Synthesis and Control of Coherent Structures in Low Temperature Plasmas for Reconfigurable Electromagnetic Devices: Self-organized Plasma Lattice Metamaterial

Thomas Corke and Eric Matlis

Institute for Flow Physics and Control Aerospace and Mechanical Engineering University of Notre Dame College of Engineering Notre Dame, IN tcorke@nd.edu

Research Objectives

- Experimentally generate spatially periodic plasma lattice structures in air
 - Exploit charge instability between Inci electrodes separated by a double dielectric layer
- Demonstrate dynamic control of plasma lattice spacing, a
 - Document dependence on gas pressure (P_s), gap distance (d), and input power
- Experimentally determine EM wave transmittance under different plasma lattice conditions

Research Objectives

- Incorporate experimentally derived plasma lattice into EM wave simulation to determine predicted transmittance characteristics
- Compare EM transmittance obtained from experiments to EM wave simulation predictions
 - Independent variables: P_s and n_e
- Use validated simulation to project EM transmittance to target 70Ghz probing frequency

Approach: Plasma Permittivity Control

- Plasma frequency, ω_p , is a function of electron density, which is controllable by the applied voltage.
- Electron-neutrals collision frequency, v, is a function of the gas pressure.
- The combination control the plasma permittivity.

Approach: Plasma Permittivity Regimes

Approach: Plasma Permittivity Control

Approach: Plasma Lattice

- Plasma charge instability* produces stationary, naturally spaced plasma lattice structure. (*Callegari et al., 2014)
- Forms a periodic dielectric in 2-D.
- Lattice spacing determines propagation characteristics: frequency cut-off, photonic band gap.

Sakai & Tachibana. 2012

Plasma Lattice Device

Plasma Lattice Structure

Effect of Voltage

Lattice Analysis: Node Locations, Radii and Spacing

Predictive Plasma Lattice Control

Follows Circle Packing Theory

FlowPAC IN

EM Wave Experimental Setup

FlowPAC I

EM Wave Experimental Setup

- Experimental setup placed in cylindrical pressure vessel
- Vacuum-rated electrical pass-through connectors for plasma power, and S1 and S2 analyzer signals.

Experimental Conditions

d (mm)		Power Gain				
2.50	125	200	250	300	400	22-56
1.10	-	200	-	300	400	35-80
0.62	-	-	-	-	400	46-72

- Plasma AC frequency = 54kHz
- Data Acquisition:
 - Sequence of Plasma Lattice Off, On, Off
 - 1001pts. S₂₁: 17.5 20GHz
 - Plasma Lattice Image

Plasma Lattice Images: P_s=400Torr

Image Analysis

Plasma Lattice: P _s =400Torr, <i>ω</i> /2π=20GHz													
Power Gain	d=2.50(mm)			d=1.11(mm)			d=0.63(mm)						
	a (mm)	λ/a	<i>ωa/</i> 2πc	a (mm)	λ/a	<i>ωa/</i> 2πc	a (mm)	λ/a	<i>ωa</i> / 2πc				
Min.	4.7	3.2	0.31	3.2	4.7	0.21	3.0	5.0	0.20				
Mid.	4.2	3.6	0.28	2.4	6.2	0.16	2.1	7.1	0.14				
Max.	4.6	3.3	0.31	2.0	7.5	0.13	1.6	9.4	0.11				

- Metamaterial: $\lambda/a \approx 10$
- Phototonic Crystal: $\lambda/a \approx 1$
- Band Gap (Sakai et al., 2005): *ωa*/2πc ≈ 0.5

Sample S₂₁ Transmittance Spectra

S₂₁ Transmittance Spectra

S₂₁ Transmittance Spectra

P_s=400Torr, *d*=0.63mm.

