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to solve asset pricing models. Campbell and Cochrane’s [1999. By

force of habit, a consumption-based explanation of aggregate

stock market behavior. Journal of Political Economy 107, 205–251]

habit persistence model provides a prototypical example to

illustrate this method. When the parameters involved satisfy

certain conditions, the integral equation of this model has a

solution in the space of continuous functions that grows

exponentially at infinity. However, the parameters advocated by

Campbell and Cochrane do not satisfy one of these conditions. The

existence problem is removed by restricting the price–dividend

function to avoid values of dividend growth that are extreme.

Thus, existence and uniqueness of the solution in the space of

continuous and bounded functions is proved. Using complex

analysis the price–dividend function is also shown to be analytic

in a region large enough to cover all relevant values of dividend

growth. Next, a numerical method is presented for computing

higher order polynomial approximations of the solution. Finally, a

uniform upper bound on the error of these approximations is

derived. An intensive search of the parameter space results in no

parameter values for which the solution matches the historic

equity premium and Sharpe ratio within Campbell and Cochrane’s

model.
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1. Introduction

Various asset pricing models have been proposed to explain the equity premium puzzle, i.e., the
high return on stocks relative to the return on risk-free bonds.1 Each of these models produces an
integral equation whose solution determines the price–dividend function and hence also the
equilibrium return on a risky asset held by a representative investor. Although there is limited
information about the essential properties of the solutions to these integral equations, economists
and mathematicians employ numerical methods to approximate them. The recent work of CCCH and
CCH shows how to obtain the essential mathematical properties of the solutions to the well-known
asset pricing models of Mehra and Prescott (1985) and a generalized version of Abel (1990).2 They go
on to show how these properties can lead to improvements in the numerical algorithms developed to
represent the solutions to these models. This paper lays out how these analytic methods can be used
to identify the mathematical properties of more general asset pricing problems. Subsequently, it
shows how to develop numerical algorithms exploiting these properties.

To illustrate these analytic methods we use the asset pricing model of Campbell and Cochrane
(CC) (1999). A shortcoming of early asset pricing models is that they require unrealistically large
levels of relative risk aversion and/or high risk free interest rates in order for their price–dividend
functions to yield equity premiums consistent with empirical evidence.3 CC seek to reconcile this gap
between theory and evidence by introducing a surplus consumption ratio into the pricing kernel.
This surplus consumption ratio compares the investor’s consumption with their external habit. They
also develop an equation of motion for this surplus consumption ratio, which is dependent on
random shocks to dividend growth. In this equation of motion the log-normally distributed random
shocks to dividend growth are amplified by a sensitivity function that places larger (smaller) weight
on small (large) random shocks to dividend growth. This sensitivity function is dependent on the
surplus consumption ratio so that the surplus consumption ratio is the state variable for the
determination of the price–dividend ratio. This specification creates a precautionary savings which
keeps the risk free interest rate low.4

The CC model leads to an integral equation for the price–dividend function which depends on the
surplus consumption ratio. Moreover, the surplus consumption ratio depends on future dividend
growth. In this model it is assumed that dividend growth follows a log-normal distribution.
Therefore, it is natural to seek a solution to the integral equation in the space of continuous functions
that grow exponentially. That is, the real vector space CðR; egxÞ of all continuous functions f ðxÞ with
domain R such that jf ðxÞjpm1egx þm2 for all x, where m1;m2X0 may depend on f ðxÞ. When the
parameters involved satisfy certain conditions, it is shown that the integral equation of the CC model
has a unique solution in the space CðR; egxÞ (see Proposition 1).

Unfortunately, the condition for the existence of a unique solution to Campbell and Cochrane’s
model in the space CðR; egxÞ is not satisfied. Given the procedure for choosing the parameter values
espoused by CC, it is shown that the coefficient of risk aversion must be larger than 76 for existence
of the solution, which is even higher than the value Mehra and Prescott (1985) needed to explain the
equity premium. The reason for this failure is that dividend growth is too low relative to the risk free
interest rate. Thus, there is no known proof of existence for the original specification of the model by
Campbell and Cochrane.

To deal with the existence problem the price–dividend function is restricted to avoid values of the
surplus consumption ratio that are extreme. Then, existence and uniqueness of the solution is proved
in the space of continuous and bounded functions for a larger set of the parameters, including the
ones used by CC. Also, a uniform upper bound for the solution (see Theorem 1) is found. This
1 See Mehra and Prescott (2003) for a recent survey of these models.
2 Throughout the paper, we will write CCCH for the paper by Calin et al. (2005), write CCH for the paper by Chen et al.

(2008), and write CC for the paper by Campbell and Cochrane (1999).
3 Weil (1989) refers to this phenomenon as the risk free rate puzzle.
4 Cecchetti et al. (2000) provide an alternative motive for precautionary savings to explain the equity premium with a low

risk free interest rate.
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provides a firm basis for further study of the mathematical properties of the Campbell and Cochrane
model.

Indeed, using complex analysis it is shown that the price–dividend function is analytic near the
steady state surplus consumption ratio and the region of convergence of its Taylor series is computed
(see Theorem 2). The radius of convergence is large enough so that the region of convergence
contains the consumption growth in the interval ½x0 � 25%; x0 þ 25%� where x0 is the steady state
level of consumption growth. This range of consumption growth would include any fluctuation in
dividend growth around the world in the 20th century (see Barro, 2006). Thus, the price–dividend
function is analytic for any feasible level of consumption growth.

Taking advantage of the established analyticity of the price–dividend function and the fact that its
Taylor series has a large enough region of convergence, we develop a numerical algorithm that
computes a nth order polynomial approximation for the solution. In addition, the uniform bound on
the price–dividend function, along with it being an analytic function, yields a uniform bound on the
approximation error for dividend growth in the interval ½x0 � 25%; x0 þ 25%�.5 Thus, the numerical
solution for the price–dividend function may be made as accurate as desired by increasing the order
of the polynomial approximation.

In summary, this paper provides an overview of the analytic method for solving asset pricing
models, and applies it to solve rigorously the interesting model of Campbell and Cochrane. It is worth
mentioning that the value of the price–dividend ratio around the steady state surplus consumption
ratio is very sensitive to its values far away from the steady state due to the global nature of the model
(integral equation). This becomes apparent in calibrating and simulating the model (see Section 6). For
example using the CC parameters the upper bound of the price–dividend function is below 187

12 ¼ 15:6
when dividend growth is restricted to the interval ½x0 � 25%; x0 þ 25%�. As a result, it is impossible to
obtain the historic value of 18.6 at the steady state under these circumstances. After an intensive
search of the parameter space using available computational resources, there is no combination of
parameters in which the equity premium and Sharpe ratio match their historic values.

In Section 2 we provide an overview of our analytic method for solving asset pricing models. In
Section 3 we summarize CC’s asset pricing model and prove existence and uniqueness of the
price–dividend function when the parameters involved satisfy certain conditions. However, the
parameters used by Campbell and Cochrane do not satisfy one of these conditions. We remedy this
problem by restricting the price–dividend function to avoid big tails and prove existence and
uniqueness of solution in the space of continuous and bounded functions. In Section 4, using
complex analysis, we show that the price–dividend function is analytic at the steady state level of
dividend growth and find the radius of convergence for its Taylor series. In Section 5 we present a
numerical method for computing a higher order polynomial approximation of the solution and
provide an error analysis of the numerical solution. In Section 6 we summarize the results from our
numerical simulation of the CC asset pricing model. The conclusion is provided in Section 7. Finally,
in the appendix we provide complete proofs of the mathematical results used in this paper.

2. Overview of analytic method

In this paper, we consider the properties of the solutions of integral equations, which are found in
asset pricing models, of the form:

PðxÞ ¼

Z
Rm

Mðjðx; nÞ; nÞð1þ Pðjðx; nÞÞÞf ðnÞdn, (1)

where P : Rm ! R is an unknown price–dividend function of the state variables x, jðx; nÞ is a function
for the motion of state variables which depends on the random shocks n with probability density
function f ðnÞ, and Mðjðx; nÞ; nÞ is the pricing kernel which represents the investor’s evaluation of
future cash flows from an investment. Mðjðx; nÞ; nÞ depends on the future state variables as well as the
random changes in these state variables.
5 Santos (1991, 1992, 1993, 1999, 2000) also provides error analysis for his numerical procedures.
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The asset pricing models of Mehra and Prescott (1985), Abel (1990), and Campbell and Cochrane
(1999) fit into this integral equation with one state variable. Epstein and Zin’s (1989, 1990, 1991)
asset pricing model also fits into this framework with an appropriate definition of the unknown
function as a function of the price–dividend function, i.e.,

NðxÞ � ðPðxÞ þ 1Þg.

The extensions of the Campbell and Cochrane model by Wachter (2002, 2006) yield a two-
dimensional asset pricing function, since the consumption growth and inflation are added as
additional state variables to Campbell and Cochrane’s price–dividend function. The empirical habit
based model of Chen and Ludvigson (2008) would have four state variables. The models of exchange
rates, which treat foreign exchange as an asset,6 may also be placed into this rubric. Although, most
of the models of exchange rates treat the stochastic discount factor as a constant, exchange rates are
subject to anomalies similar to asset prices so that this literature may benefit from the use of more
sophisticated pricing kernels.7 Stochastic growth models such as Brock and Mirman (1972) would
not fit into this setup, since the pricing kernel would be a function of the unknown equilibrium
function. As a result, stochastic growth models would yield a non-linear integral equation which we
do not address in this paper.

What makes the integral equation (1) atypical is the dependence of the unknown price–dividend
function on the equation of motion. Standard mathematical analysis of integral equations like
(1) would have the unknown function on the right-hand side dependent only on the random
shock, i.e.,

PðxÞ ¼ gðxÞ þ

Z
Rm

Kðx; yÞPðyÞdy,

where K : Rm � Rm ! R is the kernel of the integral equation. The properties of the solution PðxÞ

depend on those of gðxÞ and Kðx; yÞ. Tauchen and Hussey (1991) use the quadrature procedure to solve
numerically such integral equations, assuming the existence and uniqueness of the solution. In our
work, we go beyond this to provide a polynomial approximation scheme by taking advantage of the
fact that in our atypical integral equation the resulting (after some transformations) gðxÞ and Kðx; yÞ

are analytic, and therefore we can prove that PðxÞ is analytic, too.8

The first step in the analysis of the integral equation (1) is to identify a vector space of functions in
which a unique solution to the price–dividend function exists, e.g., see Definition 2 and Proposition 1
for the Campbell and Cochrane case.

Next, we simplify the analysis by using a change of variables which makes the future
price–dividend function dependent only on the random shock(s). We introduce:

Assumption 1. detðqj=qnÞa0, so that we can make the change of variables s ¼ jðx; nÞ, or
equivalently, n ¼ cðx; sÞ.9

Then the integral equation (1) becomes

PðxÞ ¼

Z
Rm

Mðs;cðx; sÞÞð1þ PðsÞÞf ðcðx; sÞÞjdetðqc=qsÞjds. (2)

In this form, the integral equation is a Fredholm equation of the second type in which the kernel is
Mðs;cðx; sÞÞf ðcðx; sÞÞjdetðqc=qsÞðx; sÞj.

