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Low-Speed Wind Tunnels

Initial investigations utilizing flow visualization
and other flow diagnostic tools (hot-wire,
LDV, PIV, etc)

Plasma Off

Actuator Array
Plasma On
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Component Facilities

Army/Honeywell/UND 40Bar Blow-dow

Bend/Deswirl
(Reduced engine diameter, +0.5 pts nad)

AA m
- Valve
V T E P rog ra Secondary Valve __'V—T i AT
/ (not used) Valve E Centrifugal Ben
Plasma Flow Controlled ff - i
Nrsakeros (A 77 I corirolc PR L~
(+0.5 pts nad or reduced length} ~/¢ %L Sy
) SLSIRP $ ” é y

_ Pressure Ratio: 9:1

3 =7 - npoly: 89.3 %
Surge Margin: >15%
Flow: 6.5 pps
Power: 7,000 shp

Integrated CFD
Design Analysis

(2 axials + impeller + diffuser)
(NRE Cost & Optimized Design
Pushes SOA)

/7

Variable Inlet Guide Vanes
Increased Pressure Ratio

-1.6% SFC at 50% IRP

/
Highly Loaded Axial Design ~ 47"

w/Rotor Casing Treatment Alloy 10 Monolithic Impeller
Increased Pressure Ratio @ Constant (Increased OPR and Temp Capability
Speed, Lowers Centrif PR Flank Milled for Lower Cost) ent Improves Efficiency and Emissions)

B10-122-1
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Anechoic Wind Tunnel
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Government and Industry Actual

Testing Facilities Applications

Power

FlowPAC Target Capability

Typical
University

Technology Readiness

Envelope of
Highest Relevance
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Mach 0.6 Wind Tunnel

3'x3'x9’ test sections
Large optical access
Low turbulence
Temperature controlled

\

1750 H.P. motor
Variable R.P.M. AC
8’ diam., 2-stage fan

1000 ton-hr ice-storage chilled
water cooling
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Airframe Noise

Gulfstream 550 Nose LG
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Transonic Compressor Facility

- 400 H.P.
- 15,000 R.P.M.
- Design tip-Mach: 1.2

- Magnetic levitation rotor
bearings

- Rotor optical access
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Transonic Turbine Facility: LPT & HPT Modules

Roof
o Mounted

it Lobed /mm..., - 800 H.P. compressor
) ), ol Silencer

\4«—:;;\ ff - - 500 H.P. motor
m’r/n" @ " . Design 300 H.P. turbine
“ = g F.
- Magnetic levitation rotor bearings

- Highly-loading rotor design
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o sy
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Collector E‘\o

401ft. .

— uentrifugal

''''''' i'-\\___ Compressor 201t
500 Hp \./
Electric
Motor
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Hot Annular Nozzle Cascade (HANC)

« 700°F primary flow

» Transonic nozzle Mach numbers
 Full secondary cooling systems
* 46 inch diameter

« Controlled inlet turbulence
characteristics.

» Highly detailed aero/thermal
measurements
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Front Stage Core Compressor (FSCC)

N

i

800 H.P.

Variable IGV

Transonic tip Mach number
Magnetic levitation rotor bearings
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Arc Heated Hypersonic Wind Tunnel

Front View

Side View
. « 10m3 Internal Volume

 500kW Maximum Power
e Mach Nos. 3,4.5,6 &9
« Max. T, = 4200K

e Run Time ~ 1s Freestream
Flow

Py A . .
* Minimizing test gas contamination: pure nitrogen arc-heating to

prevent plasma induced chemical reactions in air, e.g., NOx
production in plasma

Nitrogen Oxygen

V Mixturé Gas to
N C/D Nozzle

Nitrogen Oxygen

Previously, only two air inlets
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Notre Dame - AFRL/AFOSR Collaboration?*

Non-intrusive Flow Property Measurements for Experimental Investigation of Turbulent

