1 Introduction

- Horizontal axis wind turbine blades extract power from the wind using the aerodynamic forces created on the rotor blades.
- The efficiency of the rotor in extracting the power from the wind is a function of the aerodynamic characteristics of the airfoil sections used in the design of the rotor blades.

Figure 1: Sketch of a wind turbine showing the different blade shapes across the blade.

2 Airfoil Geometry

Figure 2: Geometry defining a symmetric airfoil section (a) and a cambered airfoil (b).

2

Figure 3: Aerodynamic forces and moment acting on an airfoil.

- The angle of attack, α , is the angle that the freestream velocity makes with the chord line of the airfoil.
- The lift force is perpendicular to the freestream velocity vector
- The drag force is parallel to the freestream velocity vector.
- The pitch moment acts at the quarter-chord location.

Figure 4: Aerodynamic forces and moment acting on an airfoil.

• Lift coefficient per unit span, C_L

$$C_L = \frac{L}{\frac{1}{2}\rho_\infty V_\infty^2 c}.$$
(1)

• The lift coefficient of an airfoil section is a function of angle of attack, Reynolds number, and Mach number, namely

$$C_L = f\left(\alpha, Re, M\right) \tag{2}$$

where

$$Re = \frac{\rho_{\infty} V_{\infty} c}{\mu_{\infty}} \tag{3}$$

and

$$M = \frac{V_{\infty}}{a_{\infty}}.$$
(4)

• Similarly, for drag coefficient per unit span, C_D and the pitching moment coefficient about quarter-chord location per unit span, $C_{M_{C/4}}$ are

$$C_D = \frac{D}{\frac{1}{2}\rho_{\infty}V_{\infty}^2 c} = f(\alpha, Re, M)$$
(5)

and

$$C_{M_{C/4}} = \frac{M}{\frac{1}{2}\rho_{\infty}V_{\infty}^2 c^2} f\left(\alpha, Re, M\right).$$
(6)

- On a wind turbine rotor, the velocity at any section along the rotor blade is a function of the wind speed, V_{∞} , and the rotational velocity of the rotor blade, Ωr
 - -r is a radial location along the rotor blade
 - Ω is the rotation rate with units of radians/seconds
- The maximum resultant velocity (at the rotor blade tip, r = R) is the vector sum of the two velocity components, namely

$$V_R = \sqrt{\left(V_\infty^2 + \left(\Omega R\right)^2\right)^2} \tag{7}$$

- The cut-out wind speed for modern large wind turbines is around 25 to 30 m/s.
- For typical rotational velocities of the rotor blades, the maximum resultant velocity is well below the Mach numbers where compressibility has any effect on the aerodynamic performance.
- Therefore,

$$C_L = f(\alpha, Re) \tag{8}$$

$$C_D = f(\alpha, Re) \tag{9}$$

$$C_{M_{C/4}} = f(\alpha, Re).$$
(10)

3 Airfoil Aerodynamics

• Lift coefficient versus angle of attack for a symmetric airfoil

Figure 5: Sample lift coefficient versus angle of attack for a thick symmetric airfoil section.

• Drag coefficient versus angle of attack for a symmetric airfoil

Figure 6: Drag coefficient versus angle of attack for the same airfoil section that produced the lift coefficient versus angle of attack shown in Figure 5.

7

4 Airfoil Geometry

- The geometry of the airfoil influences its aerodynamic properties.
- In the years from the 1970s to the early 1980s, the wind turbine electric power industry used a number of airfoil designs that were developed by the NACA.
 - The NACA-23XX, NACA-44XX, and NACA-63XXX which are part of the NACA four, five or six digit numbering system used to classify the cross-sectional geometry.
- Example NACA-0006: Symmetric, t/c = 0.06

Figure 7: Aerodynamic characteristics of a NACA-0006 airfoil section.

• Example NACA-0012: Symmetric, t/c = 0.12

Figure 8: Aerodynamic characteristics of a NACA-0012 airfoil section.

• Example NACA-0012: Cambered, t/c=0.12

Figure 9: Aerodynamic characteristics of a NACA-4412 airfoil section.

Table 1: Summary of effects of airfoil geometry on aerodynamic characteristics

¥			
Reynolds Number	Increasing Reynolds number delays flow		
	separation to a higher angles of attack, in-		
	creasing $C_{l_{max}}$ and α_s .		
Nose Radius	Nose radius increases with increasing t/c .		
	Increasing nose radius increases $C_{l_{max}}$ and		
	$\alpha_s.$		
Airfoil t/c	$C_{l_{max}}$ increases with increasing t/c up to		
	$t/c \simeq 15\%$. Further increases in t/c de-		
	crease $C_{l_{max}}$.		
Camber	Adding camber shifts the zero lift angle of		
	attack to negative values, and shifts the		
	drag bucket to angles of attack with pos-		
	itive lift, allowing those design lift condi-		
	tions to have minimum drag.		
Surface Roughness	Surface roughness near the leading edge of		
	an airfoil can lead to early stall that results		
	in a lower $C_{l_{max}}$ and increased $C_{d_{max}}$, and		
	as a result a lower $(C_l/C_d)_{max}$.		

5 Airfoil Sensitivity to Leading edge Roughness

• Surface roughness near the leading edge of an airfoil can significantly modify the aerodynamic characteristics.

Figure 10: Effect of leading edge roughness on the lift-to-drag ratio versus angle of attack of a NACA-4412 airfoil section.

- Sources of roughness:
 - insect strikes
 - ice and frost
 - a brasion due to wind-borne particles such as s and and dirt
- Led to development of rotor airfoil section shapes that are more tolerant to surface roughness.

6 New Airfoil Designs for the Wind Power Industry

Airfoil	r/R	Re. No. (x10 ⁶)	t/c	Cimut	Cdmin	Cmo
S806A	0.95	1.3	0.115	1.1	0.004	-0.05
S805A	0.75	1.0	0.135	1.2	0.005	-0.05
S807	0.30	0.8	0.180	1.4	0.010	-0.10
S808	0.20	0.4	0.210	1.2	0.012	-0.12

Figure 11: NREL thin-airfoil family for use in medium sized wind turbine blades.

Figure 12: NREL thick-airfoil family for use in medium sized wind turbine blades.

Airfoil	r/R	Re. No. (x10 ⁶)	t/c	Cimax	Cdmin	Cimo
S813	0.95	2.0	0.160	1.1	0.007	-0.07
S812	0.75	2.0	0.210	1.2	0.008	-0.07
S814	0.40	1.5	0.240	1.3	0.012	-0.15
S815	0.30	1.2	0.260	1.1	0.014	-0.15

Figure 13: NREL thick-airfoil family for use in large sized wind turbine blades.

Figure 14: NREL thick-airfoil family for use in large sized wind turbine blades.

Table 2: Estimated Annual Energy Improvements from NREL Airfold Series						
Turbine	Roughness	Correct	Low Tip	Total		
Type	Insensitive $C_{l_{max}}$	Reynolds No.	$C_{l_{max}}$	Improvement		
Stall Regulated	10% to $15%$	3% to $5%$	10% to $15%$	23% to $35%$		
Variable Pitch	5% to $15%$	3% to $5%$	-	8% to $20%$		
Variable RPM	5%	3% to $5%$	-	8% to $10%$		

. . c . -