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Research Objectives 

§ Experimentally generate spatially 
periodic plasma lattice structures 
in air 

§  Exploit charge instability between 
electrodes separated by a double 
dielectric layer 

§ Demonstrate dynamic control of 
plasma lattice spacing, a 

§  Document dependence on gas 
pressure (Ps), gap distance (d), 
and input power  

§ Experimentally determine EM 
wave transmittance under different 
plasma lattice conditions   

a 
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Research Objectives 

§  Incorporate experimentally derived 
plasma lattice into EM wave 
simulation to determine predicted 
transmittance characteristics 

§ Compare EM transmittance obtained 
from experiments to EM wave 
simulation predictions 

§  Independent variables: Ps and ne 

§ Use validated simulation to project 
EM transmittance to target 70Ghz 
probing frequency 
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§  Plasma frequency, ωp, is a function of electron density, which is 
controllable by the applied voltage. 

§  Electron-neutrals collision frequency, ν , is a function of the gas pressure. 
§  The combination control the plasma permittivity. 

Approach: Plasma Permittivity Control 

Dielectric Barrier Discharge  

Plasma Permittivity: 

ω 
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Approach: Plasma Permittivity Regimes 

Plasma Photonic  
Crystals 
ω~1010 

ωp~1011 

ν~1011 

ν=(3.9e9 s-1Torr-1)Ps 

Razier (1991) 
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Approach: Plasma Permittivity Control 

Transmission 

125 - 400 Torr 

1019               1021 [m-3] 

ω/2π=20GHz Air 
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§  Plasma charge instability* produces 
stationary, naturally spaced plasma lattice 
structure. (*Callegari et al., 2014)  

§  Forms a periodic dielectric in 2-D. 
§  Lattice spacing determines propagation 

characteristics: frequency cut-off, 
photonic band gap. 

Approach: Plasma Lattice  

Sakai & Tachibana. 2012 
Simplified rectilinear lattice 

a 

a 

Plasma lattice structure 

Plasma dielectric 

Air 
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Plasma Lattice Device 
Circular Lower Electrode 

1 2 

3 

Dielectric layer 
(glass) 

Glass with Indium-Tin-Oxide 
layer on one surface  

Gap spacer 
ring 

Complete 
Assembly 

Glass 
pressure plate 

AC 

• Glass Pressure Plate 
•  ITO Electrode 
• Dielectric (glass) 
• Spacer Ring 
• Dielectric Glass 
• Circular Electrode 

Assembly Schematic 



 
9 

University of Notre Dame 

Plasma Lattice Structure 

Effect of Voltage 
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Lattice Analysis: Node Locations, Radii and Spacing 

2 mm. 

4 mm. Lattice Spacing Lattice Interior Angles 
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Predictive Plasma Lattice Control 

Follows Circle Packing Theory 

Transmittance Experiment  
Conditions  

d=1.10mm 

d=0.63mm 
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EM Wave Experimental Setup 

TE mode 

TE mode 

Aperture View  

D=7cm (4.7λ20GHz) 
4.4 cm 

4.4 cm 

Plasma Lattice 

Aperture Plate Aperture Plate 

Viewing Mirror 

B/W Camera 
Mirror View 

Waveguide Horn 

S1 S2 
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EM Wave Experimental Setup 

•  Experimental setup placed in cylindrical 
pressure vessel 

•  Vacuum-rated electrical pass-through 
connectors for plasma power, and S1 and S2 
analyzer signals. 

Camera view port 

Camera 

Rohde & Schwarz ZVN20 VNA 
10MHz-20GHz 

Viewing Mirror 

Plasma Lattice 

Aperture Plate 
removed for photo 
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• Plasma AC frequency = 54kHz 
• Data Acquisition:  

• Sequence of Plasma Lattice Off, On, Off 
• 1001pts. S21: 17.5 - 20GHz 
• Plasma Lattice Image 

Experimental Conditions 

d (mm) Static Pressure, Ps (Torr) Power 
Gain 

2.50 125 200 250 300 400 22-56 

1.10 - 200 - 300 400 35-80 

0.62 - - - - 400 46-72 
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Decreasing d 

Increasing P
ow

er 

Plasma Lattice Images: Ps=400Torr 
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Plasma Lattice: Ps=400Torr, ω/2π=20GHz 

Power 
Gain 

d=2.50(mm) d=1.11(mm) d=0.63(mm) 
a 

(mm) 
λ/a ωa/

2πc  
a 

(mm) 
λ/a ωa/

2πc  
a 

(mm) 
λ/a ωa/

2πc  

Min. 4.7 3.2 0.31 3.2 4.7 0.21 3.0 5.0 0.20 

Mid. 4.2 3.6 0.28 2.4 6.2 0.16 2.1 7.1 0.14 

Max. 4.6 3.3 0.31 2.0 7.5 0.13 1.6 9.4 0.11 

Image Analysis 

• Metamaterial: λ/a ≈ 10 
• Phototonic Crystal: λ/a ≈ 1 
• Band Gap (Sakai et al., 2005): ωa/2πc ≈ 0.5  
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Sample S21 Transmittance Spectra 

S21/S 21(Lattice off) 

d=2.5mm., Ps=250Torr  

Average Baseline 
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S21 Transmittance Spectra   
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Pressure = 400Torr , Gap =  0.63mm PG:46 
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Ps=400Torr, d=0.63mm. 
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S21 Transmittance Spectra 