S₂₁ Transmittance Spectra

(P-P_min)/(P_max-P_min)

Effect of Power on Minimum S₂₁ Transmittance

Effect of Gap on S₂₁ Minimum Transmittance

EM Wave Simulation

- Simulation of a 2-D plasma photonic crystal subject to planar electromagnetic wave fronts of a specific probing frequency
- Utilized MIT open-source (Meep) software that solves Maxwell's equations at each time step to realize the electromagnetic field at discrete spatial locations through an implementation of a finite-difference time-domain (FDTD) method.
- Dispersive materials are defined in Meep using a Lorentz-Drude model

$$\epsilon(\omega) = \epsilon_\infty + \sum_{m=1}^N rac{\sigma_m \Omega_m^2}{\Omega_m^2 - \omega^2 + i
u \omega}$$

Where ε_{∞} is the frequency-independent permittivity, *N* is the number of resonance frequencies, Ω_m is a resonance frequency, σ_m is the strength associated with that frequency, and *v* is the electron elastic collision frequency.

Meep: Plasma Column Permittivity

- Permittivity, $\epsilon_{\mbox{\tiny p}}$, of each plasma column given by the dispersive relation

$$\epsilon_p(\omega) = 1 - \left(rac{\omega_p}{\omega}
ight)^2 rac{1}{1 - irac{\omega}{\omega}}$$

where ω is the probing frequency, and ω_p is the plasma frequency and v is the electron elastic collision frequency.

- The plasma frequency is defined as $\omega_p = \sqrt{rac{n_e q^2}{m \epsilon_0}}$

where n_e is the electron density, q is the electron charge, m is electron mass, and ε_0 is the free-space permittivity. Based on Razier (1991), $v=(3.9e9 \text{ s}^{-1}\text{Torr}^{-1})\text{P}_{s}$

• For the Meep parameters, we equate two forms of the permittivity, namely

$$\epsilon(\omega) = \epsilon_{\infty} + \sum_{m=1}^{N} \frac{\sigma_m \Omega_m^2}{\Omega_m^2 - \omega^2 + i\nu\omega} = 1 + \frac{\omega_p^2}{-\omega^2 + i\nu\omega}$$

then ε_{∞} =1 and N=1.

• To achieve the best representation of the plasma material, $\Omega_m <<1$ which requires that $\sigma_m = (\omega_p)^2 / (\Omega_m)^2$. Used $\Omega_m = 0.0001$.

EM Wave Simulation

- Computational domain consists of rectangular region 12r_{lattice} by 6 r_{lattice}
- A non-reflecting PML perimeter of width $4\lambda_{\text{Probe}}$ surrounds the domain
- Plasma grating patterns from the experiments are inset in computational domain

PML (Perfectly Matched Layer)

Simulation: 400 Torr, a=4mm, n_e =1e²¹m⁻³

Simulation: 400 Torr, a=4mm, $n_e=1e^{21}$ m⁻³

Simulation Results

 P_s =400Torr, 0.63 ≤ *d* ≤ 2.50mm.

Simulation Projection

Summary

- Demonstrated dynamic control of plasma lattice structures with different lattice spacings, a.
- Performed EM wave transmittance experiments for probing frequencies up to 20GHz.
- Experiments demonstrated effects of P_s, *d*, and power on S21 transmittance.
- Results indicated a narrow frequency band S21 attenuation.
- Largest S21 attenuation occurred with highest P_s were $\lambda/a=O10$
- The largest attenuation was comparable to other non-configurable plasma lattices in the literature, e.g. Sakaguchi et al., 2007.
- EM wave simulations performed on experiment-based plasma lattice configurations produced transmittance values that were in good agreement with the experiments.
 - Indicates validity of the simulation to predict effect at higher probing frequencies.

Way Forward

- Perform EM wave transmittance experiments at higher probing frequencies (~70GHz).
 - Acquire a 70GHz Vector Network Analyzer and matched components.
- Repeat transmittance measurements at the higher probing frequencies that include off-axis locations.
 - Seek wave energy changes in the Γ– M direction that is a characteristic of a photonic crystal.
- Perform further comparisons to the EM wave simulations.
- Generate band diagrams for a range of lattice spacing and electron densities derived from the experiments. Correlate these to the experimental observations.
- Investigate charge instability lattice control approaches that include:
 - Silicon dielectric with surface layer doping patterns
 - Real-time UV patterns projected on the glass dielectric

Wave Guides and Conduits

Way Forward

- Even at the current probing frequencies, with our control over the plasma, we are in a position to look at photonic crystals where the columns can have positive, negative or 0 permittivity.
- This is quite unique and we think, not realizable with non-configurable plasma lattices in the literature such as that of Sakaguchi et al.