To solve this integral equation we rely on analytic methods following CCCH. Before describing our
solution method, we discuss briefly the basic properties of holomorphic functions in one complex
variable. These properties are also valid in several complex variables with some additional technical
complications. Let f ðzÞ be a complex-valued function of z defined in an open set (domain) D of the
6 See Engel and West (2005) for a recent discussion of this topic.
7 For example, see Choi et al. (2008).
8 In CCCH, we provide a comparison between the quadrature method and the polynomial method for the Mehra and

Prescott (1985) model.
9 A similar assumption can be found in Blume et al. (1982).
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complex plane C. Suppose that this function is smooth and it can be expressed as

f ðzÞ ¼
X1
k¼0

f ðkÞðz0Þ

k!
ðz� z0Þ

k for jz� z0jor and z0 ¼ x0 þ iy0, (3)

where f ðkÞðz0Þ denotes the kth order complex derivative of f ðzÞ at z ¼ z0 (the usual calculus formulas
for real differentiation hold true for complex differentiation, too). Separating this function into its
real and imaginary parts f ðzÞ ¼ f 1ðx; yÞ þ if 2ðx; yÞ, we obtain

qf

qx
¼

qf 1

qx
þ i

qf 2

qx
¼
X1
k¼1

f ðkÞðz0Þ

k!
kðz� z0Þ

k�1

and

qf

qy
¼

qf 1

qy
þ i

qf 2

qy
¼
X1
k¼1

f ðkÞðz0Þ

k!
ikðz� z0Þ

k�1.

Multiplying the second equation by i and adding it to the first yields

q̄f �
qf

qz̄
�

1

2

qf

qx
þ i

qf

qy

� �
¼ 0:10 (4)

This equation is called the Cauchy–Riemann equation, which can also be written in the form:

qf 1

qx
¼

qf 2

qy
and

qf 1

qy
¼ �

qf 2

qx
.

This motivates the following:

Definition 1. A function f ðzÞ is said to be holomorphic in an open set D in the complex plane if f is in
C1
ðDÞ and satisfies the Cauchy–Riemann equation in D.

In fact, it can be shown that f is holomorphic in D if q̄f ¼ 0 in the sense of distribution theory (weak
derivatives). A proof of this fact can be found in Hörmander (1983, p. 110, Theorem 4.4.1). The basic
theory of holomorphic functions can be found in the classical text of Ahlfors (1979) or Hörmander
(1979), where it is presented in the more general context. There, it is proved that a holomorphic
function has derivatives of any order, and therefore its Taylor series can be formed. Moreover, for
each z0 2 D there is (a maximal) positive number r, called the radius of convergence for f ðzÞ at z0, such
that f ðzÞ can be represented by its Taylor series, like (3), for jz� z0jor.

A key fact, which is very useful in our work here, is that r is equal to the distance of z0 to the
boundary of the domain of holomorphicity of f. For example, if f ðzÞ ¼ 1=ð1þ z2Þ, then the domain of
holomorphicity of f is Cnf�ig, and its radius of convergence r, say about 0, is equal to ji� 0j ¼ 1.

The ‘calculus’ definition of an analytic function f ðxÞ of a real variable x in an open interval ða; bÞ is
that it is in C1ða; bÞ and at each point x0 2 ða; bÞ the remainder RnðxÞ of the nth degree Taylor
polynomial approximation of f ðxÞ tends to zero as n!1 when jx� x0jor. By complexifying x to
z ¼ xþ iy, we obtain a holomorphic function f ðzÞ in an open set D in C, and we may think of f ðxÞ as
the restriction of f ðzÞ from D to ða; bÞ.

We now continue with our procedure. For proving the analyticity of the price–dividend function,
we need:

Assumption 2. Mðs;cðx; sÞÞ, f ðcðx; sÞÞ, and jdetðqc=qsÞðx; sÞj are analytic in x, and therefore can be
complexified to give holomorphic functions with respect to the complex variable z ¼ xþ iy.

Consequently, we expect the price–dividend function to be holomorphic as well.
Assumption 2 gives

q̄ðMðs;cðz; sÞÞf ðcðz; sÞÞjdetðqc=qsÞðz; sÞjÞ ¼ 0,
10 See Hörmander (1983, p. 62).
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since the product of holomorphic functions is holomorphic. Verifying that we can pass differentiation
q̄ inside the integral sign of Eq. (2), we find that the integralZ

s
Mðs;cðz; sÞÞð1þ PðsÞÞf ðcðz; sÞÞjdetðqc=qsÞðz; sÞjds

is holomorphic for z in an open set D in C. So the radius of convergence for the price–dividend
function at z0 ¼ x0 þ i0 is determined by the distance of z0 to the boundary of the domain D.

When there is a bound P0 on the price–dividend function, we can use the Cauchy integral formula
(see Conway, 1973) to place a bound on its derivatives. Denote by Cr for the circle of radius r40
centered at z ¼ z0 in the complex plane.

PðkÞðz0Þ ¼
k!

2pi

I
Cr

PðzÞ

ðz� z0Þ
kþ1

dz for k ¼ 0;1;2; . . . . (5)

Therefore,

jPðkÞðz0Þjp
k!

2p

I
Cr

jPðzÞj

jz� z0j
kþ1
jdzjp

P0k!

rk
for k ¼ 0;1;2; . . . . (6)

Motivated by the fact that the price–dividend function has a power series expansion like (3), it
makes good sense to use the following numerical procedure. For any given integer nX0, we look for a
polynomial approximation of the price–dividend function of the form:

Pc
nðxÞ ¼

Xn

k¼0

bkðx� x0Þ
k, (7)

where the coefficients bk are determined by substituting the polynomial Pc
nðxÞ into (1).

In CCCH, we use the bound (6) on the derivatives of the price–dividend function to find a bound
on the error in our approximate solution (7).

error � max
jx�x0jomr

jPðxÞ � Pc
nðxÞj, (8)

where 0omo1.
3. The Campbell and Cochrane model

Campbell and Cochrane (1999) assume that individual’s preferences are represented by

Et

X1
j¼t

bj
ðSa

j CjÞ
1�g
� 1

1� g

0
@

1
A,

where Cj is the individual’s consumption at time j ¼ t; t þ 1; . . ., Sa
j ¼ ðC

a
j � XjÞ=Ca

j is the surplus
consumption ratio at time j, Ca

j is the average consumption of all individuals at time j and Xj is their
habitual level of consumption at time j, and g40 is the relative risk aversion.11 Finally, EtðxÞ refers to
the expectation of x conditional on the investor’s information at time t.

The surplus consumption ratio Sa
t satisfies the AR(1) process with 0ofo1:

sa
tþ1 ¼ ð1� fÞs̄þ fsa

t þ lðsa
t Þðc

a
tþ1 � ca

t � gÞ,

where the lower case letters refer to the natural logarithms of the variables, e.g.,

sa
t ¼ lnðSa

t Þ.

The consumption growth follows a normal distribution such that

ca
tþ1 � ca

t ¼ g þ vtþ1; vtþ1�i:i:d: Nð0; s2Þ.
11 See Wachter (2005) for a recent survey of models based on CC’s model. Korniotis (2005) provides estimation of CC’s

model under complete and incomplete markets.
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To introduce heteroscedasticity of the random shock to the consumption growth, Campbell and
Cochrane introduce the sensitivity function:

lðsa
t Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ðsa

t � s̄Þ
p

=S̄� 1 if sa
t psmax;

0 if sa
t 4smax:

(

Here,

S̄ � s
ffiffiffiffiffiffiffiffiffiffiffiffi

g
1� f

r
and smax ¼ s̄þ

1� S̄
2

2
. (9)

This sensitivity function was derived from four properties: (1) the domain of the pricing kernel is Rþ;
(2) the natural logarithm of the risk free interest rate, rf , is constant;12 (3) the derivative of sa

t with
respect to c is 0 at S̄; and (4) the second derivative of sa

t with respect to c is 0 at S̄.
The price–dividend function satisfies the Euler condition:

PðstÞ ¼ Et Mtþ1
Dtþ1

Dt
ð1þ Pðstþ1ÞÞ

� �
, (10)

where P : R! Rþ is the price–dividend function that pays the dividend stream Dt and Mtþ1 �

be�gg�gðf�1Þðst�s̄Þ�gð1þlðst ÞÞvtþ1 is the pricing kernel. In the most general model, Campbell and Cochrane
assume that dividend growth follows:

da
tþ1 � da

t ¼ g þwtþ1; wtþ1� i:i:d: Nð0; s2
wÞ and corrðwt ; vtÞ ¼ r.

Consequently, the random shocks to dividends follow a log-normal distribution.
To find the price–dividend function PðxÞ, we rewrite the Euler condition (10) as

PðxÞ ¼
K0eK1xffiffiffiffiffiffi

2p
p

s

Z 1
�1

eðK2�gð1þlðxÞÞÞv � ð1þ Pðfxþ lðxÞvÞÞ � e�v2=2s2

dv, (11)

where x ¼ sa
t � s̄, v ¼ vtþ1, and

K0 � begð1�gÞþ1=2ð1�r2Þs2
w ; K1 � ð1� fÞg; K2 �

rsw

s
. (12)

Now the sensitivity function is written as

lðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x
p

=S̄� 1 if xpx	;

0 if x4x	;

(
(13)

where x	 ¼ smax � s̄ ¼ ð1� S̄
2
Þ=2. Consequently, we obtain an integral equation in the form (1). In

addition, the equation of motion for the state variable jðx; vÞ ¼ fxþ lðxÞv satisfies Assumption 1 as
long as lðxÞ40. Thus, the interval of convergence for the price–dividend function must be limited to a
subset of ð�1; x	Þ.

3.1. Existence and uniqueness of the price– dividend function

We follow CCCH and seek a solution in the following vector space.

Definition 2. Let CðR; egxÞ denote the real vector space that consists of all continuous functions f ðxÞ

such that jf ðxÞjpm1egx þm2 for all x 2 R, where the constants m1X0 and m2X0 may depend on f ðxÞ.

By completing the square (see Appendix A), we can write the Eq. (11) in the form:

PðxÞ ¼ MðxÞ þ
MðxÞffiffiffiffiffiffi

2p
p

s

Z 1
�1

e�ð1=2s2Þðv�s2ðK2�gð1þlðxÞÞÞÞ
2

Pðfxþ lðxÞvÞdv, (14)
12 If rf ¼ rf
0 � Bðst � s̄Þ, then S̄ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð1� f� B=gÞ

p
. This does not influence any of the analysis of the integral equation for

the price–dividend function.
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where

MðxÞ � K0eK1xþs2ðK2�gð1þlðxÞÞÞ
2=2. (15)

Note that jMðxÞjpm1egx þm2 for all x 2 R, where

m1 � K0eðs
2ðK2�gÞ

2
�gfð1�S̄

2
ÞÞ=2 and m2 � K0es2ðK2

2þg
2=S̄

2
Þ=2�s2gK2 . (16)

So MðxÞ is in CðR; egxÞ.

Definition 3. For any f ðxÞ 2 CðR; egxÞ, we define the transformation

ðTf ÞðxÞ �
MðxÞffiffiffiffiffiffi

2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞðv�s2ðK2�gð1þlðxÞÞÞÞ

2

f ðfxþ lðxÞvÞdv. (17)

The next result shows that the transformation T maps the space CðR; egxÞ into itself.

Lemma 1. If f ðxÞ 2 CðR; egxÞ, then ðTf ÞðxÞ 2 CðR; egxÞ.