Supersonic/Hypersonic Flows Flames in Hypersonic Flows
(2012/2013 Air Force Summer Faculty Fellowship Program) (AFOSR Grant, FA9550-12-1-0161)
Wright Patterson Air Force Base Air Force Office of Scientific Research
(Dr. Campbell D. Carter) (Dr. Chiping Li & Dr. Campbell D. Carter)
Instantaneous Plasma Locations of Plasma Probe in | Hypersonic Air-breathing Propulsion I
Emission Spectra near Flame Zone a Reacting Flow

Normalized Intensity

X-51A, Waverider

Wavelength (nm) *Do & Carter (2013)
] ] ) * Turbulent combustion enables hypersonic flights:
* A short-gated (35 ns measurement time) laser diagnostics turbulence property quantification & investigation
method for fuel concentration/gas density measurement in of flame dynamics in supersonic/hypersonic
high-speed unsteady reacting flows is proposed and tested. flows.
* The new method will be used in RC-19 Supersonic wind tunnel . Ophca"y resolved unsteady ethy|ene flame
at Wright-Patterson Air Force Base to measure fuel dynamics at Mach 4.5, 6 and 9 scramjet flight
concentration/temperature field in a scramjet combustor conditions.

*H. Do and C. D. Carter (2013) Combustion and Flame 160: 601-609
15
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Laboratory overview Large-scale RIM

» 2 Closed-loop flow tunnels
* Nal processing system

* Piping system

» Storage

Processo

S
‘ Small-sca :
RIM = -
» Total volume: 4200 liters

Complex 3D topography « Velocity up to ~ 2 ms™" * Length: 2.5m
Bluff Bodies
Permeable boundaries
Applications
v < |
PN

“ & & N A b 0o

16 *AFOSR MURI, Ken Christensen Pl
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Supersonic Mixing Facility

Mixing Enhancement and Flame Stabilization in High-Speed
Combustion Systems by Transient Plasma*

Secondary Plasma Generator Room 124 Existing vacuum pump
— 13 Feet 2 3/8 inch wide
31 Feet long ; Wall to be removed

Plasma-Induced Shock Plasma Filamen: Access door is 47 inches Wide by 83 inches tall. / 12'H*13'L

; L 34", 36" 120" 18 / 19-0" , 64" g 160"
| JE1ONCXZRBITION | /
i 3 §
e ; =
122C
I;:> Fuel Jet I / Compressor
Flow X / 4
o new vacuum Vac TanK il Pl um
I
Injector i Test Sl || D
126
and Plasma Generator _ | ect f — + I
P T AN N S | (% @
®|) 125 &)
o ®I 168" e
5 B ad— | g ge I/
122A-A - 3-23/8
D ol -
T I DS #hiam:
T~ CORRIDOR
59 § e @ W
? =
52} 3 |
A3-01 .

Existing equipmént

*Proposal by Sergey Leonowv.
In review, Chiping Li (AFOSR)
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Wind Energy Laboratory (eWIND)

25kW Turbines:
= 30’ Diameter

* 59’ Hub Height
= Pitch Controlled

Meteorological Tower:

= 3-component, fast
response ultrasonic
anemometers

= Temperature

= Humidity

» Pressure

18
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Side-mounted laser source and Turret Test Bed Aircraft
tracking gimbal — AFIT/ND

* Gimbal turret

+ Optical bench

+ Tracking system

+ Experimental crew station in cabin

= + Differential GPS range information
\E'\ * 110 V ac power
Chase
\ﬁ o + 28/24 V dc power
= ) seee RN i + Communication with chase-plane

pinhole tracking operator
Transonic Capable

Chase Plane
* Beacon “pinhole” source laser

« Tracking system | W R

- 110V ac 9\ \

+ 28/24V dc > ‘ = T: o0 s _
+ Differential GPS range information ‘

* Communication with Test Bed AC

Turret protruding through crew
escape hatch, hard mounted to

Funding: optical bench in passenger
“Airborne Aero-Optics Laboratory,” Compartment — Boeing SVS

JTO/DE & AFOSR, 2007-2012.

