking K, includes the impact of the constant in expected dividend growth, x;.
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If we replace the price—dividend-function, P(x), with the price—expected-
dividend function, Q(x), in the integral equation (6), then it satisfies the
integral equation

KiexploKix] /°° 1 )
19 =Ko+ ——— ——s— 01" | d
(19 Q) =Ko+ Nl N Q(s)exp| —5—ls — (dx+ O)I° | ds
where K; = Kpexp(xoK; + (0*(1 —y)*(¢ —a)(2+ ¢ —a))/2). Since the
price—expected-dividend function is analytic, we may express Q(x) as a Tay-
lor series

(k)
(20) O(x )—ZQ (x.) (x —x)*, xe(—o00,00).

Here x, is the average value of dividend growth.
Motivated by (20), we approximate the price—expected-dividend function
numerically by a polynomial of the form

1) Q)= bi(x—x).

k=0

Substituting this polynomial into the integral equation (19), computing the re-
sulting integrals, and equating the coefficients of the same power of x yields
the following system of linear equations in the unknown coefficients

k

(22) b0:K0+K6Zka<]§) (0)(x Ya; and

k=0 i=0

bl KﬁZka( ) (Z)(X )a

for/=1,...,n. Here, K¢ = %exp(%z[l v +K1]2 2[1 Y1), wir(x) =
exp[Ki(xo+ ¢x)](xo — x, + dpx)*, and a; = Z ()(02[1 —y+ KD x
(V20) (1+ (- 1)/)(1/2)F[f+1] Solving (22) we find the coefficients b, in our

approximate solution (21), Wthh allows us to compute the price-dividend
function using (18) by P¢(x) = exp[K;x]Q¢ (x).

2.6. Error Analysis for the Computed Price—Dividend Function

We now consider the error in our approximate solution (21) for the price—
expected-dividend function

error = max |Q(x)—QC(X)|

[x—xs|<
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Here r > 0 and 0 < u < 1 are to be chosen later. Write the price—expected-
dividend, Q(x), as

Q(x) = Q,(x) + R, (x).

Here Q,(x) =>"}_, ¢ >()"”(x x)Fand R, (x) =" ., ¢ )(X*)( —x,)*. Con-
sequently, the error may be decomposed into two parts based on

10(x) — 0, ()] = IR, (0)] + 10, (x) — Ou(x)].

We call the first error the analytic error and the second part the computational
error.

Using integral equation (19) and the Cauchy integral formula we obtain
the following estimate for the derivatives of the price—expected-dividend func-
tion?:

k
(23) |Q(k)(x*)| fBrr_k

Here B, is a fixed positive number derived in the Appendix. For the parame-
ters used here we find that B, = 637.5601 for the Mehra—Prescott case and
B, =2269.1687 for the external habit case when r = 200 So if |x — x,| < ur,
0 < p <1, then

© (k) _ k n+1
@) IRmI= Y L k(,x*)'<'x f‘*') <

k=n+1
Using this estimate for the analytic error we see that

n+1

+ max |Qc(x) Q,(x)].

[x—2xy]<

(25) error < B, l'w

In the Mehra—Prescott case the analytic error is below €/2 when we consider
only |x —x,| = .30 for n = 9 so that u = .015; € is a machine epsilon number. In
this paper a number is called machine epsilon when it is less than 10716, How-
ever, we can consider a larger domain for the price—expected-dividend function
of |x — x,| =8.60 by using n =50 and u = .43, and still keep the analytic er-
ror below €/2. The results are similar for the external habit case. Therefore,
we can make the analytic error less than €/2 by considering a smaller disk of
radius ur or by adding sufficiently many terms to the Taylor series (21).

The computation error for the price—expected-dividend function in (25)
is more involved. As new coefficients are added to the computational so-
lution, Q¢(x), the original coefficients can change since all new and old

2See Ahlfors (1979, p. 120) or Conway (1973, Corollary 5.9). For an application to Taylor
series, see Weinberger (1965, pp. 264-267).
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coefficients are involved in system (22). This computation error can be esti-
mated, but it is quite tedious. The basic idea is as follows: Put the power series
(20) for Q(x) into the integral equation (19). Manipulate this expression fol-
lowing the same procedures used in the derivation of (22). These calculations
result in an infinite system of equations in the coefficients for the power se-

ries (20) of Q(x), ie., %. Equation (23) provides estimates for these
coefficients. By applying Gaussian elimination to the first n equations and
coefficients in this infinite system of equations, we can express the errors in
first n coefficients in the following form

o) (k)
(26) b,—Qj(,x*)=E,(Q k('x*);kzn—kl) for j=0,...,n.

