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SIGNATURE RESEARCH AREAS 

PARTICIPANTS 

•  20 T&R Faculty 
•   8  R Faculty  
•  12 Technical Staff 
•  75 Ph.D. Students (85% U.S. citizens) 
•  11 U.S. Govt. Agencies 
•  25 Companies 

•  Aero-acoustics 
•  Aero-optics 
•  Fluid-structure 

Interactions 
•  Gas-turbine 

Propulsion 
Hessert Laboratory 

White Field Laboratory 

•  Wind Energy 
•  Multi-phase Flows 
•  Plasma Dynamics 
•  Sensors and Flow 

Control Actuators 
•  Hypersonic 

Aerodynamics 
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 Low-Speed Wind Tunnels 

Initial investigations utilizing flow visualization 
and other flow diagnostic tools (hot-wire, 
LDV, PIV, etc) 
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Component Facilities 
Army/Honeywell/UND 
VAATE Program 

40Bar Blow-down Facility 

In-draft Tri-Sonic Facility  
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Anechoic Wind Tunnel 

Sound 
Pressure 

Level (dB) 

Sample Beam Forming 
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Experimental Facilities Vision 

Actual 
Applications 

Government and Industry 
Testing Facilities 
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University 
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Technology Readiness 

           
 
 
 
 

     FlowPAC Target Capability 
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Mach 0.6 Wind Tunnel 

•  3’x3’x9’ test sections 
•  Large optical access 
•  Low turbulence 
•  Temperature controlled 
 

•  1750 H.P. motor 
•  Variable R.P.M.  AC 
•  8’ diam., 2-stage fan 
•  1000 ton-hr ice-storage chilled 

water cooling 
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Helicopter Dynamic Stall Facility 

Focused Schlieren Images 
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Airframe Noise 

Gulfstream 550 Nose LG 
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Transonic Compressor Facility  

•  400 H.P. 
•  15,000 R.P.M. 
•  Design tip-Mach: 1.2 
•  Magnetic levitation rotor 

bearings 
•  Rotor optical access 
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Transonic Turbine Facility: LPT & HPT Modules 

•  800 H.P.  compressor 
•  500 H.P. motor 
•  Design 300 H.P. turbine 
•  Magnetic levitation rotor bearings 
•  Highly-loading rotor design 
 

HPT  

LPT  
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Hot Annular Nozzle Cascade (HANC) 

•  700°F primary flow 
•  Transonic nozzle Mach numbers 
•  Full secondary cooling systems 
•  46 inch diameter 
•  Controlled inlet turbulence 

characteristics. 
•  Highly detailed aero/thermal 

measurements 



 
13 

University of Notre Dame 

Front Stage Core Compressor (FSCC) 

•  800 H.P. 
•  Variable IGV 
•  Transonic tip Mach number 
•  Magnetic levitation rotor bearings 
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Arc Heated Hypersonic Wind Tunnel 
•  10m3 Internal Volume 
•  500kW Maximum Power 
•  Mach Nos. 3, 4.5, 6 & 9 
•  Max. T0 = 4200K 
•  Run Time ~ 1s 

• Minimizing test gas contamination: pure nitrogen arc-heating to 
prevent plasma induced chemical reactions in air, e.g., NOx 
production in plasma 

Time Resolved Unstart Flame Dynamics 

Freestream 
Flow 
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Notre Dame - AFRL/AFOSR Collaboration+ 

Non-intrusive Flow Property Measurements for 
Supersonic/Hypersonic Flows  

(2012/2013 Air Force Summer Faculty Fellowship Program) 
 Wright Patterson Air Force Base 

(Dr. Campbell D. Carter) 

•  Turbulent combustion enables hypersonic flights: 
turbulence property quantification & investigation 
of flame dynamics in supersonic/hypersonic 
flows. 

•  Optically resolved unsteady ethylene flame 
dynamics at Mach 4.5, 6 and 9 scramjet flight 
conditions. 

• A short-gated (35 ns measurement time) laser diagnostics 
method for fuel concentration/gas density measurement in 
high-speed unsteady reacting flows is proposed and tested. 

