Institute for Flow Physics and Control

Thomas Corke

Director, Institute for Flow Physics and Control University of Notre Dame College of Engineering Notre Dame, IN tcorke@nd.edu

A Tradition of Aeronautic Research

Institute for Flow Physics and Control

SIGNATURE RESEARCH AREAS

- Aero-acoustics
- Aero-optics
- Fluid-structure
 Interactions
- Gas-turbine
 Propulsion

PARTICIPANTS

- 22 T&R Faculty
- 4 R Faculty
- 6 Technical Staff
- 75 Ph.D. Students (85% U.S. citizens)
- 11 U.S. Govt. Agencies
- 25 Companies

- Wind Energy
- Multi-phase Flows
- Plasma Dynamics
- Sensors and Flow
 Control Actuators
- Hypersonic Aerodynamics

Hessert Laboratory

White Field Laboratory

Low-Speed Wind Tunnels

FlowPAC I

Component Facilities

FlowPAC IV

Anechoic Wind Tunnel

Experimental Facilities Vision

Mach 0.6 Wind Tunnel

- 3'x3'x9' test sections
- Large optical access
- Low turbulence
- Temperature controlled

- 1750 H.P. motor
- Variable R.P.M. AC
- 8' diam., 2-stage fan
- 1000 ton-hr ice-storage chilled water cooling

Helicopter Dynamic Stall Facility

Airframe Noise

Gulfstream 550 Nose LG

Transonic Compressor Facility

- 400 H.P.
- 15,000 R.P.M.
- Design tip-Mach: 1.2
- Magnetic levitation rotor bearings
- Rotor optical access

Transonic Turbine Facility

- 800 H.P. compressor
- 500 H.P. motor
- Design 300 H.P. turbine
- Magnetic levitation rotor bearings
- Highly-loading rotor design

Computational Fluid Dynamics

Hot Annular Nozzle Cascade (HANC)

FlowPAC IN

- 700°F primary flow
- Transonic nozzle Mach numbers
- Full secondary cooling systems
- 46 inch diameter
- Controlled inlet turbulence characteristics.
- Highly detailed aero/thermal measurements

FlowPAC IV

Arc Heated Hypersonic Wind Tunnel

Side View

Supersonic Mixing Facility

Mixing Enhancement and Flame Stabilization in High-Speed Combustion Systems by Transient Plasma*

FlowPAC I

Refractive-Index-Matched (RIM) Flow Facilities*

Laboratory overview

Large-scale RIM

Complex 3D topography

Bluff Bodies

Permeable boundaries

Velocity up to ~ 2 ms⁻¹

Applications

Length: 2.5 m

*AFOSR MURI, Ken Christensen PI

Wind Energy Laboratory (eWiND)

25kW Turbines:

- 30' Diameter
- 59' Hub Height
- Pitch Controlled

Meteorological Tower:

- 3-component, fast response ultrasonic anemometers
- Temperature
- Humidity
- Pressure

FlowPAC I

Airborne Aero-optics Laboratory

Turret Test Bed Aircraft Side-mounted laser source and tracking gimbal - AFIT/ND Gimbal turret · Optical bench Tracking system · Experimental crew station in cabin · Differential GPS range information 110 V ac power 28/24 V dc power · Communication with chase-plane pinhole tracking operator **Transonic Capable** Chase Plane · Beacon "pinhole" source laser · Tracking system • 110 V ac • 28/24 V dc · Differential GPS range information Communication with Test Bed AC Turret protruding through crew escape hatch, hard mounted to Funding: optical bench in passenger "Airborne Aero-Optics Laboratory," Compartment – Boeing SVS JTO/DE & AFOSR, 2007-2012.

Dynamic correction of optical distortions produced by compressible flow structures

FlowPAC 1

FlowPAC Fabrication Shop

FlowPAC IV

Patent: 8513583

Plasma Temperature/Pressure Sensor

Supersonic Boundary Layer Transition Control

Notre Dame Mach 6 Quiet Wind Tunnel

Motivation: Hypersonics for Defense

- Hypersonic flight vehicles are becoming essential to the security of the U.S.
- This is motivated by the need for survivable time-critical strike, as hypersonics is becoming the "new stealth"
- 2017 Senate Armed Services Committee report on the NDAA:
 - "hypersonic technologies are a key component of Third Offset strategies"
 - "concerned that investment has been insufficient to support test infrastructure, advanced testing techniques, and the testing workforce. Without these investments, it is unlikely that hypersonic systems will achieve operational status."

- Hypersonic flight is characterized by extremely high surface heating
- 3x higher surface heating if the boundary layer flow over the vehicle is turbulent
- Accurate prediction of turbulent transition is essential.
 - If wrongly predict laminar, vehicle burns up in flight.
 - If wrongly predict turbulent, payload and range are compromised

Hypersonic Ground Test Requirements

- Hypersonic ground test facilities need to simulate the flight environment:
- Quiet hypersonic facilities require suppressing turbulent transition on nozzle expansion walls.

 Design involves slow expansion (Görtler instability), throat suction (Mack instability), wall heating (T-S instability) and highly polished surfaces (all of the above).

UND High Re_x Quiet Mach 6 Wind Tunnel

Quiet Design 30' Long Nozzle Expansion

Next Step					
Mach number	<5	6.0	8.0	10.0	>10
Minimum stagnation temperature	<330 K (<135 °F)	430 K (315 °F)	725 K (850 °F)	1100 K (1520 °F)	>1100 K
Stagnation pressure (quiet flow)		1 MPa	3 MPa ?	3 MPa <mark>?</mark>	
Freestream unit Re (quiet flow)		11*10^6 /m	7.0*10^6 /m	2.0*10^6 / m	
Is 2 nd -mode the primary instability mechanism?	No	Yes	Yes	Yes	Yes
Are real gas effects (dissociation, etc.) important?	No	No	No	Yes	Yes
Has a quiet tunnel worked at this Mach number before?	Yes	Yes (Purdue, TAMU)	Yes, briefly (NASA LaRC)	No	No
Can one be built?	Yes, but why bother?	Yes	Probably	Maybe	Probably not, but no need