The proof of this lemma is provided in Appendix B.
Now Eq. (14) is equivalent to PðxÞ ¼ MðxÞ þ ðTPÞðxÞ. The following assumption will guarantee that

this equation has a unique solution in CðR; egxÞ,

Assumption 3. 0oS̄o1, 0pm1o1, and 0om2o1.

Proposition 1. Under Assumption 3, the integral equation (14) has a unique solution in the space

CðR; egxÞ.

We prove this proposition in Appendix C. Next, we discuss the validity of Assumption 3.
The parameters used by Campbell and Cochrane satisfy the first two conditions in Assumption 3.

However, they do not satisfy the last condition. More precisely we have the following remark.

Remark. The condition m2o1 is not satisfied for the Campbell and Cochrane parameters.

In fact, in the consumption claim case we have K2 ¼ 1, r ¼ 1 and sw ¼ s. Combining these

conditions with the definition of K0 in (12) and m2 in Eqs. (16) yields

m2 ¼ begð1�gÞes2ð1þg2=S̄
2
Þ=2�s2g. (18)

Campbell and Cochrane set the parameters with a monthly time frame, so that g ¼ 0:0118=12 ¼

0:00157, g ¼ 2, s ¼ 0:0112=
ffiffiffiffiffiffi
12
p

¼ 0:00323, S̄ ¼ 0:0448, and b ¼ 0:9894. In this case, m2 ¼ 1:0008, so

that the Campbell and Cochrane model does not satisfy the condition for existence in Proposition 1.

Similar calculations for the dividend claim case yield the same result. In the calibration section, we

show that this condition is not satisfied for most circumstances.

To remedy this problem we shall restrict the price–dividend function when the surplus
consumption ratio gets too big. But first, we transform integral equation (11) for convenience.

3.2. Transformed integral equation

As we shall see below it is more convenient to work with the following transformation of the
price–dividend function.

Definition 4. Define the transformation:

Q ðxÞ ¼ e�gxð1þ PðxÞÞ. (19)

Also, using the change of variables y ¼ fxþ lðxÞv, (11) is transformed to

Q ðxÞ ¼ e�gx þ
K3ffiffiffiffiffiffi

2p
p

slðxÞ

Z 1
�1

Q ðyÞe�ð1=2s2lðxÞ2Þðy�cðxÞÞ2 dy, (20)
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where

K3 � K0es2ðK2�gÞ
2=2, (21)

and

cðxÞ � fxþ s2ðK2 � gÞlðxÞ. (22)

Furthermore, let

~lðxÞ � slðxÞ ¼
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x
p

� s if xpð1� S̄
2
Þ=2;

0 if x4ð1� S̄
2
Þ=2;

8<
: (23)

where c ¼ s=S̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� fÞ=g

p
. Then cðxÞ ¼ fxþ sðK2 � gÞ~lðxÞ and (20) takes the form:

Q ðxÞ ¼ e�gx þ
K3ffiffiffiffiffiffi

2p
p

~lðxÞ

Z 1
�1

Q ðyÞe�ð1=ð2ð
~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy. (24)

Choosing an r such that

0oroð1� S̄
2
Þ=2, (25)

we have that the denominator ~lðxÞ in (24) never vanishes for xor. So we modify the integral equation
(24) as follows (see Appendix D):

Q ðxÞ ¼

e�gx þ
K3ffiffiffiffiffiffi

2p
p

~lðxÞ

Z 1
�1

Q ðyÞe�ð1=ð2ð
~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy if � rpxpr;

Q ðrÞ if x4r;

Q ð�rÞ if xo� r:

8>>><
>>>:

(26)

Now we have the following result.

Theorem 1. If the condition (25) holds and K3o1, then the Eq. (26) has a unique solution Q ðxÞ in the

vector space of all continuous and bounded functions defined in R. Moreover, we have

kQk � sup
x2R
jQ ðxÞjp

egr

1� K3
. (27)

We prove this theorem in Appendix E. Next, we discuss the analyticity of Q ðxÞ.
4. Analyticity of the price–dividend function

Since Q ðxÞ ¼ e�gx½1þ PðxÞ�; to prove that the price–dividend function PðxÞ is analytic near x ¼ 0
and its Taylor series has radius of convergence rc it suffices to prove it for the function Q ðxÞ. For this,
we shall apply basic properties of holomorphic functions. First, we will show that Q ðxÞ makes sense
when x is replaced by w ¼ uþ iv. (Here, we use the complex variable w ¼ uþ iv instead of the
traditional notation z ¼ xþ iy.) By (20) it suffices to do this for the function

FðwÞ �

Z 1
�1

Q ðtÞ � e�ð1=ð2s
2lðwÞ2ÞÞðt�cðwÞÞ2 dt, (28)

since the other pieces in the formula defining Q are well-known elementary functions.
Second, we need to show that

q̄FðwÞ ¼

Z 1
�1

Q ðtÞ � q̄ðe�ð1=ð2s
2lðwÞ2ÞÞðt�cðwÞÞ2 Þdt ¼ 0; (29)

that is, the Cauchy–Riemann equation holds in an open set D in C. We already know that
e�ð1=2s2lðwÞ2Þ½t�cðwÞ�2 is holomorphic at the origin. Consequently, we must verify that the integrals (28)
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and (29) exist. Both of these conditions are satisfied when

Re
1

2s2lðwÞ2
ðt � cðwÞÞ2

( )
40. (30)

This method is implemented in Appendix F. Here, it is summarized in the following lemma.

Lemma 2. Let

f ðxÞ ¼

Z 1
�1

Q ðtÞe�ð1=ð2s
2lðxÞ2ÞÞðt�cðxÞÞ2 dt, (31)

where Q ðxÞ is a bounded and continuous function and cðxÞ is given by (22). Then f ðxÞ is analytic for

xox	 ¼ ð1� S̄
2
Þ=2, and the radius of convergence of its Taylor series around the origin is equal to

rc ¼
S̄

2
Rz

2
, (32)

where

Rz �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � S̄

�2
Þ
2
þ

1

4
ðx2

0 � 1Þ2
r

and x0 �
�31=3S̄4=3

þ ð9þ
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ S̄

4
q

Þ
2=3

32=3S̄2=3
ð9þ

ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ S̄

4
q

Þ
1=3

. (33)

The next theorem, which is the main result of this section, follows immediately from the relation
between PðxÞ and Q ðxÞ given in Definition 4.

Theorem 2. The price– dividend function PðxÞ is analytic for xox	 ¼ ð1� S̄
2
Þ=2, and the radius of

convergence of its Taylor series about the origin is rc ¼ S̄
2
Rz=2.

Theorem 2 gives the best estimate for the radius of convergence for the Taylor series of the
price–dividend function PðxÞ about the origin. In the next section, we exploit the analyticity of the
price–dividend function in the interval determined by Theorem 2 for the purpose of approximating
the price–dividend function numerically.
5. Numerical solving for the price–dividend function

Based on Lemma 2, the solution of (26) is analytic at the origin and the radius of convergence for
the Taylor series of Q ðxÞ around the origin is rc. Choosing r to satisfy the additional condition:

0ororc, (34)

we have that the Taylor series of Q ðxÞ about the origin converges to Q ðxÞ for �rpxpr, and therefore
Q ðxÞ satisfies equation:

Q ðxÞ ¼

X1
n¼0

anxn if � rpxpr;

X1
n¼0

anrn if x4r;

X1
n¼0

ð�1Þnanrn if xo� r:

8>>>>>>>>>><
>>>>>>>>>>:

(35)

In Appendix G, we show that the coefficients an satisfy the linear equations

al ¼
ð�1Þlgl

l!
þ
X1
n¼0

an dl;0
K3ð1þ ð�1ÞnÞrn

2
þ
X1
k¼0

K3ffiffiffiffiffiffi
2p
p

2kk!

(

�
Xn

j¼0

X2kþjþ1

i¼0

n

j

 !
2kþ jþ 1

i

 !
½ð�1Þjþk

þ ð�1Þiþjþkþ1
�ri

2kþ jþ 1
� b2kþ1þn�i;2kþ1;l

0
@
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þ
X2kþ1

j¼0

2kþ 1

j

 !
½ð�1Þjþk

þ ð�1Þnþkþ1
�rnþj

2kþ 1
� b2kþ1�j;2kþ1;l

1
A
9=
;, (36)

where

dl;0 ¼
1 if l ¼ 0

0 if la0

(

and the bs;t;l are the coefficients of the power series:

cðxÞr

~lðxÞt
¼
X1
l¼0

bs;t;lx
n. (37)

The computer cannot solve a system of infinitely many equations as in (36). We consider the
approximate solution:

TnðxÞ ¼
Xn

k¼0

akxk. (38)

The ak are the solutions to the system (36) of linear equations which is truncated at n. The
approximation error for Q ðxÞ which solves Eq. (35) is

error � max
jxjomr

jQ ðxÞ � TnðxÞj. (39)

Here, 0omo1 is to be chosen later. Write

Q ðxÞ ¼ QnðxÞ þ RnðxÞ, (40)

where

QnðxÞ ¼
Xn

k¼0

Q ðkÞð0Þ

k!
xk and RnðxÞ ¼

X1
k¼nþ1

Q ðkÞð0Þ

k!
xk.

Then

jQ ðxÞ � TnðxÞjpjRnðxÞj þ jQnðxÞ � TnðxÞj.

Next, we derive an estimate for RnðxÞ. For this, we need the following result.

Lemma 3. If ro1
2þ S̄ 3

2S̄�
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̄

2
þ 1

q� �
, then 1� 2r þ S̄

2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

40.

Thanks to this lemma which is proved in Appendix H, we can give the following:

Definition 5. Set

Br � max kQk; egr þ K3kQk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r þ S̄

2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

1� 2r þ S̄
2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

vuut
8<
:

9=
;. (41)

Theorem 3. If ro1
2þ S̄ 3

2S̄�
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̄

2
þ 1

q� �
, then

jRnðxÞjp
Brmnþ1

1� m
for jxjpmr. (42)

We prove this theorem in Appendix I. As a result, we obtain an upper-bound for the error of the
numerical solution TnðxÞ:

errorp
Brmnþ1

1� m
þmax
jxjomr

jQnðxÞ � TnðxÞj. (43)
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6. Calibration and numerical solution of Campbell and Cochrane model

In this section, the asset pricing model of Campbell and Cochrane (1999) is calibrated and
simulated using our numerical algorithm. An important part of this simulation is the procedure,
which CC use to calibrate the parameters for obtaining a reasonable match with the data. They start
with the following approximation for the Sharpe ratio:

SRðxÞ �
EtðR

e
tþ1Þ � Rtþ1

SðRe
tþ1 � Rtþ1Þ


 gsð1þ lðsÞÞ, (44)

where EtðR
e
tþ1Þ � Rtþ1 is the conditional expectation of the equity premium and SðRe

tþ1 � Rtþ1Þ is its
standard deviation. They want the Sharpe ratio to be equal to the historic average 0:5 for the
consumption claim model, and 0:45 for the dividend claim model. As a result, they evaluate the
Sharpe ratio approximation (44) at the steady state x ¼ 0, and find that

g ¼
SRð0Þ2

1� f
. (45)

Next, Campbell and Cochrane want to choose parameters so that the risk free interest rate is equal
to its historic value 0:0094. They use the expression for the risk free interest rate given by

lnðRtþ1Þ ¼ � lnðbÞ þ gg þ gðf� 1Þx�
s2g2

2
ð1þ lðxÞÞ2. (46)