• The new method will be used in RC-19 supersonic wind tunnel 
at Wright-Patterson Air Force Base to measure fuel 
concentration/temperature field in a scramjet combustor 

Instantaneous Plasma  
Emission Spectra near Flame Zone 

Locations of Plasma Probe in 
a Reacting Flow 

*H. Do and C. D. Carter (2013) Combustion and Flame 160: 601–609

Experimental Investigation of Turbulent 
Flames in Hypersonic Flows 

(AFOSR Grant, FA9550-12-1-0161) 
Air Force Office of Scientific Research 

(Dr. Chiping Li & Dr. Campbell D. Carter) 

*Do & Carter (2013) X-51A, Waverider 

+Hyungrok Do, PI 
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Refractive-Index-Matched (RIM) Flow Facilities* 

Large-scale 
RIM 

Small-scale 
RIM 

NaI 
Storage 
units 

Processo
r 

•  2 Closed-loop flow tunnels 
•  NaI processing system 
•  Piping system 
•  Storage 

•  Temperature controlled 
•  Pressure resistant (N2) 

•  Corrosion resistant 
•  Scratch resistant 

•  Sediment recirculation (ϕ = 2 mm) 

N2 

Laboratory overview 

•  Total volume:  4200 liters 
•  Velocity up to ~ 2 ms-1 

•  Cross section: 0.45 m x 0.45 m  
•  Length: 2.5 m 

Large-scale RIM 

Permeable boundaries 
Bluff Bodies 

Complex 3D topography 

Applications 

*AFOSR MURI, Ken Christensen PI 
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Supersonic Mixing Facility 
Mixing Enhancement and Flame Stabilization in High-Speed 

Combustion Systems by Transient Plasma* 

*Proposal by Sergey Leonov.  
 In review, Chiping Li (AFOSR) 
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Wind Energy Laboratory (eWiND) 

25kW Turbines: 
§ 30’ Diameter  
§ 59’ Hub Height 
§ Pitch Controlled 
 
Meteorological Tower: 
§ 3-component, fast 

response ultrasonic 
anemometers  

§ Temperature  
§ Humidity 
§ Pressure   
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Airborne Aero-optics Laboratory 

Dynamic correction of optical distortions 
produced by compressible flow structures 

Falcon 10 
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FlowPAC Fabrication Shop 

Num. Lathe 

5 Axis Mill 

4 Axis Mill 
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High Fidelity CFD  

HPT Tip Clearance Analysis 
Embedded Large Eddy Simulation (ELES) 

(375M Mesh Points, 512 Processor Cores) 
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AIAA J., 50, 1, 123-130 (2012);  AIAA J., 51, 3,  657-664 (2013) 

Workshop on Optical Properties of Plasma, June 26-27, 2013 

Free Electrons 

Heavy Particles 
(Neutrals, 
Metastables, 
Ions) 

Electromagnetic 
Wave 

Electrode 

Dielectric 

!
!
!

• The free electrons, neutrals, metastables, and ions in an 
ionized gas can affect the permittivity to EM waves. 

• Change in the permittivity affects refractive index >>> Plasma 
Adaptive Optics (PAO). Technology Driver: Bandwidth 

Workshop on Optical Properties of Plasma, June 26-27, 2013 
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• Plasma optics OPD depends on the length of the plasma, 
electron density, EM wavelength, gas composition, and heavy 
particle density. 

Plasma Adaptive Optics 
DARPA DSO: Brian Holloway 
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High speed modulators
Quasi-optical switches

Hyperbolic materials
Photonic crystals

Planar lenses
Metasurfaces

Perfect absorbers
Ultra-low reflectance

Compact waveguides
Photonic crystals

Designer mirrors
Resonators

Plasma
optics
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• Metamaterials are designed with a lattice structure of materials 
having two indices of refraction. 

• Conventional metamaterials are designed for a single EM 
wavelength. 

•  Lattice tuning capability with a broad range of positive and 
negative plasma  permittivity offers numerous applications. 

Tunable Plasma Metamaterials 
AFOSR MURI: Mitat Birkan 

60GHz 

Patent: 8513583 

PAO 

PAO Array 
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Plasma Temperature/Pressure Sensor 

Pulse-detonation Engine Temperature 
Mode 

Pressure 
Mode 

Patents: US7275013B1, US7908115 
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Boundary Layer Transition Control 

40%  

NASA Mach 3.5  0.5m 
Quiet Nozzle 
 
4° AoA 14° Cone 
Model  

d=76µm 
d/λ=0.43 

λ 
d
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AFOSR Proposal in AF Academy Mach 6 Facility* 

0.5m 

• Same size test section, will 
accommodate existing model. 