The errors, E;, are functions that are linear combinations of the higher-order

coefficients, % for k > n+ 1. These errors tend to zero as the number of
coefficients increases, since the bounds (23) tend to zero as more coefficients
are added. Thus, we can identify when the computational error tends to ma-
chine epsilon based on the bounds (23).

In our program, we stop adding coefficients when sup,_q, 1 1b,-1.i—bnil <
€/(2n), where b, ; is the ith coefficient of the computed solution (21) with
n coefficients. We take the stability of the coefficients as an indication that the
coefficients are sufficiently close to the true Taylor series coefficients. This rule
is satisfied for n = 9 coefficients in the Mehra—Prescott case and n = 11 in the
external habit case. The change in the early coefficients disappears as more co-
efficients are added. To be complete, we increased the number of coefficients
in our numerical procedure to 50 and do not see any change in the early coeffi-
cients greater than €/(2n). Thus, we know how to make the analytic error and
the computational error less than €/2, so that we have a well-defined numerical
procedure to approximate the analytic solution to the price—dividend function
with error less than machine e.

3. COMPARISON OF ANALYTIC SOLUTION WITH NUMERICAL APPROXIMATION

We parameterize the asset pricing model in the same way as found in the
literature. This allows us to compute (21), which yields the price-dividend
function with error given by (25).2! We can also compare our solution to a
Gaussian quadrature procedure (see Judd (1998, pp. 259-263)) to see how it
fares against that technique. We use a weighted sum of Chebyshev polynomials
to represent the solution to (6) in the interval (—X, X), where X is a multiple

21n the calculations we use this error relative to the computed solution for the price—dividend
function at the average value of dividend growth to make the comparison between solutions
consistent.
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of the standard deviation for dividend growth. In addition we have to evalu-
ate the integral in (6). To do this we use the Gaussian quadrature weights and
nodes, which give us an approximation for this integral using n nodes.”> We use
a collocation method to solve for the weights for the Chebyshev polynomials
for the proposed solution. This involves solving for the roots of the nth order
Chebyshev polynomial which are the optimal points to use. The measure, used
to determine the best number of nodes to calculate, is the residual from the
Euler equation divided by the price—dividend function at the average value of
dividend growth. We find that this residual is always below machine zero for
15 nodes.”

3.1. The Mehra and Prescott Case

We parameterize the Mehra and Prescott case as in Lucas (1994). The para-
meter values are o = .036, y =2.5, 8 =.95, x, = .017, and ¢ = —.14. With this
parameterization, we find that the supremum of the changes in the coefficients
is machine epsilon when we include 9 coefficients. We report in Table I the
moments, means, variances, and relative error for the price—dividend ratio we
generate from this model and compare them to those found using the Gaussian
quadrature method. We solve (6) for the price-dividend function with the nu-
merical method by bounding the error term with 3, 4, and 5 standard deviations
to the right and left of the mean.*

We see in Table I that the moments generated by Gaussian quadrature meth-
ods come close to matching the moments from our solution.”> We run the

2We use the procedure GaussianQuadratureWeights in Mathematica to obtain the weights
and nodes.

BFor the arguments in favor of using quadrature procedures in asset pricing, see Tauchen and
Hussey (1991). Since we are using a normal distribution, we could use Gauss—Hermite quadrature
methods, which allow integration over the entire support of the distribution. We choose Gaussian
quadrature instead because in several asset pricing models, such as Abel’s internal habit persis-
tence, one cannot use the entire support of the distribution. Dividend growth must be bounded
from above and below. With the Gaussian quadrature procedure, we can bound the support of
the distribution. Second, even if there were no bounds on the support of the distribution, we
could still get an accurate solution with the Gaussian quadrature procedure by integrating over
many standard deviations as we can make the limits of integration as large as we like. Last, in
order to approximate the P(x) function with Chebyshev polynomials, we need a maximum and
minimum growth rate for the dividend and, consequently, we need to bound the support of the
distribution.

24The reason we do this is because, for many models, bounds on the distribution of the random
variable arise naturally from the model as for example the habit persistence model in Abel (1990).
This gives us an idea of the accuracy of the solution and how such judgments affect the solution.

