Institute for Flow Physics and Control

Thomas Corke

Director, Institute for Flow Physics and Control University of Notre Dame College of Engineering Notre Dame, IN tcorke@nd.edu

Institute for Flow Physics and Control

SIGNATURE RESEARCH AREAS

- Aero-acoustics
- Aero-optics
- Fluid-structure
 Interactions
- Gas-turbine
 Propulsion

PARTICIPANTS

- 20 T&R Faculty
- 8 R Faculty
- 12 Technical Staff
- 75 Ph.D. Students (85% U.S. citizens)
- 11 U.S. Govt. Agencies
- 25 Companies

- Wind Energy
- Multi-phase Flows
- Plasma Dynamics
- Sensors and Flow
 Control Actuators
- Hypersonic Aerodynamics

Hessert Laboratory

White Field Laboratory

Low-Speed Wind Tunnels

Initial investigations utilizing flow visualization and other flow diagnostic tools (hot-wire, LDV, PIV, etc)

Plasma On

FlowPAC I

Component Facilities

FlowPAC IV

Anechoic Wind Tunnel

Experimental Facilities Vision

Mach 0.6 Wind Tunnel

- 3'x3'x9' test sections
- Large optical access
- Low turbulence
- Temperature controlled

- 1750 H.P. motor
- Variable R.P.M. AC
- 8' diam., 2-stage fan
- 1000 ton-hr ice-storage chilled water cooling

7

Helicopter Dynamic Stall Facility

Airframe Noise

Gulfstream 550 Nose LG

Transonic Compressor Facility

- 400 H.P.
- 15,000 R.P.M.
- Design tip-Mach: 1.2
- Magnetic levitation rotor bearings
- Rotor optical access

Transonic Turbine Facility: LPT & HPT Modules

FlowPAC IN

- 800 H.P. compressor
- 500 H.P. motor
- Design 300 H.P. turbine
- Magnetic levitation rotor bearings
- Highly-loading rotor design

Hot Annular Nozzle Cascade (HANC)

FlowPAC IN

- 700°F primary flow
- Transonic nozzle Mach numbers
- Full secondary cooling systems
- 46 inch diameter
- Controlled inlet turbulence characteristics.
- Highly detailed aero/thermal measurements

Front Stage Core Compressor (FSCC)

Arc Heated Hypersonic Wind Tunnel

FlowPAC IND

• Minimizing test gas contamination: pure nitrogen arc-heating to prevent plasma induced chemical reactions in air, e.g., NOx production in plasma

- 10m³ Internal Volume
- 500kW Maximum Power
- Mach Nos. 3, 4.5, 6 & 9
- Max. T₀ = 4200K
- Run Time ~ 1s

Time Resolved Unstart Flame Dynamics

University of Notre Dame

Notre Dame - AFRL/AFOSR Collaboration⁺

Non-intrusive Flow Property Measurements for Supersonic/Hypersonic Flows (2012/2013 Air Force Summer Faculty Fellowship Program) Wright Patterson Air Force Base (Dr. Campbell D. Carter)

- A short-gated (35 ns measurement time) laser diagnostics method for fuel concentration/gas density measurement in high-speed unsteady reacting flows is proposed and tested.
- The new method will be used in RC-19 supersonic wind tunnel at Wright-Patterson Air Force Base to measure fuel concentration/temperature field in a scramjet combustor

*H. Do and C. D. Carter (2013) Combustion and Flame 160: 601-609

Experimental Investigation of Turbulent Flames in Hypersonic Flows (AFOSR Grant, FA9550-12-1-0161)

Air Force Office of Scientific Research (Dr. Chiping Li & Dr. Campbell D. Carter)

- Turbulent combustion enables hypersonic flights: turbulence property quantification & investigation of flame dynamics in supersonic/hypersonic flows.
- Optically resolved unsteady ethylene flame dynamics at Mach 4.5, 6 and 9 scramjet flight conditions.

⁺Hyungrok Do, PI

FlowPAC IND

Refractive-Index-Matched (RIM) Flow Facilities*

Laboratory overview

Large-scale RIM

Complex 3D topography

Bluff Bodies

Permeable boundaries

Velocity up to ~ 2 ms⁻¹

Applications

*AFOSR MURI, Ken Christensen PI

Supersonic Mixing Facility

Mixing Enhancement and Flame Stabilization in High-Speed Combustion Systems by Transient Plasma*

*Proposal by Sergey Leonov. In review, Chiping Li (AFOSR)

Wind Energy Laboratory (eWiND)

25kW Turbines:

- 30' Diameter
- 59' Hub Height
- Pitch Controlled

Meteorological Tower:

- 3-component, fast response ultrasonic anemometers
- Temperature
- Humidity
- Pressure

FlowPAC I

Airborne Aero-optics Laboratory

Turret Test Bed Aircraft Side-mounted laser source and tracking gimbal - AFIT/ND Gimbal turret · Optical bench Tracking system · Experimental crew station in cabin Differential GPS range information 110 V ac power 28/24 V dc power · Communication with chase-plane pinhole tracking operator **Transonic Capable** Chase Plane · Beacon "pinhole" source laser · Tracking system • 110 V ac • 28/24 V dc · Differential GPS range information Communication with Test Bed AC Turret protruding through crew escape hatch, hard mounted to Funding: optical bench in passenger "Airborne Aero-Optics Laboratory," Compartment – Boeing SVS JTO/DE & AFOSR, 2007-2012.

