
Aerodynamic Performance 1

1 Momentum Theory

Figure 1: Flowfield of a Wind Turbine and Actuator disc.

Table 1: Properties of the actuator disk.

1. The flow is perfect fluid, steady, and incompressible.
2. The actuator disc models the turbine blades and the disc

extracts energy from the flow.
3. The actuator disc creates a pressure discontinuity across

the disc.
4. The flow is uniform through the disc and in the wake.
5. The disc does not impart any swirl to the flow. The influ-

ence of wake rotation will be added later in this chapter.
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Aerodynamic Performance 2

Figure 2: Variation of the velocity and dynamic pressure through the stream-tube.

(ρAV )∞ = (ρAV )d = (ρAV )w (1)

(AV )∞ = (AV )d = (AV )w (2)

University of Notre Dame AME 40530
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Figure 3: Variation of the static and total pressure along the steam-tube.
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Figure 4: Cylindrical Control Volume surrounding the stream-tube.

∑
Fx = −T = ρV 2

wAw+ρV 2
∞ [Acv − Aw]+ṁsideV∞−ρV 2

∞Acv (5)

ṁside = ρAcvV∞ − ρAwVw − ρ [Acv − Aw]V∞ (6)

or

ṁside = ρAw [V∞ − Vw] . (7)

Therefore

T = ρAw

[
V∞Vw − V 2

w

]
= ρAwVw [V∞ − Vw] = ρAdVd [V∞ − Vw]

(8)
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• The thrust can also be expressed in terms of the pressure drop

across the actuator disc times the area of the disc,

T = ∆pAd. (9)

• But

∆p =
1

2
ρ
[
V 2
∞ − V 2

w

]
(10)

so that the thrust acting on the actuator disc can then be ex-

pressed as

T =
1

2
ρAd

[
V 2
∞ − V 2

w

]
. (11)
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• A relationship between the velocity at the actuator disc, Vd, the

free-stream velocity, V∞, and the velocity in the wake, Vw, is

Vd =
1

2
[V∞ + Vw] . (12)

• Thus we introduce a new parameter that measures how much

the wind velocity, V∞ has been affected by the actuator disc,

called the axial induction factor, a,

a =
V∞ − Vd
V∞

(13)

• The velocity at the actuator disc, Vd, can now be expressed in

terms a

Vd = V∞ [1− a] . (14)

• The wake velocity, Vw, can also be expressed in terms a, and V∞

Vw = V∞ [1− 2a] . (15)

• The the thrust on the rotor can be expressed in terms of a

T = 2ρAdV
2
∞a [1− a] (16)

• Defining the thrust coefficient as

CT = T/

1

2
ρAdV

2
∞

 (17)

then

CT = 4a [1− a] . (18)
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• The power extracted from the wind by the actuator disc is equal

to the product of the thrust, T , and the wind velocity at the

actuator disc, Vd,

P = TVd. (19)

• Therefore

P = 2ρAdV
3
∞a [1− a]2 . (20)

• The power coefficient, Cp, is defined as the ratio of the power

extracted from the wind, P , and the available power of wind, or

CP = P/

1

2
ρAdV

3
∞

 (21)

• In terms of a,

CP = 4a [1− a]2 . (22)
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Aerodynamic Performance 8

• To find the maximum thrust coefficient, CT , with respect to a

dCT
da

=
d

da
[4a(1− a)] (23)

= 4− 8a ≡ 0

therefore

a = 1/2

and

CTmax = 1

• The maximum power coefficient is obtained similarly

dCP
da

=
d

da

[
4a(1− a)2

]
(24)

= 1− 4a + 3a2 ≡ 0

therefore

a = [1, 1/3]

and

CPmax =
4

3

1− 1

3

2

=
16

27
or,

CPmax = 0.593

• The maximum theoretical power coefficient, CPmax = 0.593, is

often referred to as the Betz limit after Albert Betz[?], who

published this finding in 1920.
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Figure 5: Variation of the rotor thrust and power coefficients, CT and CP , with the axial
induction factor, a.
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Example 1: The following figure shows a stream-tube/actuator

disc model of a wind turbine. Assume that the actuator disc has

a radius of 3 m. and a freestream wind speed of V∞ = 7 m/s.

a. Estimate the maximum power that can be extracted by the

idealized wind turbine.

b. Determine the velocity at the actuator disc and in the wake.

c. Determine the areas, A∞ and Aw.

Solution:

a. The power extracted by the actuator disc is give by Eq. 21,

and the maximum power coefficient, CPmax = 0.593, is given

by the Betz limit given in Eq 24.