The parameter b is chosen so that this relation holds at the steady state value x ¼ 0. As a result,

b ¼ exp
SRð0Þ2

1� f
g �

SRð0Þ2

2
� lnðRtþ1Þ

( )
. (47)

Using this procedure for choosing the parameters, we can check the condition for Proposition 1 for
the existence of a solution to Campbell and Cochrane’s asset pricing model in the space CðR; egxÞ.
Substituting (44) and (47) into (16) the definition of m2, we have

m2 ¼ exp g � lnðRtþ1Þ þ
1

2
ð1� r2Þs2

w þ
s2

2
K2

2 � s2K2
SRð0Þ2

1� f

( )
. (48)

All the terms in this equation are determined by the data except f and SRð0Þ. In the consumption
claim model Campbell and Cochrane simulate the model using a monthly time interval so that their
parameters are lnðRtþ1Þ ¼ 0:0094=12 ¼ 0:00078, g ¼ 0:0188=12 ¼ 0:00157, s ¼ 0:0112=

ffiffiffiffiffiffi
12
p

¼

0:00323, sw ¼ s, and r ¼ 1.
In Fig. 1, we look at the possible values of m2 for various values of SRð0Þ and f, given the other

parameters chosen by Campbell and Cochrane. All points in the shaded area satisfy the existence
condition from Proposition 1, m2o1. As a result, only with the persistence of the surplus
consumption ratio, f, close to 1 is this existence condition satisfied in the Campbell and Cochrane
model. In particular, for the Sharpe ratio found in the data, SRð0Þ ¼ 0:5=

ffiffiffiffiffiffi
12
p

¼ 0:1443, f must
be greater than 0:9998. However, for the Campbell and Cochrane parameter choices
SRð0Þ ¼ 0:5=

ffiffiffiffiffiffi
12
p

¼ 0:1443, and f ¼ 0:871=12
¼ 0:9885, the condition of Proposition 1 is not satisfied.

This point, labeled as CC, is highlighted in Fig. 1, which is outside the feasible region. Similar results
are found for the dividend claim case. Thus, there is no known proof for the existence of a solution to
the CC model with the CC parameters.

To see why the condition m2o1 fails, we substitute into (48) the condition (45) for choosing g
under the consumption claim case and obtain

g � lnðRtþ1Þ þ
s2

2
� s2go0, (49)

since K2 ¼ 1. Consequently, the problem is that for the average, g ¼ 0:00157, and standard deviation,
s ¼ 0:00323, of consumption growth this condition is satisfied when g476:24, which is even bigger
than the coefficient of risk aversion in the Mehra and Prescott (1985) simulation for the equity
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premium puzzle.13 The basic problem is that the growth rate of consumption is too big relative to the
risk free interest rate and the low standard deviation of consumption growth magnifies this
difference.

6.1. Calibration of the asset pricing equation

We now consider the truncated model (26) for the transformed price–dividend function Q ðxÞ in
the Campbell and Cochrane model. For the original parameters in the Campbell and Cochrane paper,
the upper bound on the solution for the price–dividend ratio is too low for the theoretical solution to
match the historic price–dividend ratio, when dividend growth is restricted to reasonable levels.

In Theorem 1 it is shown that the supremum of Q ðxÞ is

kQkp
egr

1� K3
, (50)

where

K3 � K0es2ðK2�gÞ
2=2o1.

If we use Campbell and Cochrane’s conditions for choosing parameters (45) and (47) along with the
definition of the constant K0 in (12), then the supremum is bounded by

kQkp
eðSRð0Þ2=ð1�fÞÞr

1� K4e�SRð0Þ2=2eðs2ðK2�SRð0Þ2=ð1�fÞ2Þ=2Þ
, (51)
13 We looked at different time period’s using Shiller’s data set for the U.S. and found similar results. The data comes from

Shiller (1989), obtained from http://www.econ.yale.edu/�shiller/data.htm. The only data set which satisfies this condition is

the one found in Mehra and Prescott (2003) which was for 1880–2003. In their data set the risk free interest rate is above

consumption growth so that any g40 would satisfy m2o1.

http://www.econ.yale.edu/~shiller/data.htm
http://www.econ.yale.edu/~shiller/data.htm
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where

K4 � e� lnðRtþ1ÞGeð1�r
2Þs2

w=2.

We examine this upper bound (51) on the solution to the Campbell and Cochrane model in Fig. 2.
Here an implicit plot of kQk ¼ 357, using (51), is provided for a Sharpe ratio, SRð0Þ 2 ½0:0;1:0�, and the
persistence of the surplus consumption ratio, f 2 ½0:7;1:0�.14 The other parameters are kept the same
as in Fig. 1. We also need the value of the cutoff surplus consumption ratio r, which is chosen to be
0:25orc. As a result, the dividend growth is within the interval ½x0 � 25%; x0 þ 25%� per month, where
x0 is its historic average value. In Fig. 2 the supremum of the price–dividend function is above the
critical value in the shaded area. We also place the label CC for the combination of parameters used
by Campbell and Cochrane which is outside this area. The critical value for the supremum is
exceeded when f is above about 0:99 for all values of the Sharpe ratio. Alternatively, the Sharpe ratio
must be in the narrow band (at the bottom of Fig. 2) about ½0:05;0:10� for any value of f. Thus, an
historically accurate price–dividend ratio is feasible in a limited parameter space which does not
include the parameter values of Campbell and Cochrane.

It turns out that the supremum of Q ðxÞ under the Campbell and Cochrane parameters is only 187
when SRð0Þ ¼ 0:5=

ffiffiffiffiffiffi
12
p

¼ 0:1443 and f ¼ 0:8821=12
¼ 0:9895. Therefore, the point CC in Fig. 2 is

outside the feasible range. As a result, the price–dividend cannot be 18:3� 12 ¼ 219:6 when
dividend growth is restricted to the interval ½x0 � 25%; x0 þ 25%� per month. Even if the cutoff for
dividend growth was increased to 0:45 the supremum of Q ðxÞ is still only 279, so that there is not
enough variation in the price–dividend ratio.15 Thus, the simulations presented in Campbell and
Cochrane’s paper cannot be a true representation of the price–dividend function in their model.
14 The value of kQk ¼ 357 is chosen since it tends to yield a price–dividend ratio of Pð0Þ, which is approximately

18:3� 12 ¼ 219:6. This level of the price–dividend is the value simulated by Campbell and Cochrane.
15 This value of dividend growth is too close to the radius of convergence to obtain an accurate value of the true

price–dividend function with our procedure.
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Table 1
Approximation for consumption claim

Statistic CC CCH Postwar sample

Eðln½Ctþ1=Ct �Þ 1.88a 1.88a 1.89

sðln½Ctþ1=Ct �Þ 1.12a 1.12a 1.22

EðRtþ1Þ 0.094a 0.094a 0.094
EðRe

tþ1�Rtþ1 Þ

sðRe
tþ1�Rtþ1 Þ

0.2565a 0.1831a 0.50

EðRe
tþ1 � Rtþ1Þ 17.17 9.13 6.69

sðRe
tþ1 � Rtþ1Þ 66.93 49.85 15.7

exp½Eðln PÞ� 6.83a 18.23a 24.7

s½ln P� 0.099 0.068 0.26

SkewnessðRe
tþ1 � Rtþ1Þ 2.227 3.246 �2.112

KurtosisðRe
tþ1 � Rtþ1Þ 3118.647 10132.765 27.167

Notes: Re
tþ1 is the return to the stock and Rtþ1 is the return to the risk free bond. Ct is per capita consumption at time t and P is

the price–dividend ratio. E represents the conditional expectation and s is the conditional standard deviation. Campbell and

Cochrane’s Postwar sample comes from their Table 2. The Skewness and Kurtosis is calculated for the time period 1946–2003

with monthly data on the S & P 500 index and T-Bill rate which are taken from CRSP. The CC and CCH simulations are

calibrated for monthly time periods with the parameters given by lnðRtþ1Þ ¼ 0:0094=12 ¼ 0:00078, g ¼ 0:0188=12 ¼ 0:00157,

s ¼ 0:0112=
ffiffiffiffiffiffi
12
p

¼ 0:00323, sw ¼ s, and r ¼ 1. In the CC simulation f ¼ 0:8821=12
¼ 0:9895 and SRð0Þ ¼ 0:5=

ffiffiffiffiffiffi
12
p

¼ 0:144, so

that g ¼ 2 and S̄ ¼ 0:0448. In the CCH simulation all the parameters are the same except f ¼ 0:8851=12
¼ 0:9899 and

SRð0Þ ¼ 0:353=
ffiffiffiffiffiffi
12
p

¼ 0:1019, so that g ¼ 1:025 and S̄ ¼ 0:0325. The simulations sets 0pl;np15. The expected values and

standard deviation in the first column are found by using the price–dividend function and the risk free interest rate,

converting the stock price to a return and integrating over the random shock to consumption growth given the surplus

consumption variable, S̄. The data was then annualized and expressed as a percentage when appropriate.
a Refers to statistics the model parameters were chosen to replicate.
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As Fig. 2 demonstrates, there are limited feasible parameters, which will lead to a price–dividend
function consistent with the data. To increase the supremum of Q ðxÞ to 357 while keeping the steady
state Sharpe ratio at 0:1443, it is necessary to increase the persistence of the surplus consumption
ratio to f ¼ 0:94691=12

¼ 0:9955 which corresponds to a coefficient of risk aversion of g ¼ 4:59. By
moving the persistence of the surplus consumption ratio so close to one, the numerical scheme
becomes ill conditioned, so that a more sophisticated method must be used to determine the Taylor
polynomial approximation (38) for the analytic function.16

By reducing the Sharpe ratio to SRð0Þ ¼ 0:353=
ffiffiffiffiffiffi
12
p

¼ 0:1019, we can keep the persistence lower
at f ¼ 0:8851=12

¼ 0:9899, so that a solution can be accurately calculated. In this case the supremum
of Q ðxÞ is 357 and the coefficient of relative risk aversion is g ¼ 1:025, so that the simulation below
yields the correct price–dividend ratio but the Sharpe ratio is below its historic value.17 Thus, we
cannot match the equity premium and Sharpe ratio in the Campbell and Cochrane model.
6.2. Simulation of consumption claim model

With this understanding of the feasible parameter space for the Campbell and Cochrane model,
we now provide some simulation results. These simulations were conducted using Maple on a
standard PC. In the simulation, we choose 0pl;np15 in (36), since the computer program cannot
evaluate an infinite number of coefficients. This choice of l and n leads to stable solutions for the
price–dividend function in the cases considered below.