B ACCH (2003) provides complete details concerning the coefficients and errors. ACCH also
compares the analytic solution with Lucas’ (1994) and finds the moments comparable. We can ob-
tain all these moments from the price—dividend ratio, the bond price converting them to returns,
and the interest rate and then integrating over the random variable to obtain expected values and
standard deviations.
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TABLE 1
COMPARISON OF RESULTS?

Analytic Solution Gaussian Gaussian Gaussian
Statistic Nine Coefficients Three Std. Four Std. Five Std.
E(Ry) .098 .098 .098 .098
a(Ry) .046 .052 .046 .046
E(Rp) .094 .094 .094 .094
o(Rp) .014 .014 .014 .014
E(R,; — Rp) .004 .004 .004 .004
o(R; — Rp) .044 .044 .044 .044
E(C.1)/C, 017 017 017 017
a((Cii1)/C) 036 036 036 036
P(.017) 12.73 12.26 12.72 12.73
Error € —4.45x 1071 1.40 x 1076 €

aNotation: Ry is the return to the stock and Rp is the return to the bond. C; is per capita
consumption at time ¢ and P is the price—dividend ratio. E represents an expectation and
o is a standard deviation. P(.017) is the value of the price dividend ratio at the historic
average consumption growth. All the evaluations of the statistics with the analytic solution
are at the historic average consumption growth, .017. The parameter values used are g8 =
95, o =.036, y = 2.5, x4 = .017, and ¢ = —.14. We obtain these moments by using the
price—dividend ratio and the price of the bond, convert them to returns, and then integrate
to obtain the expected returns and standard deviations. The e in the error row means that
the relative error is below 1010,

Gaussian quadrature procedure with three different bounds on the error term:
3, 4, and 5 standard deviations. One reason we do this is that when thinking
of a normal distribution, it seems reasonable that integrating over 3 standard
deviations will give an accurate answer to any problem since 99% of the prob-
ability lies within the 3 standard deviations. However, we will see for the asset
pricing results here it is not the case and we need 5 standard deviations.

We see in Table I that when using 3 standard deviations, the moments match
the analytic solution at the historic value for dividend growth, but the price-
dividend ratio is off by 47 cents. This is a large deviation from the truth since
that large a difference in an asset price generated by the model can change
an investor’s decision. Suppose that the dividend today is $1.00 and one was
looking to find a mispriced security to buy or sell off. Suppose that the secu-
rity is trading at $12.50. Then one would sell or even sell short the security
according to the numerical solution, while one would buy the security accord-
ing to the analytic solution. This is of interest since the relative error to that
numerical procedure in the last row of Table I, measured as the deviation of
the Euler equation from zero divided by the price—dividend ratio, is very small
and one may conclude that this solution is accurate. We do see, however, that
as we increase the number of standard deviations over which we integrate, the
price—dividend ratio is the same as the analytic solution in Table I at the historic
average.

It is instructive to note that while in this case we can obtain a very good solu-
tion with the numerical method, the analytic solution gives the precise results
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with an actual error term as to how much the price—dividend ratio may be off
from the truth within the radius of convergence. One cannot provide this with
the numerical methods. Second, except for algebraic errors, there are really
no errors to be made as judgment errors. That is, once we have the solution
and an estimate of the bound on the remainder term, then the procedure is
straightforward and we know we will have the solution. An exception to this
is the result of Santos (2000) who finds under certain conditions, the resid-
ual on the Euler equation is of the same order of magnitude as the error in
the policy function. Even there, however, when estimating the policy function
numerically, one still needs to decide which numerical procedure to use. Con-
sequently, one still needs to use good judgment in order to obtain an accurate
solution.

3.2. Abel’s Habit Persistence Cases

In ACCH (2003) we report a detailed comparison with all the habit per-
sistence cases of Abel (1990). Here we focus on the external habit case with
parameters ¢ = —.14, B =.95, y=2.5, a =1, p =0, and x, = .017, the para-
meterization of Lucas (1994) with the exception that we will be looking at the
relative consumption model, « =1 and p = 0. With this parameterization, we
find that the supremum of the changes in the coefficients is less than - when
we include n = 11 coefficients.

Once again when we solve for the model using the Gaussian quadrature pro-
cedure with 5 standard deviations, we obtain the same solution at the point x,
in Table II. One interesting result is that with 4 standard deviations, all the
moments are matched with the analytic solution except for the price-dividend
ratio. In particular, from the error in this procedure, the Euler equation resid-
ual divided by the price—dividend ratio, one would conclude that the solution is
very accurate with a 4 standard deviation bound; however, in terms of pricing,
the solution is wrong by three cents per dollar of dividend.