Therefore knowing the actuator disc radius, the disk area is

Ad = πR2 = π32 = 28.27m2.

The power extracted by the actuator disc is then

CP = P/

1

2
ρAdV

3
∞


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so that

P = 0.593(0.5)(1.22kg/m3)(7m/s)3(28.27m2) = 3.51kW.

b. The velocity at the actuator disc, Vd, and in the wake, Vw,

can be calculated from Eqs. 14 and 15, respectively. Since

the power coefficient is a maximum, then a = 1/3 so that

Vd = V∞ [1− a] = 7m/s

1− 1

3

 = 4.667m/s

and

Vw = V∞ [1− 2a] = 7m/s

1− 2

3

 = 2.333m/s.

c. The areas A∞ and Aw can be calculated using the continuity

equation, Eq. 2, namely,

(AV )∞ = (AV )d = (AV )w.

Therefore,

A∞ =
AdVd
V∞

= (28.27m2)(4.667m/s)/(7m/s) = 18.85m2

and

Aw =
AdVd
Vw

= (28.27m2)(4.667m/s)/(2.333m/s) = 56.55m2.

In this example we see that the velocity of the wind in the wake,

Vw, has been reduced to 1/3 of the ambient wind speed, V∞, and
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the area of the wake, Aw is three-times as large as that of the

stream tube far upstream of the actuator disc, A∞, or twice the

cross-sectional area of actuator disc, Ad.
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2 Momentum Theory with Wake Rotation

• The previous momentum theory for the rotor disk provided the

optimum inflow induction factor, a = 0.33, to maximize the

power coefficient, CPmax = 0.593.

• That analysis assumed that the rotor disk did not generate

any rotation of the flowfield in the wake

• The following considers the effect of rotation and seeks the con-

ditions that maximize the power coefficient, CP

Videos:

https://youtu.be/8GVCizBYYUk

https://www.youtube.com/watch?v=L8Ddg6dPwkU
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• The momentum analysis is modified to allow the actuator disc

to impart rotation to the flow downstream of the disc.

– The flow upstream of the actuator disc is not affected by the

disc rotation.

– Immediately behind the actuator disc, a tangential flow is

imparted to the downstream wake.

Figure 6: Schematic of the induced rotation of the flow downstream of the rotating actuator
disc.

• The tangential flow is represented through an angular induction

factor, a′, where

a′ =
ω

2Ω
(25)

– Ω is the angular velocity of the rotor disk

– ω is the angular velocity imparted to the wake

– and ω � Ω
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• Following Glauert, the differential thrust on an annular ring of

the actuator disc is

dT = ∆p(2πrdr) =
[
ρ
(
Ω +

ω

2

)
ωr2

]
2πrdr (26)

• Introducing a′,

dT = 4a (1 + a)
1

2
ρΩ2r2 (2πrdr) . (27)

• The thrust obtained with no wake rotation (Eq. 16), now writ-

ten in differential form is

dT = 2ρV 2
∞a(1− a)(2πrdr). (28)

• Equating the two equations for differential thrust, gives that

a(1− a)

a(1 + a)
=

Ωr

V∞

2

= λ2
r (29)

• λr is called the local speed ratio, defined as

λr =
Ωr

V∞
. (30)

• An important performance parameter for a wind turbine is

the rotor tip-speed-ratio, λ = λr=R, namely

λ =
ΩR

V∞
. (31)
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• To determine the torque on the rotor, apply conservation of

angular momentum

• This yields an equation for the differential torque acting on an

angular ring at radius r of the actuator disc

dQ = dṁωr2 = ρVd (2πrdr)ωr2 (32)

• Substituting Vd and ω

dQ = 2a′(1− a)ρV∞Ωr2(2πrdr) (33)

• The differential power is

dP = ΩdQ = 2a′(1− a)ρV∞Ω2r2(2πrdr). (34)

• Equating the differential power with wake rotation with that

with no wake rotation then

2a′(1− a)ρV∞Ω2f 2(2πrdr)︸ ︷︷ ︸
with rotation

= 2a(1− a)2ρV 3
∞(2πrdr)︸ ︷︷ ︸

without rotation

. (35)

• Simplifying leads to a useful relation

a(1− a) = a′λ2
r. (36)
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• The incremental power coefficient for an annular ring is

dCP =
dP

1
2ρV

3
∞
Ad. (37)

• Substituting for dP = ΩdQ

dCP =
2a′(1− a)ρV∞Ω2r2(2πrdr)

1
2ρV

3
∞πR

2
(38)

=

[
8a′(1− a)λ2

rrdr
]

R2

• Introducing the variable, µ, where

µ =
r

R
(39)

and

dµ =
dr

R
(40)