The parameters are set for a monthly time interval, while the results in Table 1 are reported
on an annual basis. These parameters are given by lnðRtþ1Þ ¼ 0:0094=12 ¼ 0:00078,
16 While theoretically the number of coefficients could be raised sufficiently to find an accurate price–dividend function,

rounding error in the computer program limits the number of coefficients to about 25 coefficients. To increase the number of

coefficients in the Taylor polynomial approximation (38) above 20 a Fortran program to implement the procedure was

developed. However, the rounding error becomes too big to go beyond 25 coefficients.
17 We find similar results for the dividend claim model.
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g ¼ 0:0188=12 ¼ 0:00157, s ¼ 0:0112=
ffiffiffiffiffiffi
12
p

¼ 0:00323, sw ¼ s, and r ¼ 1. To get the Campbell and
Cochrane parameters we set f ¼ 0:8821=12

¼ 0:9895 and SRð0Þ ¼ 0:5=
ffiffiffiffiffiffi
12
p

¼ 0:144, so that g ¼ 2 and
S̄ ¼ 0:0448.18 To implement the polynomial approximation the restriction of Q ðxÞ in (26) must be
chosen. In this case the restriction on dividend growth is r ¼ 0:25orc ¼ 0:4998, so that the range of
dividend growth is ½x0 � 25%; x0 þ 25%� per month. In Table 1 column 2, the price–dividend at the
steady state is only Pð0Þ ¼ 6:83 for the Campbell and Cochrane’s case which is 63% below the value,
Pð0Þ ¼ 18:3, Campbell and Cochrane were trying to match. As a result, the equity premium is 17:17
which is 2:5 times bigger than the historic average. Finally, the standard deviation of stock returns is
66:93%, which is 4:5 times above the historic average. The Sharpe ratio is only 0:25, which is half of
the value targeted by the rule (44). Thus, there is substantial deviation of the simulations from what
Campbell and Cochrane reported when dividend growth is restricted to �25% per month.

For Campbell and Cochrane’s parameters the supremum of Q ðxÞ is 187, so that the failure of the
Campbell and Cochrane is not surprising when r ¼ 0:25. One way to increase the supremum of Q ðxÞ is
to raise the persistence of the surplus consumption ratio, however, the polynomial approximation is
not very stable when 0pl; np15 in (36). We found that by lowering the Sharpe ratio to
SRð0Þ ¼ 0:353=

ffiffiffiffiffiffi
12
p

¼ 0:1019, we could hold the persistence of the surplus consumption ratio to the
value of f ¼ 0:8851=12

¼ 0:9899, yet still keep an accurate simulation of the model. In this case the
supremum of Q ðxÞ is now 357. We kept the other parameters the same, however g ¼ 1:025 and
S̄ ¼ 0:033. In this case, we get Pð0Þ is approximately 18:3� 12 ¼ 219:6. Consequently, we match the
price–dividend ratio. In Table 1 column 3, we see that the standard deviation of this price–dividend
ratio is high compared to the post war sample of Campbell and Cochrane. The equity premium has
declined to 9:13% relative to the Campbell and Cochrane case, however it is still 2:4% above its
historic value. In addition, the standard deviation has fallen to 49:8% but it is still three times bigger
than its historic value. Thus, the Sharpe ratio turns out to be too low for this simulation.

This leaves open the possibility of increasing the persistence of the surplus consumption ratio to
f ¼ 0:94691=12

¼ 0:9955, which corresponds to a coefficient of risk aversion of g ¼ 4:59. In this case,
the supremum of Q ðxÞ is 357, so that one has a chance of matching Pð0Þ ¼ 219:6. The current
computer programs in Maple and Fortran cannot handle this case, since the problem becomes ill
conditioned with high f. There are several possible ways to explore this possibility. First, use a
programming language which allows for higher precision and speedier calculations. This would
allow for the increase of the number of coefficients in (36). In addition, the higher precision would
lead to an ability to multiply the large Taylor polynomial coefficients with the small xk in the Taylor
polynomial approximation (38). The alternative would be to use more efficient polynomial
representations as discussed in Judd (1992, 1996, 1998). These approaches would fit into our
numerical scheme and allow for more accurate solutions to Campbell and Cochrane’s model,
however the numerical procedures should be guided by the mathematical understanding of the
Campbell and Cochrane model developed here.

6.3. Understanding the simulations

The inability of our numerical solution to match the price–dividend ratio 18:3� 12 ¼ 219:6 found
in Campbell and Cochrane begs the question about how their numerical solution yields this answer.
It turns out that their numerical solution is highly dependent on excessively large negative values for
dividend growth. One can see this property by increasing r to 45% dividend growth per month which
increases the supremum of Q ðxÞ to 279. Of particular importance is the lowest value of dividend
growth.19 Such a low level of the surplus consumption ratio is inconsistent with any plausible
consumption growth. In particular, the data reported by Barro (2006) demonstrates that the worse
18 There is a small difference between Cambell and Cochrane’s parameters and these values which we could not account

for given their description of how the parameters are set. This difference does not material effect our conclusions.
19 This result is consistent with the simulations of Wachter (2005, Fig. 2) in which a substantial difference between hers

and CC’s simulation procedure exists when �x is a high value. We would argue that the two procedures report the same

price–dividend ratios when �x is a high value since they have effectively imposed a higher left extension when they choose

their grid points. Wachter provides a detailed description of her and CC’s procedure.
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downturns in the 20th century was �64% over a few years for Germany and Greece during World
War II. Therefore, the lower bound on the surplus consumption ratio needed to reproduce the results
of Campbell and Cochrane is too low relative to historic observations.

The dependence of Campbell and Cochrane’s numerical solution on large negative values for
consumption growth and the substantial error in their numerical simulations can be traced to the
non-linear sensitivity function and the log-normal distribution of shocks to dividend growth. This
problem arises because the sensitivity function increases to infinity as x declines. This sensitivity
multiplies the standard deviation of Q ðxÞ in Eq. (24). Thus, the volatility of the surplus consumption
ratio tends to infinity as the current surplus consumption ratio tends to zero.20 Consequently, the
integral equation (24) for Q ðxÞ is dependent on its behavior over the entire support of the probability
distribution for dividend growth. This leads to a significant impact of low values of the surplus
consumption ratio, even though Q ðxÞ is small, since the measure placed on Q ðxÞ in this range can be
quite large. To obtain the results of Campbell and Cochrane with their parameters, the dividend
growth must be reduced below x0 � 25% per month. As a result, low values for the surplus
consumption ratio, resulting from the tail of the distribution for dividend growth, magnifies the
volatility of consumption growth enough to significantly alter the expected value of the
price–dividend ratio. Our procedure is not dependent on these extreme negative values since
the Q ðxÞ is kept constant for dividend growth below x0 � 25% per month. Thus, the parameters, or
the procedure for choosing the parameters, for the Campbell and Cochrane model must be altered in
order to adequately represent the behavior of the equity premium and Sharpe ratio.
7. Conclusion

This paper develops a systematic procedure for accurately solving discrete time asset pricing
models. Identifying the analytic properties of the integral equation is the key for developing a
numerical algorithm which yields an accurate solution. The Campbell and Cochrane (1999) asset
pricing model is used for illustrating the method. Below we outline the main steps of this method,
which can also be applied to a broader collection of asset pricing models.
(1)
CRR

disc
Write the integral equation as a mapping of the unknown solution to the model and identify the
space in which the solution is expected to live. In the CC model it was found that the solution is in
the space of functions that grow exponentially (see Theorem Definition 2).
(2)
 Identify the conditions under which this mapping converges to a unique solution and make sure
that the chosen parameters satisfy these conditions (see Proposition 1). In the CC model these
conditions are not satisfied. By restricting the range of the price–dividend function for the
extreme values of dividend growth it is shown that the solution converges with a uniform bound
on the error (see Theorem 1).
(3)
 In the integral defining the mapping for the price–dividend function (28), replace the
independent real variable with a complex variable (complexify). Then, take the complex
derivative of this integral (29). Usually, the pricing kernel is analytic so that its complex
derivative is zero. As a result, the complex derivative of the integral is also zero when that
integral exist.
(4)
 Next, find the largest domain of the complex variable where these integrals exist. It follows
immediately that the solution to the integral equation is analytic within this domain. The radius
of convergence is the minimum distance from a particular point to the boundary of this domain.
In the CC model this radius of convergence is larger than 49% dividend growth per month (see
Theorem 2).
(5)
 Having developed the mathematical properties of the solution, the numerical procedure follows
from these properties. Since the solution is known to be analytic within a well-defined region, it
20 Samuelson (1970) first recognized this issue. Geweke (2001) finds a similar problem with asset pricing models based on

A utility, a lognormal distribution for consumption growth and Bayesian updating. See also Jin and Judd (2002) for a

ussion of this issue when using the perturbation method.
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is natural to express the solution as a polynomial approximation (38) within this region.
Substitute this expression into the integral equation and solve for the linear system of equations
(36) that yields the coefficients of the polynomial approximation.
(6)
 Find a uniform bound for the solution to the price–dividend function on a circle inside the domain
and centered at a particular point with radius less than the radius of convergence for the solution.
Using the Cauchy integral formula calculate a bound on the derivatives of the solution at the center
of this circle for all orders. Thus, a bound on the Taylor series remainder can be estimated for all
values of the independent variable within a certain fraction of the radius of convergence (see
Theorem (3)). Consequently, the polynomial approximation can be used to accurately represent the
solution, as long as the radius of convergence covers the values of interest.
This is a general procedure which can be applied to most asset pricing models, since researchers
generally choose pricing kernels, dividend growth processes, and probability distributions which are
analytic. In the appendix all the steps of this method are provided for the case of the CC model. The
techniques developed here can also be extended to include several variables. Using them it is feasible
to accurately solve higher dimensional asset pricing models such as the Wachter model (2002).
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Appendix A. Derivation of Eq. (14)

Rewrite Eq. (11) in the form:

PðxÞ ¼
K0eK1xffiffiffiffiffiffi

2p
p

s

Z 1
�1

e�ðv
2=2s2ÞþðK2�gð1þlðxÞÞÞvð1þ Pðfxþ lðxÞvÞÞdv.

Complete the square for

�
v2

2s2
þ ðK2 � gð1þ lðxÞÞÞv ¼ �

1

2s2
fv� s2ðK2 � gð1þ lðxÞÞÞg2

þ
s2

2
ðK2 � gð1þ lðxÞÞÞ2.

Substituting this equation into the integral equation (11) yields

PðxÞ ¼
K0eK1xþðs2=2ÞðK2�gð1þlðxÞÞÞ

2ffiffiffiffiffiffi
2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞfv�s2ðK2�gð1þlðxÞÞÞg2

�ð1þ Pðfxþ lðxÞvÞÞdv.

Set MðxÞ ¼ K0eK1xþðs2=2ÞðK2�gð1þlðxÞÞÞ
2
. Since

1ffiffiffiffiffiffi
2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞfv�s2ðK2�gð1þlðxÞÞÞg2 dv ¼ 1,

we get

PðxÞ ¼ MðxÞ þ
MðxÞffiffiffiffiffiffi

2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞfv�s2ðK2�gð1þlðxÞÞÞg

2

Pðfxþ lðxÞvÞdv,

which corresponds to Eq. (14).



ARTICLE IN PRESS
Y. Chen et al. / Journal of Economic Dynamics & Control 32 (2008) 3631–3660 3649
Appendix B. Proof of Lemma 1

Let f ðxÞ 2 CðR; egxÞ. We can find m01X0 and m02X0 such that jf ðxÞjpm01egx þm02 for all x. Recall that
0oMðxÞ ¼ K0eK1xþðs2=2ÞðK2�gð1þlðxÞÞÞ

2

pm1egx þm2 and

ðTf ÞðxÞ ¼
MðxÞffiffiffiffiffiffi

2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞfv�s2ðK2�gð1þlðxÞÞÞg2 f ðfxþ lðxÞvÞdv.

We have

jðTf ÞðxÞjp
MðxÞffiffiffiffiffiffi

2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞfv�s2ðK2�gð1þlðxÞÞÞg2 ðm01egfxþglðxÞv þm02Þdv

pm01egfxþðs2=2Þ ð2gðK2�gÞlðxÞ�g2lðxÞ2ÞMðxÞ þm02MðxÞ.