Dynamic correction of optical distortions produced by compressible flow structures

FlowPAC 1

FlowPAC Fabrication Shop

High Fidelity CFD

HPT Tip Clearance Analysis Embedded Large Eddy Simulation (ELES) (375M Mesh Points, 512 Processor Cores)

Tunable Plasma Metamaterials AFOSR MURI: Mitat Birkan

- Metamaterials are designed with a lattice structure of materials having two indices of refraction.
- Conventional metamaterials are designed for a single EM wavelength.
- Lattice tuning capability with a broad range of positive and negative plasma permittivity offers numerous applications.

Plasma Adaptive Optics DARPA DSO: Brian Holloway

- The free electrons, neutrals, metastables, and ions in an ionized gas can affect the **permittivity to EM waves**.
- Change in the permittivity affects refractive index >>> Plasma Adaptive Optics (PAO). Technology Driver: Bandwidth

• Plasma optics OPD depends on the length of the plasma, electron density, EM wavelength, gas composition, and heavy particle density.

Patent: 8513583

Plasma Temperature/Pressure Sensor

Patents: US7275013B1, US7908115

Boundary Layer Transition Control

AFOSR Proposal in AF Academy Mach 6 Facility*

- Provides same Re_x range as previous NASA experiment.
- Intended to examine effect of higher Mach number and "noisy" environment on transition control.

*In review: Rengasamy (Pon) Ponnappan

0.5m

0.98m

FlowPAC IV

Hypersonic High-Reynolds-Number Quiet Tunnel

Motivation

DoD Hypersonic Vehicle Programs

- Advanced Hypersonic Weapon (AHW-2):
 - Army, Navy
- Tactical Boost Glide:
 - Air Force, Navy, DARPA
- Hypersonic Air-breathing Weapon Concept (HAWC)
 - AFRL High Speed Strike Weapon (HSSW)
- <u>Glide:</u> Boeing, Raytheon, Lockheed Martin
- Air-breathing: Boeing, Raytheon
- \$180M CRAD for technology maturation

15min. Range at Mach 6 & 9

 China reported to have had 3 hypersonic boost-glide flights in 2014.

FlowPAC IV

Hypersonic High-Reynolds-Number Quiet Tunnel

Motivation

- Key issue is on the accurate prediction of if and where turbulent transition occurs.
- Determines the degree of heat transfer to the vehicle.

- Ground tests require hypersonic wind tunnels that can simulate flight conditions:
 - Low disturbances
 - Natural transition Reynolds numbers

High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel

- Present "quiet" hypersonic wind tunnels are limited in quiet zone length, L_Q
 - TA&M Blow-down: Re_{Lo}=6M
 - Purdue 9" Ludwieg Tube: Re_{Lo}=13M
- Natural transition in these facilities only observed when instability growth is accelerated by geometry or disturbance generators.

- Ludwieg tubes with large diameter, long, slow expansion axisymmetric nozzles that suppress cross-flow and Görtler instabilities.
- Throat suction and heating to suppress TS.

UND DESIGN

- Mach 6 & 10 quiet zone to $Re_x \ge 40M$.
- 33' long nozzle, 2' I.D. test section.
- 200' long, 2.5' I.D. driver tube.
- 80,000 gal. vacuum tank.
- 2 sec. run time.
- 1 hr. run frequency.
- P₀ ≤ 10Bar > acceptable throat waviness ~1-2 mil./in. (NC lathe).
- Throat heated to ~670K (~750°F) to minimize TS growth.

High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel

Vital Statistics

Tunnel configuration	Ludwieg tube	
Mach number	6.0	
Nozzle exit diameter	0.60 m	24 in.
Nozzle length	10 m (!)	33 ft.
Throat diameter	0.084 m	3.3 in.
Stagnation pressure (quiet flow)	1 MPa, 10 atm	150 psia
Stagnation temperature	430 K	310 °F
Freestream unit Re (quiet flow)	11*10^6 /m	3.4*10^6 /ft.
Re_L (based on quiet-flow core length)	40*10^6	
Free jet test section length	0.9 m	3 ft.
Driver diameter	0.74 m ID	30 in. OD
Driver length	61 m	200 ft.
Vacuum capacity	300 m^3	80,000 gal
Run time	2 s	
Run frequency	Pending compressor & pumps, ~ 1 / hr	
Re variation during run	-9%	

Mach 6 Performance Estimates

High Reynolds Number Mach 6 & 10 Quiet Wind Tunnel

SCHEDULE

- Boeing has committed FY15 funds to CFD design of Mach 6 nozzle.
- Pending DURIP submitted to ONR/ AFOSR).
- Seeking other corporate support.
- Seeking UND benefaction support.
- Estimated \$3.1M Phase I.
- Mach 6 operation 24 mo. from funding start.
- Engineering design and major fabrication at UND.
- Phase II Mach 10 design starting in Year 3 from start of funding.

Mach 6&10 Quiet Tunnel Size Perspective

