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1 Structural Design

• The structural design of the rotor and tower naturally follows

from the aerodynamic design from which the aerodynamic loads

are derived.

• As it often happens in the design of aerodynamic systems, their

needs to be a compromise between the aerodynamic optimum

and the structural optimum.

– The structural design seeks to optimize strength, weight

and cost.

– Catastrophic failures of wind turbine structures are rare, but

not impossible.

Figure 1: Examples of rare structural failures of horizontal axis wind turbines.
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• Conditions leading to structural failures include

1. extreme winds,

2. an inadequate control system,

3. cyclic-load fatigue that leads to cracks in the structure.

• Fatigue is a very important issue since wind turbines are designed

to operate for a minimum of 20 year over which the rotor

will rotate on the order of 109 revolutions!

• Some of the loads repeat with every revolution of the rotor which

results in a cyclic straining of the structure that could lead to

strain hardening and brittle fracture.
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• There are four primary sources of loads that are relevant to hor-

izontal axis wind turbines. These are

1. aerodynamic loads,

2. gravitational loads,

3. dynamic loads, and

4. control loads.
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• Aerodynamic loads include the lift, drag and pitch moment

on the rotor such as can be determined by the BEM method.

Figure 2: Force vectors based on BEM analysis (left) and illustration of 3-D lift and drag
force distribution resulting in maximum shear forces and bending moments at the rotor root.
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• Structurally, the rotor is a cantilever beam with a fixed attach-

ment at the rotor hub.

• The material stresses associated with these loads determines the

structural design.

• The forces that act on the rotor can be transmitted through the

rotor shaft to the gear box and tower.

– Structural failure of the gear box continues to be an impor-

tant issue.
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• Gravitational loads are primarily associated with the weight

of the rotor blades.

• This is a cyclic loading whose magnitude on a radial element is

dFg = ~gdm cos(ψ) (1)

• The cyclic gravitational loading on the rotor is converted into

a cyclic torque variation on the rotor shaft that is then

transmitted to the gear box.

Figure 3: Illustration of gravitational and centrifugal loads acting on a spinning wind turbine
rotor.
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• The gravitational loading generally acts through the rotor plane

axis, except if the rotor bends out of plane, which is referred to

as “flapping”.

Figure 4: Illustration of types of coned or “flapping” rotor conditions of the horizontal axis
wind turbine.

• Out of plane or flapping angle is defined as β.

– β0 shows a rotor plane that is aligned with the wind direction.

The loading on the blades is steady with respect to the

rotor rotation angle, psi.

• β1c, has the axis of the rotor aligned with the wind direction,

but the coned rotor plane is canted upward

– The rotor location that is tilted upwind (bottom portion)

will have a larger effective angle of attack compared to the

rotor that is tilted downwind.

– This will produce a cyclic loading with a magnitude that

varies as cos(ψ), where again ψ = 0 corresponds to the

bottom of the rotation cycle.
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• β1s, has the axis of the coned rotor yawed with respect to the

wind direction.

– This produces a cyclic loading whereby the rotor that tilts

upwind (right portion) will have an effectively larger angle of

attack compared to the rotor that tilts downwind.

– This will produce a cyclic loading with a magnitude that

varies in this case, as sin(ψ).

• It is reasonable to sum the effects of the three coned rotor con-

ditions to obtain an effective flapping angle, β given as

β = β0 + β1c cos(ψ) + β1s sin(ψ). (2)

• In this case β0 represents the collective or coned response, and

β1c and β1s are the coefficients representing the respective cosine

and sine cyclic responses.
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• Dynamic loading is the result of changes in the motion of

rotor.

• One example is the centrifugal force generated by the rotation

of the rotor.

Figure 5: Illustration of gravitational and centrifugal loads acting on a spinning wind turbine
rotor.

• The centrifugal force acting on a radial element of the rotor at

some radius is

dFc = rdmΩ2 cos(β) (3)

– Again β is the effective flapping angle

• The centrifugal force can be considered as a point load that

acts on the center of mass of the rotor blade, and is directed

perpendicular to the axis of rotation.
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• The moment produced by the centrifugal force acting on a dif-

ferential element at radius r is

dMc = r sin(β)
[
rdmΩ2 cos(β)

]
. (4)
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• Gyroscopic loads are produced by yaw or flapping motions

of the spinning rotor.

Figure 6: Illustration of the gyroscopic restoring moment produced by the yawed motion of
the rotor.

• Assuming that the rotor has a polar moment of inertia of J , and

spins at a rate Ω, it will have an angular momentum of JΩ.

• Based on the theory of gyroscopes, if a body with angular mo-

mentum of JΩ is rotated about an axis that is perpendicular to

the rotor Ω plane, it will generate a moment equal to the cross

product, ω × JΩ, where ω is the yawing rate.