• Then dCP can be integrated with respect to µ to give

CP = 8
∫ 1

0
a′(−a)λ2

rµdµ. (41)
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• Example 2: Determine the conditions on the inflow induction

factor, a that maximizes the power coefficient with rotation

CP = 8
∫ 1

0
a′(−a)λ2

rµdµ (42)

• Solution: Find the condition on a that maximizes the integrand,

namely
d

da

[
8a′(1− a)λ2

rµ
]

= 0 (43)

or

8λ2
rµ

1− a− a′ da
da′

 = 0 (44)

which yields
da

da′
=

1− a
a′

(45)
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• From before,

a(1− a) = a′λ2
r (46)

• Taking d/da′, then
da

da′
=

λ2
r

1− 2a
(47)

• Equating the two expressions for d/da′ gives

1− a
a′

=
λ2
r

1− 2a
(48)

or

λ2
ra
′ = (1− a)(1− 2a) (49)

• Substituting

λ2
ra
′ = a(1− a) (50)

then

a(1− a) = (1− a)(1− 2a) (51)

• Solving for a we obtain

a = 1/3 (52)

• Thus a = 1/3 gives CPmax without and rotation.

University of Notre Dame AME 40530



Aerodynamic Performance 20

• Substituting a = 1/3 gives

a′ =
a(1− a)

λ2
r

=
2/9

λ2
r

(53)

• Thus a′ decreases with increasing r on the rotor

– Therefore wake rotation is a minimum at the rotor tip, and

a maximum at the rotor root.
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3 Blade Element Momentum (BEM) Theory

• Actuator disc theory provides us with simple formulas to calcu-

late the power extracted and thrust acting on the wind turbine

rotor.

• It provided a theoretical limit on the power that can be extracted

from the wind.

• However it is unable to predict the performance of wind turbine

rotor blades as a function of the rotor blade design parameters

such as

1. rotor radius,

2. number of blades,

3. blade chord,

4. blade twist,

5. airfoil section shape,

6. and radial variations of these.

• Ihe objective is to optimize the aerodynamic performance and

thereby maximize the power output of the wind turbine.
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Figure 7: Example of a wind turbine blade divided into 10 sections for BEM analysis.

Figure 8: Example of the variation in chord and geometric twist along the radial distance of
a wind turbine rotor blade.
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Figure 9: Illustration of the aerodynamic forces acting on a wind turbine blade section at a
distance r from the axis of rotation.

• The angle of attack of the airfoil section on the rotor is the angle

between the airfoil chord line and the resultant velocity the airfoil

section experiences

• With rotation, the resultant velocity, VR, is made up of the vector

sum of the wind speed and the rotational speed of the blade

section

VR =
√

[V∞(1− a)]2 + [Ωr(1 + a′)]2 (54)

• Note that both the wind speed and rotation velocities are mod-

ified by the axial and angular induction factors
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Figure 10: Illustration of the aerodynamic forces acting on a wind turbine blade section at
a distance r from the axis of rotation.

• The angle that the resultant velocity makes with respect to the

plane of rotation is the angle, φ, where

tanφ = V∞
1− a

Ωr(1 + a′)
(55)

so that

φ = tan−1

V∞(1− a)

Ωr(1 + a′)

 . (56)
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• Wind turbine blade must have a built-in twist distribution from

the hub to the tip, so that each blade section will be at an angle

of attack that is near that of (L/D)max.

• The blade can be also mounted into the hub at some desired

pitch angle, θcp.

– It is usually measured as angle relative to the plane of rota-

tion

– For a fixed pitch blade, θcp is a constant

– In a pitch controlled wind turbine, θcp, is varied to control

the power output between rated and cut-out wind speeds.

• The local angle of attack, α, at any radial location on the rotor is

the sum of the local resultant velocity vector angle, φ(r), minus

the local twist angle, θT (r), and the pitch angle, θcp, namely

α(r) = φ(r)− [θT (r) + θcp] . (57)

University of Notre Dame AME 40530



Aerodynamic Performance 26

• The thrust force acting on any section of the rotor blade section

acts normal to the plane of rotation of the blade.

• The torque on any section of the blade equals the net aerody-

namic force in the plane of rotation times its distance to the axis

of rotation

• The normal and tangential forces on a section of the blade can

be expressed in terms of the differential lift and drag forces

dL = CL
1

2
ρV 2

Rcdr (58)

and

dD = CD
1

2
ρV 2

Rcdr (59)

• The lift and drag coefficients are functions of the airfoil section

angle of attack, α.

