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Motivation for Plasma Electromagnetics

Can control permittivity and refractive index of
plasma by changing experimental conditions

Plasma has no moving parts and high frequency
response

Adaptive optics for wavefront corrections

=  High-speed adaptive optics critical to
aero-optic applications

=  Conrollable plasma index of refraction

Plasma photonic crystals for adaptive filtering
- Controllable periodic plasma structures

- High-speed adaptive filtering for GHz-THz
- Aircraft radar stealth

High-speed controllability of plasma makes it attractive for stealth and aero-optics.
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Research Objectives

Periodic plasma structures

Experimentally generate periodic

plasma structures
Incident EM Wave ——————

Spatially periodic dielectric /\A/\/\f>

= Demonstrate dynamic control
spacing of plasma structures

'

Filtered EM Wave

| —Plasma

'

= Determine electron density of ’ Permittivity
plasma columns Nod?\ ® o]
Spacing ® @
Show that plasma photonic crystal @ © O ™ Background Gas
can act as an adaptive filter for a ® 0 Permittivity
range of probing frequencies © 0 o

Current focus is to generate periodic plasma structures and show control over spaing.
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Dielectric Barrier Discharge (DBD)

Electrode Dielectric

¥

= Two electrodes separated by dielectric material
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Dielectric Barrier Discharge (DBD)

Electrode Dielectric

¥

AC
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" Two electrodes separated by dielectric material

- Apply ac carrier signal (kV, kHz)
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Dielectric Barrier Discharge (DBD)

Electrode Dielectric Plasma
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Q Electron Avalanche
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= Two electrodes separated by dielectric material
=  Apply ac carrier signal (kV, kHz)

= Electric field generates electron avalanche, partially ionizes gas
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Dielectric Barrier Discharge (DBD)

Electrode Dielectric Plasma ! \\’ K
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. Adaptive Optics /,’
" Two electrodes separated by dielectric material

=" Apply ac carrier signal (kV, kHz)

=" Electricfield generates electron avalanche, partially ionizes gas

=" DBD allows for highly adaptable geometries

Investigate DBD geometries for electromagnetic control of optics and microwaves.
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Diele

AC

Free Electrons

ctric Barrier Discharge (DBD)

Heavy Particles
(neutrals, metastables, ions)

1t
EM Wave
)
I =
2. 2)-1-(2

I

w W

(Plasma permittivity)  ep (
Plasma frequency w p is a function of electron density, controllable by applied voltage

Electron-neutral collision frequency v is a function of gas pressure

Use voltage and gas pressure to control permittivity of plasma.
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Plasma Permittivity Map

Plasma Permittivity Map
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Plasma Permittivity Map

Plasma Permittivity Map
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Plasma Permittivity Map
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Experimental Approach

Diffuse Regime

Diffuse Plasma

Parallel plate electrodes and dielectrics

/

Plasma regime dependent on :
=  Gaspressure %
=  Gapdistance 7 l“
=  Carriervoltage and frequency
Plasma charge instability produces stationary, Instability Regime
naturally spaced plasma structures Periodic plasma structures

Applied voltage changes natural spacing

Adaptive plasma photonic crystal

Requires sufficient electron density for absorption

Plasma produces structures of periodic permittivity with adaptable spacing.
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Experimental Setup

Liquid electrode DBD

Plasma

Use liquid electrode DBD geometry to generate plasma within a vacuum chamber.
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Voltage Effect on Plasma Structures

6.5 mm 6.2 mm 6.0 mm

14 nodes

8 nodes 12 nodes

58 mm 6 5.3 mm 4.9 mm

16 nodes

27 nodes

Increasing voltage decreases the spacing between plasma nodes.
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Image Analysis

141007_153120_068 — Nodes=20, Spacing=35.59 px, Radius=5.42 px

- Image processing determines:
1. Node location

2. Plasmaradius

3. Node spacing

Pixels

- Identify bad nodes and edges

- Limited pixel resolution, can
improve imaging system

100 120 140

20 40 60 80
Pixels

Image processing determines average plasma structure spacing at each voltage.
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Experimental Results

141007_153120 : Pressure = 133.7 Torr, f = 40 kHz

Spacing (mm)

4. L L L
& 55 6 6.5
Applied voltage (kV)

=" Preliminary results show clear trend between voltage and spacing

=" Iselectron density sufficient for absorption?