• The generated bending moment acts on the bearing block

• These bending moments put stress on the rotor shaft and bearing

block that could lead to structural failure.
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• Control loads result from continuous changes in blade pitch

and torque used to maintain the optimum tip-speed-ratio

• These control operations can produce intermittent loads on the

rotor, shaft and gear box
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2 Rotor Response to Loads

• The horizontal axis wind turbine rotor is designed to be stiff and

light weight.

Figure 7: Section view of a HAWT rotor illustrating the internal structure.
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• The rotor blade can be modeled as a cantilever beam.

• Like the BEM approach, the rotor blade is divided into small

spanwise segments

– The external loading of a rotor segment, pdx is known from

the BEM analysis.

– Loading results in shear forces, T and T + dT , and bending

moments, M and M + dM on each element.

Figure 8: Illustration of shear force and bending moment on a small spanwise element of the
loaded rotor.
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• A balance of forces and moments gives the following equations.

dTz
dx

= −pz(x) + m(x)
d2uz(x)

dt2
(5)

dTy
dx

= −py(x) + m(x)
d2uy(x)

dt2
(6)

(7)

– Time derivative terms represent the inertia in the blade mo-

tion (BENDING).

• The bending moments are then found from

dMy

dx
= Tz (8)

dMz

dx
= −Ty (9)

(10)
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Figure 9: Spanwise element of rotor blade used in beam analysis to determine principle
bending axis.

• Principle bending axis is the point of bending elasticity

where a normal force (out of the plane) does not produce bending

of the beam.

– If the airfoil section is symmetric (no camber) the first prin-

ciple axis lies along the chord line, that is ν = 0.

– For normally twisted blades, thetaT ≤ 0, although (θT + ν)

is considered to be positive.

• The transformation of the bending moments due to the loads to

those along the principle axes is

M1 = My cos(θT + ν) −Mz sin(θT + ν) (11)

and

M2 = My sin(θT + ν) −Mz cos(θT + ν). (12)
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• From beam theory, the curvatures about the principle axes are

κ1 =
M

EI1
(13)

and

κ2 =
M

EI2
. (14)

• These curvatures are transformed back to the y and z axes by

κz = −κ1 sin(θT + ν) + κ2 cos(θT + ν) (15)

and

κy = κ1 cos(θT + ν) + κ2 sin(θT + ν). (16)
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• The angular deformations are then calculated as

dθy
dx

= κy (17)

and
dθz
dx

= κz. (18)

• The deflections, uz and uy are found by integrating

duz
dx

= −θy (19)

and
duy
dx

= −θz. (20)
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• Numerical approach: Consider a rotor blade divided into N

spanwise elements, where the N th element is at the rotor tip

• Shear force:

T i−1
y = T iy +

1

2

(
pi−1
y + piy

) (
xi − xi−1

)
; i = N,N − 1, · · · 2

(21)

and

T i−1
z = T iz +

1

2

(
pi−1
z + piz

) (
xi − xi−1

)
; i = N,N − 1, · · · 2.

(22)

• Bending Moments:

M i−1
y = M i

y−T iz
(
xi − xi−1

)
−
1

6
pi−1
z +

1

3
piz

 (xi − xi−1
)2

; i = N,N−1, · · · 2

(23)

and

M i−1
z = M i

z−T iy
(
xi − xi−1

)
−
1

6
pi−1
y +

1

3
piy

 (xi − xi−1
)2

; i = N,N−1, · · · 2.

(24)

• Rotor Deflections:

ui+1
y = uiy+θ

i
z

(
xi+1 − xi

)
+

1

6
κi+1
z +

1

3
κiz

 (xi+1 − xi
)2

; i = 1, 2, · · ·N−1

(25)

and

ui+1
z = uiz+θ

i
z

(
xi+1 − xi

)
+

1

6
κi+1
y +

1

3
κiy

 (xi+1 − xi
)2

; i = 1, 2, · · ·N−1

(26)
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where

θi+1
y = θiy+

1

2

(
κi+1
y + κiy

) (
xi+1 − xi

)
; i = 1, 2, · · ·N−1 (27)

and

θi+1
z = θiz +

1

2

(
κi+1
z + κiz

) (
xi+1 − xi

)
; i = 1, 2, · · ·N−1 (28)
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• Boundary conditions on the shear force are

TNy = 0 (29)

TNz = 0 (30)

T 1
y =

N∑
i

(Ri) (31)

T 1
z =

N∑
i

(Li). (32)

(33)

• The boundary conditions on the moments are

MN
y = 0 (34)

MN
z = 0 (35)

M 1
y =

N∑
i

(Li)(xi) (36)

M 1
z =

N∑
i

(Ri)(xi). (37)

(38)

• Assuming a rigid rotor support, the boundary conditions on the

displacements are

u1
y = 0 (39)

u1
z = 0. (40)

(41)
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