Since efgxþðs2=2Þð2gðK2�gÞlðxÞ�g2lðxÞ2ÞMðxÞ ¼ K0es2ðK2�gÞ
2=2egx, we get

jðTf ÞðxÞjpðm01K0es2ðK2�gÞ
2=2 þm1m02Þe

gx þm02m2. (52)

Next, we prove that ðTf ÞðxÞ is continuous at every x0 2 R. Set

gðxÞ �
1ffiffiffiffiffiffi
2p
p

s

Z 1
�1

e�ð1=ð2s
2ÞÞfv�s2ðK2�gð1þlðxÞÞÞg2 f ðfxþ lðxÞvÞdv

¼
1ffiffiffiffiffiffi
2p
p

Z 1
�1

f ðslðxÞvþ zðxÞÞ e�v2=2 dv,

where

zðxÞ � fxþ s2lðxÞðK2 � gð1þ lðxÞÞÞ.

Since both lðxÞ and MðxÞ are continuous at x0, it suffices to show that gðxÞ is continuous at x0. For any
A40, we have

1ffiffiffiffiffiffi
2p
p

Z �A

�1

jf ðslðxÞvþ zðxÞÞje�v2=2 dv

p
1ffiffiffiffiffiffi
2p
p

Z �A

�1

ðm01egðslðxÞvþzðxÞÞ þm02Þe
�v2=2 dv

¼
m01egzðxÞþg2s2lðxÞ2=2ffiffiffiffiffiffi

2p
p

Z �A

�1

e�ðv�gslðxÞÞ
2=2 dvþ

m02ffiffiffiffiffiffi
2p
p

Z �A

�1

e�v2=2 dv

¼
m01egzðxÞþg2s2lðxÞ2=2ffiffiffiffiffiffi

2p
p

Z �A�gslðxÞ

�1

e�v2=2 dvþ
m02ffiffiffiffiffiffi

2p
p

Z �A

�1

e�v2=2 dv.

Similarly, we have

1ffiffiffiffiffiffi
2p
p

Z 1
A
jf ðslðxÞvþ zðxÞÞje�v2=2 dv

p
m01egzðxÞþg2s2lðxÞ2=2ffiffiffiffiffiffi

2p
p

Z 1
A�gslðxÞ

e�v2=2 dvþ
m02ffiffiffiffiffiffi

2p
p

Z 1
A

e�v2=2 dv.

Let �40. Since both lðxÞ and zðxÞ are bounded on the interval ½x0 � 1; x0 þ 1� and
ð1=

ffiffiffiffiffiffi
2p
p
Þ
R1
�1

e�v2=2 dv ¼ 1, we can find A40 such that for all x 2 ½x0 � 1; x0 þ 1�,

1ffiffiffiffiffiffi
2p
p

Z �A

�1

þ

Z 1
A

 !
jf ðslðxÞvþ zðxÞÞ � f ðslðx0Þvþ zðx0ÞÞje

�v2=2 dv

p
1ffiffiffiffiffiffi
2p
p

Z �A

�1

þ

Z 1
A

 !
½jf ðslðxÞvþ zðxÞÞj þ jf ðslðx0Þvþ zðx0ÞÞj�e

�v2=2 dvo
�

2
.

Since f ðslðxÞvþ zðxÞÞ is a continuous function of the variables v and x on the rectangle
½�A;A� � ½x0 � 1; x0 þ 1�, there exists 0odo1 such that for all x0 � doxox0 þ d and �ApvpA, we
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have jf ðslðxÞvþ zðxÞÞ � f ðslðx0Þvþ zðx0ÞÞjo �
2, and therefore

1ffiffiffiffiffiffi
2p
p

Z A

�A
jf ðslðxÞvþ zðxÞÞ � f ðslðx0Þxþ zðx0ÞÞje

�v2=2 dvo
�

2
.

This proves that jgðxÞ � gðx0Þjo� for x0 � doxox0 þ d. Hence ðTf ÞðxÞ 2 CðR; egxÞ.
T : CðR; egxÞ ! CðR; egxÞ is a well-defined linear transformation.
Appendix C. Proof of Proposition 1

By (17), the price–dividend function PðxÞ in the Campbell and Cochrane model satisfies

PðxÞ ¼ MðxÞ þ ðTPÞðxÞ. (53)

Set K3 ¼ K0es2ðK2�gÞ
2=2.

Lemma 4. If 0oS̄o1, 0om2o1, and f ðxÞ 2 CðR; egxÞ satisfies ðTf ÞðxÞ ¼ f ðxÞ, then f ðxÞ ¼ 0 for all x 2 R.

Proof. Find m01X0 and m02X0 such that jf ðxÞjpm01egx þm02 for all x. By (52), we get

jðTf ÞðxÞjpðm01K3 þm1m02Þe
gx þm02m2.

By mathematical induction, we can show that for all n ¼ 1;2;3; . . ., we have

jf ðxÞj ¼ jðTnf ÞðxÞjp m01Kn
3 þm1m02

Xn�1

i¼0

Ki
3mn�1�i

2

 !
egx þm02mn

2. (54)

Since K3=m2 ¼ eðs
2=2ÞðK2�gÞ

2
�ðs2=2ÞðK2

2þðg
2=S̄

2
ÞÞþs2gK2 ¼ e�g

2s2ð1�S̄
2
Þ=ð2S̄

2
Þo1, we get

Xn�1

i¼0

Ki
3mn�1�i

2 ¼ mn�1
2

Xn�1

i¼0

ðK3=m2Þ
ip

mn�1
2

1� K3=m2
¼

mn
2

m2 � K3

and

jf ðxÞjpf½m01ðK3=m2Þ
n
þm1m02=ðm2 � K3Þ�e

gx þm02gm
n
2.

Since limn!1mn
2 ¼ 0, we must have f ðxÞ ¼ 0 for all x. &

Now we can prove Proposition 1. Define the functions PnðxÞ 2 CðR; egxÞ by setting

P0ðxÞ � 0 and Pnþ1ðxÞ � MðxÞ þ ðTPnÞðxÞ.

Then P1ðxÞ ¼ MðxÞ þ ðTP0ÞðxÞ ¼ MðxÞ and 0pP1ðxÞ � P0ðxÞ ¼ MðxÞpm1egx þm2. Since 0pPnþ1ðxÞ�

PnðxÞ ¼ ðT
n
ðP1 � P0ÞÞðxÞ, (54) yields

0pPnþ1ðxÞ � PnðxÞpm1

Xn

i¼0

Ki
3mn�i

2

 !
egx þmnþ1

2 p
m1egx

m2 � K3
þ 1

� �
mnþ1

2 .

Set PðxÞ ¼
P1

n¼0½Pnþ1ðxÞ � PnðxÞ� ¼ limn!1 Pnþ1ðxÞ. Then

0pPðxÞp
m1egx

m2 � K3
þ 1

� �X1
n¼0

mnþ1
2 ¼

m1egx

m2 � K3
þ 1

� �
m2

1�m2
.

On the other hand, since

0pPðxÞ � PnðxÞ ¼
X1
k¼n

ðPkþ1ðxÞ � PkðxÞÞp
m1egx

m2 � K3
þ 1

� �
mnþ1

2

1�m2
, (55)

P1
n¼0½Pnþ1ðxÞ � PnðxÞ� uniformly converges to PðxÞ on any finite closed interval. So PðxÞ is continuous;

that is, PðxÞ 2 CðR; egxÞ.
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Next, by (52) and (55) we get

0pðTPÞðxÞ � ðTPnÞðxÞ ¼ ðTðP � PnÞÞðxÞp
mnþ1

2

1�m2

m1K3

m2 � K3
þm1

� �
egx þm2

� �

and

PðxÞ ¼ lim
n!1

Pnþ1ðxÞ ¼ MðxÞ þ lim
n!1
ðTPnÞðxÞ ¼ MðxÞ þ ðTPÞðxÞ.

Thus, PðxÞ is a solution of the Eq. (53) in CðR; egxÞ.
Finally, we prove the uniqueness of the solution. Suppose that ~PðxÞ is another solution of (53) in

CðR; egxÞ. Then PðxÞ � ~PðxÞ 2 CðR; egxÞ and ðTðP � ~PÞÞðxÞ ¼ ðP � ~PÞðxÞ. By Lemma 4, we obtain PðxÞ ¼ ~PðxÞ
for all x.
Appendix D. Derivation of Eq. (26) from (11)

For �rpxpr, Q ðxÞ ¼ ð1þ PðxÞÞe�gx satisfies

Q ðxÞ ¼ e�gx þ e�gxPðxÞ

¼ e�gx þ
K0eK1x�gxffiffiffiffiffiffi

2p
p

s

Z 1
�1

ð1þ Pðfxþ lðxÞvÞÞeðK2�gð1þlðxÞÞÞve�v2=ð2s2Þ dv

¼ e�gx þ
K0eðK1�gÞxffiffiffiffiffiffi

2p
p

s

Z 1
�1

Q ðfxþ lðxÞvÞegðfxþlðxÞvÞeðK2�gð1þlðxÞÞÞve�v2=ð2s2Þ dv

¼ e�gx þ
K0e�fgxffiffiffiffiffiffi

2p
p

s

Z 1
�1

Q ðfxþ lðxÞvÞefgxþK2v�gve�v2=ð2s2Þ dv

¼ e�gx þ
K0ffiffiffiffiffiffi
2p
p

s

Z 1
�1

Q ðfxþ lðxÞvÞeðK2�gÞve�v2=ð2s2Þ dv.

Complete the square for

ðK2 � gÞv�
v2

2s2
¼ �

1

2s2
ðv� s2ðK2 � gÞÞ2 þ

s2ðK2 � gÞ2

2
.

Set K3 ¼ K0es2ðK2�gÞ
2=2. Then

Q ðxÞ ¼ e�gx þ
K3ffiffiffiffiffiffi
2p
p

s

Z 1
�1

Q ðfxþ lðxÞvÞe�ð1=ð2s
2ÞÞðv�s2ðK2�gÞÞ

2

dv

¼ e�gx þ
K3ffiffiffiffiffiffi

2p
p

slðxÞ

Z 1
�1

Q ðyÞe�ð1=ð2s
2lðxÞ2ÞÞðy�fx�s2ðK2�gÞlðxÞÞ

2

dy

¼ e�gx þ
K3ffiffiffiffiffiffi

2p
p

~lðxÞ

Z 1
�1

Q ðyÞe�ð1=ð2ð
~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy,

where cðxÞ ¼ fxþ s2ðK2 � gÞlðxÞ and ~lðxÞ ¼ slðxÞ, which corresponds to (26).
Appendix E. Proof of Theorem 1

Define the functions QnðxÞ by setting Q0ðxÞ � 0 for all x and

Qnþ1ðxÞ �

e�gx þ
K3ffiffiffiffiffiffi

2p
p

slðxÞ

Z 1
�1

QnðyÞe
�ð1=ð2ð~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy if � rpxpr;

Qnþ1ðrÞ if x4r;

Qnþ1ð�rÞ if xo� r:

8>>><
>>>:

Then kQ1 � Q0k ¼ kQ1k ¼ egr . By mathematical induction, we can show that

kQnþ1 � QnkpKn
3egr for n ¼ 0;1;2; . . . .
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Set Q ðxÞ ¼
P1

n¼0½Qnþ1ðxÞ � QnðxÞ� ¼ limn!1 QnðxÞ. Since K3o1, we get

kQ � Qnkp
X1
k¼n

kQkþ1 � Qkkp
X1
k¼n

Kk
3egr ¼

egrKn
3

1� K3
. (56)

P1
n¼0½Qnþ1ðxÞ � QnðxÞ� uniformly converges to the continuous function Q ðxÞ. By (56),

kQk ¼ kQ � Q0kp
egr

1� K3
.