Ps=400Torr, d=0.63mm. 

a 
(mm) 

λ/a ωa/
2πc  

3.0 5.0 0.20 

2.1 7.1 0.14 

1.6 9.4 0.11 
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S21 Transmittance Spectra 

Ps=400Torr, 
d=1.1mm. 

a 
(mm) 

λ/a ωa/
2πc  

3.2 4.7 0.21 

2.4 6.2 0.16 

2.0 7.5 0.13 Ps=400Torr, 
d=2.50mm. 

a 
(mm) 

λ/a ωa/
2πc  

4.7 3.2 0.31 

4.2 3.6 0.28 

4.6 3.3 0.31 
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Effect of Power on Minimum S21 Transmittance 

Ps=300Torr, d=2.50mm. d=2.50mm., 125 ≤ Ps ≤ 400Torr 

Normalized Power Normalized Power 
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Effect of Gap on S21 Minimum Transmittance 
Ps=400Torr, 0.63 ≤ d ≤ 2.50mm. 
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•  Simulation of a 2-D plasma photonic crystal subject to planar electromagnetic 
wave fronts of a specific probing frequency 

 
•  Utilized MIT open-source (Meep) software that solves Maxwell’s equations at 

each time step to realize the electromagnetic field at discrete spatial locations 
through an implementation of a finite-difference time-domain (FDTD) method.  

•  Dispersive materials are defined in Meep using a Lorentz-Drude model  
 
 
 
 

Where ε∞ is the frequency-independent permittivity, N is the number of 
resonance frequencies, Ωm is a resonance frequency, σm is the strength 
associated with that frequency, and ν is the electron elastic collision frequency. 

 

EM Wave Simulation 
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•  Permittivity, εp, of each plasma column given by the dispersive relation  

 
where ω is the probing frequency, and ωp is the plasma frequency and ν is the 
electron elastic collision frequency. 

 
•  The plasma frequency is defined as                           
 

where ne is the electron density, q is the electron charge, m is electron mass, and 
ε0 is the free-space permittivity. Based on Razier (1991), ν=(3.9e9 s-1Torr-1)Ps 

 
•  For the Meep parameters, we equate two forms of the permittivity, namely 
 
 
 

then ε∞=1 and N=1. 
 
•  To achieve the best representation of the plasma material, Ωm<<1 which requires 

that σm=(ωp)2/(Ωm)2.  Used Ωm = 0.0001. 
 

Meep: Plasma Column Permittivity 
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EM Wave Simulation 

rlattice 

•  Computational domain consists of rectangular region 12rlattice by 6 rlattice  

•  A non-reflecting PML perimeter of width 4λProbe surrounds the domain  
•  Plasma grating patterns from the experiments are inset in computational 

domain  

 

4λProbe 

PML (Perfectly Matched Layer) 

w=12rlattice 

h=
6r

la
tti

ce
 

Computational Domain 
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Simulation: 400 Torr, a=4mm, ne=1e21m-3 

Wave Energy 
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100*(Plasma − No Crystal)/No Crystal at etae=1e+21, 4MM, 20GHz

x, [mm]

y,
 [m

m
]
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Simulation: 400 Torr, a=4mm, ne=1e21m-3 

Interrogation Area 
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Simulation Results 
Ps=400Torr, 0.63 ≤ d ≤ 2.50mm. 
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Simulation Projection 

Sakaguchi et al., 2007 
17 and 30 discharge 
rows 

a 
(mm) 

λ/a ωa/
2πc  

2 2.15 0.47 
8 0.54 1.87 
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Summary 
§  Demonstrated dynamic control of plasma lattice structures with different lattice 

spacings, a. 
§  Performed EM wave transmittance experiments for probing frequencies up to 

20GHz. 
§  Experiments demonstrated effects of Ps, d, and power on S21 transmittance.  
§  Results indicated a narrow frequency band S21 attenuation. 
§  Largest S21 attenuation occurred with highest Ps were λ/a=O10 
§  The largest attenuation was comparable to other non-configurable plasma 

lattices in the literature, e.g. Sakaguchi et al., 2007.  
§  EM wave simulations performed on experiment-based plasma lattice 

configurations produced transmittance values that were in good agreement with 
the experiments. 

§  Indicates validity of the simulation to predict effect at higher probing 
frequencies. 
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Way Forward 

§  Perform EM wave transmittance experiments at higher probing frequencies 
(~70GHz). 

§  Acquire a 70GHz Vector Network Analyzer and matched components. 
§  Repeat transmittance measurements at the higher probing frequencies that 

include off-axis locations. 
§  Seek wave energy changes in the Γ– M direction that is a characteristic 

of a photonic crystal. 
§  Perform further comparisons to the EM wave simulations. 
§  Generate band diagrams for a range of lattice spacing and electron 

densities derived from the experiments. Correlate these to the experimental 
observations.  

§  Investigate charge instability lattice control approaches that include: 
§  Silicon dielectric with surface layer doping patterns 
§  Real-time UV patterns projected on the glass dielectric 

  

Wave Guides 
and Conduits 
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• Even at the current probing frequencies, with our control over the 
plasma, we are in a position to look at photonic crystals where the 
columns can have positive, negative or 0 permittivity.   

• This is quite unique and we think, not realizable with non-configurable 
plasma lattices in the literature such as that of Sakaguchi et al. 

Way Forward 