Dynamic correction of optical distortions
produced by compressible flow structures

19
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4 Axis Mill

HURCOoO

5 Axis Mill_ ™ wunce

=K i

Num. Lathe
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High Fidelity CFD

HPT Tip Clearance Analysis

Embedded Large Eddy Simulation (ELES)
(375M Mesh Points, 512 Processor Cores)

Velocity M%nitude

160 Y
150
140
130
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Tunable Plasma Metamaterials
AFOSR MURI: Mitat Birkan

T EM Wav ,""'.
N: 16 18 19 40

. -Metamaterials are designed with a lattice structure of matefiéls
having two indices of refraction.

» Conventional metamaterials are designed for a single EM
wavelength.

» Lattice tuning capability with a broad range of positive and
negative plasma permittivity offers numerous applications.

0, << High speed modulators 60GHz
s | VoW Quasi-optical switches
10 7
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Plasma Adaptive Optics

DARPA DSO: Brian Holloway

T
Electrode

\
‘ Electromagnetic 4
Wave

4— Heavy Particles

(Neutrals,
Metastables,
lons)

» The free electrons, neutrals, metastables, and ions in an
ionized gas can affect the permittivity to EM waves.

» Change in the permittivity affects refractive index >>> Plasma
Adaptive Optics (PAO). Technology Driver: Bandwidth

» Plasma optics OPD depends on the length of the plasma,
electron density, EM wavelength, gas composition, and heavy
particle density.

Lines of constant electron density
A=1um

~

=
o

o

0PD,=1ym

n,=10"17 cm?3
L

10M6 cm™®

=
o

s
T

-ELECTRON OPD [MICRONS]

7
A

PAO Array 10.4_/

10*4 cm3

10*5cm

-3 -2 -1 0 1

10 10 10 10 10
PLASMA LENGTH [M]
AlIAA J., 50, 1, 123-130 (2012); AIAA J., 51, 3, 657-664 (2013)
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Plasma Temperature/Pressure Sensor

Pulse-detonation Engine

‘\

I ’
PDE Valves
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Boundary Layer Transition Control

d=76um
d/A=0.43

NASA Mach 3.5 0.5m
Quiet Nozzle

4° AoA 14° Cone
Model

._.
'S
o

120
100

80

Azimuthal Angle (deg)

]
o

40

® Smooth Tip
A m=45 roughness

| O m=68 roughness

Solid curve: N=10 transition front at py,=50psi
Dashed curve: Dividing streamline

! 1 1 !

1.6

1.8 2.0 2.2 2.4 2.6 2.8

Re, x108
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AFOSR Proposal in AF Academy Mach 6 Facility”

~35m
—— —
Charge tube
(shown without insulation) Valve Nozzle Test Section  Vacuum tank
e i e s 2 I
1 0O O O 0 O
T ; T 1T i i 1T i i ; Il i

Gas storage Compressor Control /

/ \ j=—=1 Operation
—{-) ‘}:k Equipment | TX0

I‘\» 4 [&J

« Same size test section, will
accommodate existing model.

* Provides same Re, range as previous
“ NASA experiment.

* Intended to examine effect of higher
Mach number and “noisy” environment
on transition control.

A
&

*In review: Rengasamy (Pon) Ponnappan
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Hypersonic High-Reynolds-Number Quiet Tunnel

Motivation Schmisseur AIAA-2013-2606

DoD Hypersonic Vehicle Programs

» Advanced Hypersonic Weapon (AHW-2):
« Army, Navy

= Tactical Boost Glide: 23'3:"3;\'::\ [ 500 nmihr
« Air Force, Navy, DARPA \

15 min at* \ (& 275 niin at R
= Hypersonic Air-breathing Weapon Concept
(HAWC)

\\ Mach?9 N\ Maché
« AFRL High Speed Strike Weapon (HSSW)

'\:'\‘ ~120X area \‘\_ ~50X area

15min. Range at Mach 6 & 9

» Glide: Boeing, Raytheon, Lockheed Martin = China reported to have had 3
= Air-breathing: Boeing, Raytheon hypersonic boost-glide flights in