Next, for �rpxpr, we have

Q ðxÞ ¼ lim
n!1

Qnþ1ðxÞ ¼ e�gx þ
K3ffiffiffiffiffiffi

2p
p

~lðxÞ

Z 1
�1

lim
n!1

QnðyÞe
�ð1=ð2ð~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy

¼ e�gx þ
K3ffiffiffiffiffiffi

2p
p

~lðxÞ

Z 1
�1

Q ðyÞe�ð1=ð2ð
~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy.

So Q ðxÞ is a solution of the Eq. (26).
Finally, we prove the uniqueness of the solution. Suppose that ~Q ðxÞ is another continuous and

bounded solution of (26). Then for �rpxpr,

Q ðxÞ � ~Q ðxÞ ¼
K3ffiffiffiffiffiffi

2p
p

~lðxÞ

Z 1
�1

½Q ðyÞ � ~Q ðyÞ�e�ð1=ð2ð
~lðxÞÞ2ÞÞðy�cðxÞÞ2 dy,

and

kQ � ~QkpK3kQ � ~Qk. (57)

Since K3o1, (57) forces Q ðxÞ ¼ ~Q ðxÞ for all x.
Appendix F. Proof of Lemma 2

We complexify lðxÞ by letting w ¼ uþ iv. The domain of holomorphicity of lðwÞ is the complex
plane C with the ray fxþ iy : xX1

2g deleted, which removes the points where 1� 2w is non-positive.
To avoid the zero of lðwÞ so that 1=lðwÞ in (28) exists, we restrict the domain of holomorphicity to the
complex plane C with the ray fxþ iy : xXx	g deleted, where x	 ¼ ð1� S̄

2
Þ=2. Write

lðwÞ2 ¼
1

S̄
2
ð1� 2w� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2w
p

þ S̄
2
Þ ¼ aðwÞ þ ibðwÞ,

where aðwÞ ¼ Re lðwÞ2 and bðwÞ ¼ Im lðwÞ2. Then

1

l2
¼

1

aþ ib
¼

a

a2 þ b2
� i

b

a2 þ b2
.

Complexifying the function cðxÞ ¼ fxþ s2ðK2 � gÞlðxÞ and writing cðwÞ ¼ cðwÞ þ idðwÞ, where cðwÞ ¼

RecðwÞ and dðwÞ ¼ ImcðwÞ, gives

ðt � cðwÞÞ2 ¼ ðt � c � idÞ2 ¼ ðt � cÞ2 � 2iðt � cÞd� d2,

and

Re
ðt � cÞ2

l2
¼

aðt � cÞ2

a2 þ b2
�

2bdðt � cÞ

a2 þ b2
�

ad2

a2 þ b2
¼

a

a2 þ b2
ðt � cÞ2 �

2bdðt � cÞ

a

� �
�

ad2

a2 þ b2
.

Completing the square, we obtain

Re
ðt � cÞ2

l2
¼

a

a2 þ b2
t �

ac þ bd

a

� �2

�
d2

a
.

Using the last formula, we see that for the integral defining f ðuþ ivÞ to make sense and to be able to
differentiate under the integral sign, using the Dominated Convergence Theorem, we must restrict
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uþ iv in a region O where a40. Thus, we must determine when

aðwÞ ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2w

S̄
2

s
� 1

 !2

40; w 2 O.

To simplify the calculations, we use the transformation z ¼ xþ iy ¼ ð1� 2wÞ=S̄
2
. Then w ¼ x	 is

mapped to z ¼ 1, and lðwÞ is transformed into lðzÞ ¼
ffiffiffi
z
p
� 1, which is holomorphic and not zero for

z 2 Cnfxþ iy : zo1g. Using polar coordinates z ¼ reiy, we write

lðzÞ2 ¼ z� 2
ffiffiffi
z
p
þ 1 ¼ reiy � 2

ffiffiffi
r
p

eiy=2 þ 1

¼ rðcos yþ i sin yÞ � 2
ffiffiffi
r
p
½cosðy=2Þ þ i sinðy=2Þ� þ 1.

Thus,

aðr; yÞ ¼ Re lðr; yÞ2 ¼ r cos y� 2
ffiffiffi
r
p

cosðy=2Þ þ 1.

Next, we shall prove the following:

Claim. aðzÞ40 for all z 2 D, where

D ¼ xþ iy : �
x2 � 1

2
oyo

x2 � 1

2
; x41

� �
.

This domain is displayed in Fig. 3.

Since aðr;�yÞ ¼ aðr; yÞ, it suffices to consider the case where y40. Solving the quadratic equation
r cos y� 2

ffiffiffi
r
p

cosðy=2Þ þ 1 ¼ 0 for
ffiffiffi
r
p

, we find

ffiffiffi
r
p
¼

cosðy=2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðy=2Þ � cos y

p
cos y

¼
cosðy=2Þ � sinðy=2Þ

cos y

¼
cosðy=2Þ � sinðy=2Þ

½cosðy=2Þ þ sinðy=2Þ�½cosðy=2Þ � sinðy=2Þ�
¼

1

cosðy=2Þ � sinðy=2Þ
.
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Therefore,

r ¼
1

cos2ðy=2Þ þ sin2
ðy=2Þ � 2 cosðy=2Þ sinðy=2Þ

¼
1

1� sin y
,

which gives rð1� sin yÞ ¼ 1. Since r41 and sin y40, we must have rð1� sin yÞ ¼ 1, or r ¼ r sin yþ 1,

or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ yþ 1, or

y ¼
x2 � 1

2
; x41,

which proves that D is the domain of positivity of the function a.
Finally, we find the radius of convergence of the power series of f ðzÞ about z ¼ S̄

�2
. It is equal to

the distance d of S̄
�2

from the boundary of D (see Fig. 3).
To compute it, we minimize d2, i.e., we minimize the function:

hðxÞ ¼ d2
ðxÞ ¼ ðx� S̄

�2
Þ
2
þ

x2 � 1

2
� 0

� �2

¼ ðx� S̄
�2
Þ
2
þ
ðx2 � 1Þ2

4
.

We have h0ðxÞ ¼ 2ðx� S̄
�2
Þ þ xðx2 � 1Þ ¼ x3 þ x� 2S̄

�2
. Solving x3 þ x� 2S̄

�2
¼ 0 for x, we find

x0 ¼

�31=3S̄
4=3
þ 9þ

ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ S̄

4
q� �2=3

32=3S̄
2=3

9þ
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ S̄

4
q� �1=3

.

Then computing the distance gives that the radius of convergence in the z-variable is

Rz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � S̄

�2
Þ
2
þ
ðx2

0 � 1Þ2

4
:

s

Since z ¼ ð1� 2wÞ=S̄
2
, the power series of f ðwÞ around w ¼ 0 converges for all w such that

1� 2w

S̄
2
�

1

S̄
2

				
				oRz or jwjo

S̄
2
Rz

2
.

Therefore, the function f ðxÞ is analytic for all xox	, and its power series around x ¼ 0 has radius of
convergence rc ¼ S̄

2
Rz=2.
Appendix G. Derivation of the Taylor series for Q ðxÞ

Recall that Q ðxÞ can be expressed in the form:

Q ðxÞ ¼

X1
n¼0

anxn if � rpxpr;

X1
n¼0

anrn if x4r;

X1
n¼0

ð�1Þnanrn if xo� r:

8>>>>>>>>>><
>>>>>>>>>>:

(58)

Define

LðxÞ �
�r � cðxÞ

~lðxÞ
; UðxÞ �

r � cðxÞ
~lðxÞ

,
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and

f 1ðxÞ �
1
~lðxÞ

X1
n¼0

an

Z r

�r
yne�ðy�cðxÞÞ

2=ð2~lðxÞ2Þ dy ¼
X1
n¼0

an

Z UðxÞ

LðxÞ
ð~lðxÞyþ cðxÞÞne�y2=2 dy,

f 2ðxÞ �
1
~lðxÞ

X1
n¼0

anrn

Z 1
r

e�ðy�cðxÞÞ
2=ð2~lðxÞ2Þ dy ¼

X1
n¼0

anrn

Z 1
UðxÞ

e�y2=2 dy,

f 3ðxÞ �
1
~lðxÞ

X1
n¼0

ð�1Þnanrn

Z �r

�1

e�ðy�cðxÞÞ
2=ð2~lðxÞ2Þ dy ¼

X1
n¼0

ð�1Þnanrn

Z LðxÞ

�1

e�y2=2 dy.

For �rpxpr, (26) is equivalent toX1
n¼0

anxn ¼ e�gx þ
K3ffiffiffiffiffiffi
2p
p ðf 1ðxÞ þ f 2ðxÞ þ f 3ðxÞÞ. (59)

G.1. The Taylor series of f 1ðxÞ at zero

Calculate

g1ðxÞ �

Z UðxÞ

LðxÞ
ð~lðxÞyþ cðxÞÞne�y2=2 dy ¼

Z UðxÞ

LðxÞ
ð~lðxÞyþ cðxÞÞn

X1
k¼0

1

k!
�

y2

2

� �k

dy

¼
X1
k¼0

ð�1Þk

2kk!

Z UðxÞ

LðxÞ
ð~lðxÞyþ cðxÞÞny2k dy ¼

X1
k¼0

ð�1Þk

2kk!

Xn

j¼0

n

j

 !
cðxÞn�j ~lðxÞj

Z UðxÞ

LðxÞ
y2kþj dy

¼
X1
k¼0

Xn

j¼0

n

j

 !
ð�1Þk

2k
ð2kþ jþ 1Þk!

cðxÞn�j ~lðxÞjðUðxÞ2kþjþ1
� LðxÞ2kþjþ1

Þ

¼
X1
k¼0

Xn

j¼0

n

j

 !
ð�1Þk

2k
ð2kþ jþ 1Þk!

�
cðxÞn�j

~lðxÞ2kþ1
fðr � cðxÞÞ2kþjþ1

� ð�r � cðxÞÞ2kþjþ1
g.

Simplify

ðr � cðxÞÞ2kþjþ1
� ð�r � cðxÞÞ2kþjþ1

¼ ð�1Þ2kþj
X2kþjþ1

i¼0

ð1þ ð�1Þiþ1
Þ

2kþ jþ 1

i

 !
cðxÞ2kþjþ1�iri.

Thus,

g1ðxÞ ¼
X1
k¼0

Xn

j¼0

X2kþjþ1

i¼0

n

j

 !
2kþ jþ 1

i

� �
ðð�1Þjþk

þ ð�1Þiþjþkþ1
Þri

2k
ð2kþ jþ 1Þk!

�
cðxÞ2kþ1þn�i

~lðxÞ2kþ1
.

G.2. The Taylor series of f 2ðxÞ þ f 3ðxÞ at zero

f 2ðxÞ þ f 3ðxÞ ¼
X1
n¼0

anrn

Z 1
UðxÞ

e�y2=2 dyþ ð�1Þn
Z LðxÞ

�1

e�y2=2 dy

� �
.

Calculate

g2ðxÞ �

Z 1
0

e�y2=2 dy�

Z UðxÞ

0
e�y2=2 dy ¼

ffiffiffiffiffiffi
2p
p

2
�
X1
k¼0

ð�1Þk

2k
ð2kþ 1Þk!