• The differential force normal to the plane of rotation, dFn, and

the differential tangential force in the plane of rotation, dFt are

dFn = dL cosφ + dD sinφ (60)

and

dFt = dL sinφ− dD cosφ (61)

• Substituting for dL and dD and letting B represent the number

of blades, the differential normal and tangential forces are

dFn = B
1

2
ρV 2

R [CL cosφ + CD sinφ] cdr (62)

and

dFt = B
1

2
ρV 2

R [CL sinφ− CD cosφ] cdr. (63)
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• Defining

Cn = CL cosφ + CD sinφ (64)

and

Ct = CL sinφ− CD cosφ (65)

• Then

dFn = B
1

2
ρV 2

RCncdr (66)

and

dFt = B
1

2
ρV 2

RCtcdr. (67)
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• The differential torque, dQ = rdFt and the differential power,

dP = ΩdQ are then

dQ = rdFt = B
1

2
ρV 2

RCtcrdr (68)

and

dP = ΩdQ = BΩ
1

2
ρV 2

RCtcrdr. (69)

• To incorporate a and a′, the thrust determined by momentum

theory with no wake rotation is used, namely

dT = 2ρV 2
∞a(1− a)2πrdr. (70)

• The differential thrust, dT , is equivalent to the differential nor-

mal force, dFn. Therefore equating these

2ρV 2
∞a(1− a)2πrdr︸ ︷︷ ︸
MomentumTheory

= B
1

2
ρV 2

RCncdr︸ ︷︷ ︸
BEM Theory

. (71)

• Substituting

VR =
V∞(1− a)

sinφ
. (72)

and rearranging terms

a

1− a
=

BCnc

8πr sin2 φ
. (73)
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• Defining a new parameter, σr where

σr =
Bc

2πr
(74)

then

a =
1

4 sin2 φ
σrCn

+ 1
. (75)
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• Similarly equating the torque equations from momentum amd

BEM theories

2a′(1− a)ρV∞Ωr22πrdr︸ ︷︷ ︸
MomentumTheory

= BΩ
1

2
ρV 2

RCtcrdr︸ ︷︷ ︸
BEM Theory

(76)

one obtains a relation for the angular induction factor

a′ =
1

4 sinφ cosφ
σrCt

− 1
. (77)

• We will discuss how the BEM equations are solved for a wind

turbine design a little later.
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4 Prandtl’s Tip Loss Factor

Figure 11: Illustration of rotor tip vortices from a three-bladed wind turbine rotor.

Figure 12: Photograph of the cross-section of the tip vortices from a two-bladed wind turbine
that was visualized in a wind tunnel experiment[?].
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• The vortices that form at the tip of the rotor result in added

drag that was not accounted for in the momentum analysis.

• The BEM approach assumes that each section of the rotor is

independent of the neighbor sections.

– This is a reasonable assumption for the inboard portion of

the rotor blade

– However significant interference occurs on the outboard ra-

dial portion of the rotor blades

– Specifically at the rotor tip, flow from the high pressure side

of the rotor blade passes around the blade tip to the lower

pressure side

– Observed as a “tip vortex”
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• The effect of the tip vortices is to lower the lift and therby the

generated torque, at the outboard portion of the blade.

• Ludwig Prandtl developed a tip loss factor, F ,

F =
2

π
cos−1

(
e−f

)
(78)

where

f =
B

2

R− r
r sinφ

(79)

– B is the number of rotor blades,

– r is the local radius on the rotor,

– R is the rotor radius,

– φ is the local angle the resultant velocity makes with the

rotor disk plane of rotation at the local radius.

• The tip loss factor is introduced into the differential thrust such

that

dT = 2FρV 2
∞a(1− a)2πrdr. (80)

and

dQ = 2Fa′(1− a)ρV∞Ωr2(2πrdr). (81)

• The differential torque relates to the differential power as

dP = ΩdQ. (82)
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• Generally

r/R ≤ 0.6 : F ' 1 (83)

r/R > 0.6 : F < 1 (84)

Figure 13: Prandtl tip loss factor along the span of a wind turbine rotor.
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• Equating the differential momentum equation for thrust and

torque including the Prandtl tip loss factor, with the correspond-

ing differential thrust and torque equations

a =
1

4F sin2 φ
σrCn

+ 1
(85)

and

a′ =
1

4F sinφ cosφ
σrCt

− 1
(86)

Figure 14: Spanwise distribution of the induction factors, a and a′ for the University of Notre
Dame Research Wind Turbines.
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5 Solution of the BEM Equations

Figure 15: Example of a wind turbine blade divided into 10 sections for BEM analysis.