• Provides same Rex range as previous 
NASA experiment. 

•  Intended to examine effect of higher 
Mach number and “noisy” environment 
on transition control. 

*In review: Rengasamy (Pon) Ponnappan 
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Hypersonic High-Reynolds-Number Quiet Tunnel  

15min. Range at Mach 6 & 9 

§  Advanced Hypersonic Weapon (AHW-2): 
•  Army, Navy 

§  Tactical Boost Glide: 
•  Air Force, Navy, DARPA 

§  Hypersonic Air-breathing  Weapon Concept 
(HAWC)  

•  AFRL High Speed Strike Weapon (HSSW) 

§  Glide: Boeing, Raytheon, Lockheed Martin 
§  Air-breathing: Boeing, Raytheon 
§  $180M CRAD for technology maturation 

DoD Hypersonic Vehicle Programs  

Motivation 

§  China reported to have had 3 
hypersonic boost-glide flights in 
2014. 

Schmisseur AIAA-2013-2606 
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Hypersonic High-Reynolds-Number Quiet Tunnel  

§  Key issue is on the accurate prediction of if 
and where turbulent transition occurs. 

§  Determines the degree of heat transfer to the 
vehicle.  

Motivation 
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§  Ground tests require hypersonic wind 
tunnels that can simulate flight 
conditions:  

•  Low disturbances 
•  Natural transition Reynolds numbers  

3x 
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High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel 

•  Present “quiet” hypersonic wind tunnels are 
limited in quiet zone length, LQ  

• TA&M Blow-down: ReLQ=6M 

•  Purdue 9” Ludwieg Tube: ReLQ=13M  

•  Natural transition in these facilities only 
observed when instability growth is 
accelerated by geometry or disturbance 
generators. 

•  Ludwieg tubes with large diameter, long, slow 
expansion axisymmetric nozzles that 
suppress cross-flow and Görtler instabilities. 

•  Throat suction and heating to suppress TS. 

STATUS QUO 

LQ 

SOLUTION 

UND DESIGN 

•  Mach 6 & 10 quiet zone to Rex≥40M.  
•  33’ long nozzle, 2’ I.D. test section. 
•  200’ long, 2.5’ I.D.  driver tube. 
•  80,000 gal. vacuum tank.  
•  2 sec. run time. 
•  1 hr. run frequency. 
•  P0 ≤ 10Bar > acceptable throat waviness ~1-2 

mil./in. (NC lathe). 
•  Throat heated to ~670K (~750°F) to minimize 

TS growth. 
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High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel 

200 ft. (61 m) 

Building expansion (nozzle, test 
section, and diffuser plus labs 
and office space 

Existing White Field Laboratory 
(subsonic tunnel, turbomachinery 
test cells, etc.) 
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Vital Statistics 
Tunnel configuration Ludwieg tube 

Mach number 6.0 

Nozzle exit diameter 0.60 m 24 in. 

Nozzle length 10 m (!) 33 ft. 

Throat diameter 0.084 m 3.3 in. 

Stagnation pressure (quiet flow) 1 MPa, 10 atm 150 psia 

Stagnation temperature 430 K 310 ºF 

Freestream unit Re (quiet flow) 11*10^6 /m 3.4*10^6 /ft. 

Re_L (based on quiet-flow core length) 40*10^6 

Free jet test section length 0.9 m 3 ft. 

Driver diameter 0.74 m ID 30 in. OD 

Driver length 61 m 200 ft. 

Vacuum capacity 300 m^3 80,000 gal 

Run time 2 s 

Run frequency Pending compressor & pumps, ~ 1 /
hr 

Re variation during run -9% 
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Mach 6 Performance Estimates 
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•  Boeing has committed FY15 funds 
to CFD design of Mach 6 nozzle. 

•  Pending DURIP submitted to ONR/
AFOSR). 

•  Seeking other corporate support. 

•  Seeking UND benefaction support. 

•  Estimated $3.1M Phase I. 

•  Mach 6 operation 24 mo. from 
funding start. 

•  Engineering design and major 
fabrication at UND. 

•  Phase II Mach 10 design starting in 
Year 3 from start of funding. 

SCHEDULE 

High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel 
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Mach 6&10 Quiet Tunnel Size Perspective 