UðxÞ2kþ1

¼

ffiffiffiffiffiffi
2p
p

2
þ
X1
k¼0

ð�1Þkþ1

2k
ð2kþ 1Þk!

UðxÞ2kþ1
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and

g3ðxÞ �

Z 0

�1

e�y2=2 dyþ

Z LðxÞ

0
e�y2=2 dy ¼

ffiffiffiffiffiffi
2p
p

2
þ
X1
k¼0

ð�1Þk

2k
ð2kþ 1Þk!

LðxÞ2kþ1.

Then

g2ðxÞ þ ð�1Þng3ðxÞ

¼

ffiffiffiffiffiffi
2p
p

2
ð1þ ð�1ÞnÞ þ

X1
k¼0

ð�1Þkþ1

2k
ð2kþ 1Þk!

ðUðxÞ2kþ1
þ ð�1Þnþ1LðxÞ2kþ1

Þ

¼

ffiffiffiffiffiffi
2p
p

2
ð1þ ð�1ÞnÞ þ

X1
k¼0

ð�1Þkþ1

2k
ð2kþ 1Þk!

ðr � cðxÞÞ2kþ1
þ ð�1Þnþ1

ð�r � cðxÞÞ2kþ1

~lðxÞ2kþ1
.

Simplify

ðr � cðxÞÞ2kþ1
þ ð�1Þnþ1

ð�r � cðxÞÞ2kþ1

¼ ð�1Þ2kþ1
X2kþ1

j¼0

ðð�1Þj þ ð�1Þnþ1
Þ

2kþ 1

j

 !
cðxÞ2kþ1�jrj.

Thus,

g2ðxÞ þ ð�1Þng3ðxÞ ¼

ffiffiffiffiffiffi
2p
p

2
ð1þ ð�1ÞnÞ þ

X1
k¼0

X2kþ1

j¼0

2kþ 1

j

 !
�
cðxÞ2kþ1�j

~lðxÞ2kþ1
.

G.3. Recurrence relations for differentiation
(a)
 ~lðxÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x
p

� s:

~lð0Þ ¼ c � s; ~l
0
ð0Þ ¼ �c; ~l

ðnÞ
ð0Þ ¼ ð2n� 3Þ~l

ðn�1Þ
ð0Þ for n ¼ 2;3;4; . . .
(b)
 LkðxÞ ¼ ð~lðxÞÞ
k for k40:

Lð0Þkþ1ð0Þ ¼
~lð0Þkþ1; LðnÞkþ1ð0Þ ¼

Xn

i¼0

n

i

� �
LðiÞk ð0Þ

~l
ðn�iÞ
ð0Þ for n ¼ 1;2;3; . . . .
(c)
 L�kðxÞ ¼ ð~lðxÞÞ
�k for k40:

Lð0Þ
�kð0Þ ¼ ðL

ð0Þ
k ð0ÞÞ

�1,

LðnÞ
�kð0Þ ¼ �ðL

ð0Þ
k ð0ÞÞ

�1
Xn�1

i¼0

n

i

� �
LðiÞ
�kð0Þ � L

ðn�iÞ
k ð0Þ for n ¼ 1;2;3; . . . .
(d)
 cðxÞ ¼ fxþ sðK2 � gÞ~lðxÞ:

cð0Þ ¼ sðK2 � gÞðc � sÞ; c0ð0Þ ¼ f� sðK2 � gÞ � c,

c00ð0Þ ¼ �sðK2 � gÞ � c,

cðnÞð0Þ ¼ ð2n� 3Þcðn�1Þ
ð0Þ for n ¼ 3;4;5; . . . .
(e)
 CkðxÞ ¼ ðcðxÞÞ
k for k40:

Cð0Þkþ1ð0Þ ¼ ½cð0Þ�
kþ1; CðnÞkþ1ð0Þ ¼

Xn

i¼0

n

i

� �
CðiÞk ð0Þc

ðn�iÞ
ð0Þ for n ¼ 1;2; . . .
The recurrence relations (c) and (e) are applied to compute the Taylor series of the functions
cðxÞs=lðxÞt around zero, where s and t are non-negative integers.

cðxÞs

~lðxÞt
¼
X1
l¼0

bs;t;lx
l,
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where

bs;t;l ¼
1

l!

dl

dxl

cðxÞs

~lðxÞt

� �					
x¼0

¼
1

l!

Xl

i¼0

l

i

� �
CðiÞs ð0ÞL

ðl�iÞ
�t ð0Þ.

G.4. The linear system for undetermined coefficients

Now (59) is equivalent to the system of linear equations:

al ¼
ð�1Þlgl

l!
þ
X1
n¼0

an dl;0
K3ð1þ ð�1ÞnÞrn

2
þ
X1
k¼0

K3ffiffiffiffiffiffi
2p
p

s2kþ12kk!

(

�
Xn

j¼0

X2kþjþ1

i¼0

n

j

 !
2kþ jþ 1

i

 !
½ð�1Þjþk

þ ð�1Þiþjþkþ1
�ri

2kþ jþ 1
� b2kþ1þn�i;2kþ1;l

0
@

þ
X2kþ1

j¼0

2kþ 1

j

 !
ðð�1Þjþk

þ ð�1Þnþkþ1
Þrnþj

2kþ 1
� b2kþ1�j;2kþ1;l

1
A
9=
;, (60)

where

dl;0 ¼
1 if l ¼ 0;

0 if la0:

(

Appendix H. Proof of Lemma 3

It is equivalent to show that

1� 2r þ S̄
2
42S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r

p
() 4r2 � 4ðS̄

2
þ 1Þr þ S̄

4
þ 2S̄

2
þ 144S̄

2
þ 8S̄

2
r

() 4r2 � 4ð3S̄
2
þ 1Þr þ S̄

4
� 2S̄

2
þ 140

() r2 � ð3S̄
2
þ 1Þr þ 1

4ðS̄
4
� 2S̄

2
þ 1Þ40.

The equation r2 � ð3S̄
2
þ 1Þr þ 1

4 ðS̄
4
� 2S̄

2
þ 1Þ ¼ 0 has real roots

1
2þ S̄ 3

2 S̄�
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̄

2
þ 1

q� �
.

Lemma 3 is proved.
Appendix I. Proof of Theorem 3

Let Cr be the circle of radius r centered at the origin in the complex plane C. The Cauchy integral
formula yields

Q ðkÞð0Þ ¼
k!

2pi

I
Cr

Q ðzÞ

zkþ1
dz for k ¼ 0;1;2; . . . . (61)

Let z ¼ xþ yi be a point on Cr , which satisfies �rpxpr, �rpypr, and x2 þ y2 ¼ r2. By the hypothesis,

we have roð1� S̄
2
Þ=2. Write

uþ vi ¼ lðzÞ ¼
1

S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z
p

� 1 ¼
1

S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2x� 2yi

p
� 1 with uþ 1X0,

which is equivalent to the equations:

ðuþ 1Þ2 � v2 ¼ ð1� 2xÞ=S̄
2

and ðuþ 1Þv ¼ �y=S̄
2
.
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These equations imply

ðuþ 1Þ4 �
1� 2x

S̄
2
ðuþ 1Þ2 �

y2

S̄
4
¼ 0 and v4 þ

1� 2x

S̄
2

v2 �
y2

S̄
4
¼ 0.

If ya0, then the quadratic formula yields

ðuþ 1Þ2 ¼
1� 2xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4xþ 4r2
p

2S̄
2

and v2 ¼
�1þ 2xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4xþ 4r2
p

2S̄
2

.

Applying ð1� 2rÞ2 ¼ 1� 4r þ 4r2p1� 4xþ 4r2p1þ 4r þ 4r2 ¼ ð1þ 2rÞ2, we get

ð1� 2rÞ=S̄
2
pðuþ 1Þ2pð1þ 2rÞ=S̄

2
and 0pv2p2r=S̄

2
,

where the first inequality implies further that

0olðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r
p

=S̄� 1pup
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r

p
=S̄� 1 ¼ lð�rÞ.

So

0olðrÞ2pu2 þ v2pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r

p
=S̄� 1Þ2 þ 2r=S̄

2
.

We can also estimate u2 � v2:

u2 � v2 ¼ ðuþ 1Þ2 � v2 � 2u� 1 ¼
1� 2x

S̄
2
þ 1� 2ðuþ 1Þ

¼
1� 2xþ S̄

2

S̄
2

� 2ðuþ 1Þ

X
1� 2r þ S̄

2

S̄
2

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

S̄
¼

1� 2r þ S̄
2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

S̄
2

.

Write 1=lðzÞ2 ¼ AðzÞ þ BðzÞi and cðzÞ ¼ CðzÞ þ DðzÞi, where

AðzÞ ¼
u2 � v2

ðu2 þ v2Þ
2
; BðzÞ ¼ �

2uv

ðu2 þ v2Þ
2

,

CðzÞ ¼ fxþ s2ðK2 � gÞu; DðzÞ ¼ fyþ s2ðK2 � gÞv.

Then

Re
½t � cðzÞ�2

lðzÞ2

( )
¼ AðzÞ½t � CðzÞ�2 þ 2BðzÞDðzÞ½t � CðzÞ� � AðzÞDðzÞ2

¼ AðzÞ t �
AðzÞCðzÞ � BðzÞDðzÞ

AðzÞ

� �2

�
DðzÞ2ðAðzÞ2 þ BðzÞ2Þ

AðzÞ

¼ AðzÞ t �
AðzÞCðzÞ � BðzÞDðzÞ

AðzÞ

� �2

�
DðzÞ2

u2 � v2
.
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By (26), for any z 2 Cr we have

jQ ðzÞjpje�gzj þ
K3ffiffiffiffiffiffi

2p
p

sjlðzÞj

Z 1
�1

kQkje�½t�cðzÞ�
2=ð2s2lðzÞ2Þjdt

pegr þ
K3kQke

�DðzÞ2=ðu2�v2Þffiffiffiffiffiffi
2p
p

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

Z 1
�1

e�ðAðzÞ=ð2s
2Þ½t�ðAðzÞCðzÞ�BðzÞDðzÞÞ=AðzÞÞ�2 dt

¼ egr þ
K3kQke

�DðzÞ2=ðu2�v2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p ffiffiffiffiffiffiffiffiffi

AðzÞ
p pegr þ K3kQk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

u2 � v2

r

pegr þ K3kQk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

� S̄Þ2 þ 2r

1� 2r þ S̄
2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

s

pegr þ K3kQk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r þ S̄

2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

1� 2r þ S̄
2
� 2S̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r
p

vuut pBr .

By Cauchy’s integral formula (61), we get

jQ ðkÞð0Þjp
k!

2p

I
Cr

jQ ðzÞj

rkþ1
dz ¼

Brk!

2p
�

2pr

rkþ1
¼

Brk!

rk
.

If 0omo1 and jxjomr, then we get

jRnðxÞjp
X1

k¼nþ1

jQ ðkÞð0Þj

k!
ðmrÞk ¼ Br

X1
k¼nþ1

mk ¼
Brmnþ1

1� m
.

Theorem 3 is proved.
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Hörmander, L., 1979. An Introduction to Complex Analysis in Several Variables. Elsevier, Amsterdam.



ARTICLE IN PRESS
Y. Chen et al. / Journal of Economic Dynamics & Control 32 (2008) 3631–36603660
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