• For a given tip speed ratio, λ, and a wind speed, V∞, an itera-

tive approach can be used to determine the axial and rotational

induction factors a and a′, at a given station on the blade.

• Once the induction factors are known, the differential thrust,

torque and power at that station can be determined.

• This process is continued for each segment across the blade.

• The differential components of thrust, torque and power can then

be summed to obtain the total thrust transmitted to the tower

and the total torque and power delivered to the drive shaft. A

flow chart that illustrates this approach is shown in Figure 16.
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Figure 16: Flow Chart for the iterative procedure used in solving the BEM equations.
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Step 1. Divide the blade into n, spanwise segments and input
the geometric blade information for each segment.

Step 2. Start at the most inboard segment.

Step 3. Set the axial and tangential induction factors, a and
a′ to zero.

Step 4. Compute the angles φ and α using Eqs. 56 and 57.

Step 5. Knowing the angle of attack, α, the lift and drag co-
efficients, CL and CD, can be computed from poly-
nomial expressions that are a fit to the lift and drag
coefficient data for the airfoil section shape at the
given spanwise segment of the rotor.

Step 6. Calculate the normal and tangential force coefficients,
Cn and Ct, from Eqs. 64 and 65.

Step 7. Calculate a and a′ from Eqs. 75, 78, 79, 85 and 86.

Step 8. Compare the new values of a and a′ with the previ-
ous values. Does the difference meet the convergence
criteria? If “No” go to Step 9 using the new values of
a and a′. If “Yes” go to Step 10.

Step 9. Use the values of a and a′ from Step 7 and go to Step
4.

Step 10. Calculate the differential thrust, dT , torque, dQ, and
power, dP , for the blade segment using Eqs. 80 to 82.
If this is the last (most outboard) blade segments go
to Step 11. Otherwise move to the next blade segment
and repeat the process starting at Step 3.

Step 11. Calculate the total thrust T , torque, Q, and power,
P as the sum of the differential power from each of
the spanwise segments.
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5.1 Example BEM Equation Solution

Figure 17: Photograph of the University of Notre Dame Research Wind Turbines and Me-
teorological tower.

• The combined efficiency of the power train components, bear-

ings, gearbox, generator, etc. was assumed to be η = 0.9.

– That is 90% of the power extracted by the rotor is converted

to electrical power.
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Table 2: Characteristics of the University of Notre Dame Wind Turbines

Rec 0.5× 106

CL(α) 0.327 + 0.1059α− 0.0013α2

CD(α) 0.006458− 0.000272α + 0.000219α2 − 0.0000003α3

α −2◦ ≤ α12◦

B 3
λ 7
R 4.953 m.

Vcut−in 3.0 m/s
Vrated 11.6 m/s
Vcut−out 37.0 m/s

Rated Power 25 kW

Table 3: Rotor Geometry of the University of Notre Dame Wind Turbines

r/R Chord (mm) Blade Twist (◦)
0.2414 467.62 14.39
0.2835 421.45 11.89
0.3257 382.21 9.92
0.3678 349.07 8.34
0.4100 323.59 7.05
0.4521 303.19 5.98
0.4943 287.05 5.08
0.5364 274.53 4.31
0.5785 259.42 3.64
0.6207 249.51 3.07
0.6628 239.74 2.56
0.7050 230.16 2.11
0.7471 220.04 1.71
0.7893 211.77 1.34
0.8314 204.56 1.03
0.8736 200.88 0.73
0.9157 196.84 0.47
0.9579 192.37 0.22
1.0000 188.02 0
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Figure 18: Blade chord distribution for the University of Notre Dame Research Wind Tur-
bines.

Figure 19: Blade twist distribution for the University of Notre Dame Research Wind Tur-
bines.

University of Notre Dame AME 40530



Aerodynamic Performance 42

Figure 20: Spanwise distribution of the rotor blade angles φ and θT for the University of
Notre Dame Research Wind Turbines.

Figure 21: Spanwise distribution of the induction factors, a and a′ for the University of Notre
Dame Research Wind Turbines.
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Figure 22: Spanwise distribution of the lift-to-drag ratio for the University of Notre Dame
Research Wind Turbines.

Figure 23: Spanwise distribution of the Prandtl loss coefficient for the University of Notre
Dame Research Wind Turbines.
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Figure 24: Spanwise distribution of the differential thrust for the University of Notre Dame
Research Wind Turbines.

Figure 25: Spanwise distribution of the differential torque for the University of Notre Dame
Research Wind Turbines.
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Figure 26: Spanwise distribution of the differential power for the University of Notre Dame
Research Wind Turbines.

Figure 27: Power curve for the University of Notre Dame Research Wind Turbines.
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