The comparison between the analytic solutions to these asset pricing mod-
els and their numerical solution points to some benefits of solving for the an-
alytic solution. First, the relative error term, the approximate Euler equation
divided by the approximate price—dividend function, used in the Gauss quadra-
ture solution does not necessarily reflect the accuracy of the price—dividend
function. In addition, our procedure identifies the exact conditions when the
price—dividend function is well defined and accurate so that no judgment is
necessary in assessing our price—dividend function.

4. CONCLUSION

In this paper we present a new method for solving asset pricing models of one
state variable which yields an analytic price—dividend function, and we give a
detailed analysis for both Mehra and Prescott’s and Abel’s external habit mod-
els (see Theorem 1). Recall that a function is analytic in an open interval if it
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TABLE II
COMPARISON OF RESULTS: RELATIVE CONSUMPTION, e =1, p = (*

Analytic Solution Gaussian Gaussian  Gaussian
Statistic Eleven Coefficients Three Std. Four Std.  Five Std.
E(Ry) .075 075 075 75
a(Ry) .094 .091 .094 .094
E(Rp) .069 .068 .069 .069
a(Rp) .071 .070 .071 .071
E(R; — Rp) .006 .007 .006 .006
(R, — Ryp) 0844 0835 0844 0844
E(Ci11)/C .017 .017 .017 .017
a((Cii1)/C) 036 036 036 036
P(.017) 19.03 18.05 19.00 19.03
Error € —1.96 x 1016 € €

4Notation: Ry is the return to the stock and Rp is the return to the bond. C; is per
capita consumption at time ¢ and P is the price—dividend ratio. E represents an expecta-
tion and o is a standard deviation. P(.017) is the value of the price—dividend ratio at the
historic average consumption growth. All the evaluations of the statistics with the ana-
Iytic solution are at the historic average consumption growth, .017. The parameter values
used are B =.95, o =.036, y=2.5, x« = .017, and ¢ = —.14. We obtain these moments
by using the price—dividend ratio and the price of the bond, convert them to returns, and
then integrate to obtain the expected returns and standard deviations. The e in the error
row means that the relative error is below 1010,

can be expressed as a convergent power series near every point of that interval.
In Chen, Cosimano, and Himonas (2003) this method is extended further to
show that the price—dividend function from Campbell and Cochrane’s (1999)
model is analytic as long as their sensitivity function is holomorphic. Also,
Chen, Cosimano, and Himonas are currently exploring the extent to which this
method can be extended to the higher-dimensional Campbell and Cochrane
model developed by Wachter (2002). We think this procedure can be used to
handle more complicated asset pricing models in one as well as in several di-
mensions.

To establish an analytic solution to an asset pricing model, we first need an
increasing, concave utility function (1), which becomes holomorphic after com-
plexification. We also need a bijective, holomorphic stochastic process for the
state variable (2) in a neighborhood of zero after it is also complexified so
that the stochastic process for the future state variable may be inverted. This
leads to an integral equation for the price—dividend function that, after mak-
ing an appropriate change of variables, depends holomorphically on the state
variable near zero. Finally, after establishing that the solution is integrable,
one expects the complex analysis (in one or several variables) similar to that
presented here to go through to obtain the analyticity of the price—dividend
function near zero. The formulation of general conditions under which the
price—dividend function is holomorphic is the main subject of our research.
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The analyticity property of the price—dividend function has motivated a nu-
merical procedure implementing higher-order Taylor approximation with error
measured by using Cauchy’s integral formula. The results obtained this way are
compared with a state of the art numerical procedure from the extant litera-
ture.

There are several directions for future research to extend this method. First,
increase the dimension of the asset pricing problems. There are several prob-
lems of interest in multidimensional cases such as portfolio choice over many
assets. Second, consider stochastic growth models, which yield nonlinear inte-
gral equations. Jin and Judd (2002), and Schmitt-Grohe and Uribe (2004) ex-
amine both extensions for the perturbation method, and it would be interesting
to extend our method to those cases. Finally, we showed in ACCH (2003) how
accurate solutions to the asset pricing models can be used to accurately price
European call options in circumstances more general than in the Black and
Scholes model.
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