Results demonstrate experimental control of plasma periodic spacing.
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Previously measured electron
density for different DBD geometry

Michelson interferometer, helium
neon lasers at 633nm and 3.39um

Dual wavelengths isolate effects of
electron density and gas heating

Plasma placed in one arm of
interferometer

Interference indicates phase
difference between both arms

W AR Coated Window

Measuring Plasma Electron Density

[ Visible

Optical Chopper
Detector

Compensator
Beamsplitter
Aperture
Steering Mirrors

\I Infrared

Detector

Mirror

Plasma
Chamber

Enclosure

Visible
HeNe Laser

Dual wavelength interferometer provides non-invasive simultaneous
measurement of plasma and heavy densities.

Slide

11



Experimental Setup

Dual Wavelength Interferometer Cylindrical DBD

Experiment measured electron density of a cylindrical DBD geometry.
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Electron Density Measurements
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= Electron density 1014 cm~3 sufficient for absorption up to 100 GHz

= Different geometry but suggests feasibility for plasma photonic crystal DBD geometry

DBD electron density sufficient for absorption at 100 GHz.
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Summary and Future Work

= Seek to develop adaptive plasma photonic crystal

< Vacuum chamber experiments demonstrate adjustable plasma spacing

="  Electron density measurements show that the plasma will likely be an absorbing medium
=" Furtherinvestigate effects of voltage, pressure, frequency, gas

=" Usedatain FDTD simulations to investigate electromagnetic response

=" Probe the plasma with spectrum analyzer to directly measure electromagnetic response

Questions and Comments?
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Determining the Absorbing Boundary

Plasma complex susceptibility
wp\?2 1
Lix=ep=1-(*2) .
+x=¢€p w T—jz

Index of refraction and absorption
coefficient

1 w
By =ko(1+x)"* = o VEP

Plasma absorption coefficient
o= 72033 (VEp)
0

Wave is attenuated by
lexp (—jkz)|* = exp (—az)

Use a > 1 threshold value to create
boundary

B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics (Wiley, 1991).

Pressure [Torr]

Log Absorption Coefficient (10 GHz)

5 10 15 2
10 10 10 10

Electron Density [cm™]
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Determining Electron Density

=* The measured plasma induced phase shift represented with

_2)2
A¢:47TL< qAAne+<A+£)Anh>

2¢ o2 2
A 8m2eyc?m A N0

= Form linear system of equations

2
—g7 A A 4+ B
1 A¢)\1,j _ 87r2c2260m npoA1 "h0>‘:1‘ Ane_’j
AL A - —q“ A2 A B An .
¢>\2'-7 8m2cZegm T RO A2 + nhok% b
Measurements Constants Unknowns

" Determine An_and An,, using constrained least-squares solver

Phase measurements at each wavelength are used to set up a system of
equations to solve for the electron and heavy particle densities.
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Electron and Temperature Profiles
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DBD Power Cycle

141007_153120_065 — Vpkpk=6.099 kV, Irms=14.347 mA, P=3.799 W
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Permittivity and Permeability
M

Plasmas,

Wire Structures Conventional Optics

No transmission n=(eu)”? e
Artificial Ferrites,
Metamaterials Split Ring Structures
n=-(ew)”? No transmission

Reproduced from Kumar, R., Plasma as a Metamaterial, Lambert Academic Publishing, 2011.
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Plasma Permittivity (1013 cm™3)

ne=1013 cm 3, P=100 Torr
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Plasma Permittivity (10** cm™3)

ne=1014 cm 3, P=100 Torr
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Electron Density and Frequency

Critical Electron density [cm 3]

/
0.633um
3.39um
1 THz
""""""""""""""""" 3 0.5 THz
i 100 GHz
i 1 GHz
-
6 7 9 10 11 12 13 14 15
10 10 10 10 10 10 10 10 10 10

Probing Frequency [Hz]
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100 MHz Permittivity Map

adiation 0.100 GHz

Incident R

Slide 23



60 GHz Permittivity Map

adiation 60.000 GHz

Incident R
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100 GHz Permittivity Map

adiation 100.000 GHz

Incident R
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1 THz Permittivity Map
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60 GHz Permittivity Map
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1 GHz Permittivity Map

Incident Radiation 1.000 GHz

Pressure [Torr]
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