= $180M CRAD for technology maturation 2014.
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Hypersonic High-Reynolds-Number Quiet Tunnel

Motivation Kimmel, *HIFIRE-1 Hypersonic
. 2.00603 Flight Test”, 2012
» Key issue is on the accurate prediction of if ; L60E.03 -
and where turbulent transition occurs. S
. » 1.20E-03 -
» Determines the degree of heat transfer to the $
vehicle G 8.00E-04 |
: (=
;:3 4.00E-04 -
0.00E+00 T
? 0.0E+00 5.0E+06 1.0E+07
. Reynolds Number
J $ < — quiet w _ , _
& : = = Ground tests require hypersonic wind
v 2% ! X tunnels that can simulate flight
2’ IR ’ = conditions:
..: 1.5¢ : é } C .
s ,iﬂ? <— noisy 2 « Low disturbances
05— % \ * Natural transition Reynolds numbers

o
o1
& [
—_
& |
n
o
n
o
N
Sl—
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High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel

Onset of Turbulence in Optical Access

gt e line Wall Boundary Layer indows

Uniform Flow

T T Sl ot ° f

- }» LQ A‘ N0|sy FIow

Region

« Present “quiet” hypersonic wind tunnels are
limited in quiet zone length, L,

- TA&M Blow-down: Re, ,=6M
- Purdue 9” Ludwieg Tube: Re, ,=13M

» Natural transition in these facilities only
observed when instability growth is
accelerated by geometry or disturbance
generators.

Ludwieg tubes with large diameter, long, slow
expansion axisymmetric nozzles that
suppress cross-flow and Gortler instabilities.

Throat suction and heating to suppress TS.

Mach 6 & 10 quiet zone to Re,240M.
33’ long nozzle, 2’ I.D. test section.
200’ long, 2.5 I.D. driver tube.
80,000 gal. vacuum tank.

2 sec. run time.

1 hr. run frequency.

P, < 10Bar > acceptable throat waviness ~1-2
mil./in. (NC lathe).

Throat heated to ~670K (~750°F) to minimize
TS growth.
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High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel

200 ft. (61 m)

Building expansion (nozzle, test
section, and diffuser plus labs
and office space

Existing White Field Laboratory
(subsonic tunnel, turbomachinery
test cells, etc.)

29
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Vital Statistics

Tunnel configuration

Mach number

Nozzle exit diameter

Nozzle length

Throat diameter

Stagnation pressure (quiet flow)
Stagnation temperature
Freestream unit Re (quiet flow)
Re L (based on quiet-flow core length)
Free jet test section length
Driver diameter

Driver length

Vacuum capacity

Run time

Run frequency

Re variation during run

Ludwieg tube
6.0

0.60 m

10 m (1)
0.084 m

1 MPa, 10 atm
430 K
11*1076 /m
4010”6
0.9m

0.74 m ID

61 m

300 m”3

2s

FlowPAC IND

24 in.

33 ft.

3.3 in.

150 psia
310 °F
3.4*1076 /ft.

3 ft.

30in. OD
200 ft.
80,000 gal

Pending compressor & pumps, ~ 1/

hr
-9%
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Mach 6 Performance Estimates

stagnation density

0.98¢
0.96+

& 0.92¢
0.9+

— bleed closed
- bleed open

0.86

t(s)

FlowPACIND

exhaust pressure

S = vacuum

0 —diffuser exit
0 05 1 15 2 25
t(s)

freestream unit Re
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High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel

Boeing has committed FY 15 funds
to CFD design of Mach 6 nozzle.

Pending DURIP submitted to ONR/
AFOSR).

Seeking other corporate support.
Seeking UND benefaction support.
Estimated $3.1M Phase I.

Mach 6 operation 24 mo. from
funding start.

Engineering design and major
fabrication at UND.

Phase Il Mach 10 design starting in
Year 3 from start of funding.
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Mach 6&10 Quiet Tunnel Size Perspective
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