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By carefully controlled phase-coupled input of simultaneous two- and three- 
dimensional disturbances, the nonlinear evolution and breakdown of the laminar 
flow in a boundary layer was examined. This involved the generation of plane 
Tollmien-Schlichting waves and pairs of oblique waves so as to promote near- 
resonance conditions which have been theoretically shown to lead to the rapid 
development of three-dimensionality in unstable boundary layers. Special emphasis 
is placed on the two prominent mechanisms, namely resonant-triads of Orr- 
Sommerfeld modes and the secondary instability of the streamwise periodic flow to 
spanwise periodic three-dimensional disturbances. The sensitivity of these mech- 
anisms on the amplitudes and wavenumbers of the input disturbances was of special 
focus. 

The simultaneous two- and three-dimensional wave generation was accomplished 
using a spanwise array of line heaters suspended just above the wall a t  the 
approximate height of the critical layer in the laminar boundary layer. These were 
operated to produce, through local heating, time-periodic spanwise-phase-varying 
velocity perturbations. Of primary emphasis in this paper are conditions obtained by 
the combined forcing of fundamental plane waves with wavenumbers (a, 0) and pairs 
of subharmonic oblique waves (ia, +@). The results document resonant growth of 
energy in the subharmonic modes, the formation of staggered lambda vortex 
patterns with a cross-stream scale commensurate with the seeded f /? condition, and 
their subsequent transition to turbulence. Complete documentation of the flow field 
a t  these various stages is presented using smoke-wire flow visualization and through 
phase-conditioned hot-wire surveys measuring all three velocity components in three 
space dimensions. 

1. Introduction 
Experiments on boundary-layer transition performed in low-disturbance wind 

tunnels have established three basic regimes of breakdown from laminar to turbulent 
flow. The first regime consists of plane Tollmien-Schlichting (TS) waves which are 
invariant in the spanwise direction and propagate with the flow. The frequencies and 
growth rates of these waves are readily predicted from linear stability theory. In  the 
second regime, spanwise-periodic three-dimensional deformations of the nominally 
two-dimensional TS waves appear. In the third regime, rapid streamwise stretching 
and secondary instabilities of the lifted three-dimensional structures lead to the 
generation of smaller scale random motions and the final stages of breakdown. The 
subject of this paper is the final two regimes in the path to turbulence, in particular 
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the initially weakly nonlinear processes leading to  the growth of large-amplitude 
strongly nonlinear three-dimensional disturbances and transition to turbulence. 

1.1. Background 

The most commonly cited early experiments which have focused on the development 
of three-dimensionality in unstable boundary layers are due to Klebanoff & Tidstrom 
(1959) and Klebanoff, Tidstrom & Sargent (1962). In  their pioneering investigations, 
they established the existence of downstream-growing spanwise variations in the 
mean and fluctuating velocity components and their fundamental role in the 
consistent features of the developing instability. I n  addition they made attempts, in 
one of the first applications of transition control in boundary layers, to locally fix the 
significant three-dimensional (3-D) features of turbulent breakdown by creating 
artificial disturbances of spanwise periodic nature. Under reasonably large two- 
dimensional (2-D) input intensities (order of 1 % u’/U,), they documented the 
warping of initially plane TS waves into peak-valley pairs which were aligned in the 
flow direction. This yielded a particularly catastrophic breakdown characterized by 
the sudden appearance of ‘spikes’ in the time traces of streamwise velocity 
fluctuations and the growth of high-frequency oscillations and turbulent ‘spots ’. As 
a result of the detailed description of this process given by Klebanoff et al. (1962), 
it has come to be called K-type breakdown or K-type modes (Herbert & Morkovin 
1980). 

The initial experimental results of Klebanoff & Tidstrom (1959) and later of Hama 
(1960) sparked early theoretical attempts to  model the progressive growth of three- 
dimensionality in boundary layers. Benney & Lin (1960) and later Benney (1964), 
considered the second-order nonlinear interaction of 2-D TS waves with 3-D waves 
of a given spanwise periodicity. They found that such interactions promoted the 
growth of spanwise periodic longitudinal vortical patterns which were qualitatively 
similar to the K-type modes. Although the Benney-Lin model pointed to a 
mechanism for the observed growth of three-dimensionality in unstable boundary 
layers, i t  furnished no estimate of the preferred spanwise periodicity observed in the 
experiments. 

As a result of this and other more serious shortcomings, Craik (1971) proposed a 
model that would favour the selective growth of three-dimensional disturbances. 
This involved resonant interactions among a suitable triad of TS waves. Such 
interactions were expected to be quite strong owing to a phase-coupled energy 
interchange among wave components with the potential transfer of energy from the 
primary shear flow to the disturbance in the region of the critical layer. The 
importance of resonant subharmonic wave interactions in free shear layers had been 
pointed out by Kelly (1968). This was found (Corke, Shakib & Nagib 1989) to be an 
important mechanism governing the initial growth of instabilities and feedback in 
jets. 

The Craik model considered the disturbance field to be the result of a plane TS 
wave and two oblique TS waves propagating a t  equal and opposite angles to the flow 
direction in the form of a triad. Resonance occurs when the phase velocities of the 
wave components are matched. This generally involves the most amplified 2-D 
TS wave with wavenumber a,  and pairs of oblique waves with a streamwise 
wavenumber $a. 

The Craik model provided a mechanism for selective amplification of a pair of 
oblique waves even in situations where such waves may be damped according to 
linear theory. Since it involves the subharmonic, it is often referred to as a 
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subharmonic interaction, and is often implied when describing Craik or ‘C-type ’ 
modes. Although the motivation for the Craik analysis was to provide a mechanistic 
interpretation of the Klebanoff et al. observations, the model proved to be 
inadequate. Craik (1971) surmised that the too large 2-D disturbance amplitudes 
introduced by the vibrating ribbon in that experiment resulted in higher-order 
effects not accounted for in his theory. Although not successful in this regard, Craik’s 
analysis did reveal the existence of this particularly strong second-order resonance 
mechanism which may be more directly relevant to the early stages of natural (not 
artificially forced) transition. 

The first experimental observance of a TS subharmonic in a transitioning 
boundary layer was made by Kachanov, Koslov & Levchenko (1977). The 
subharmonic was determined from spectra of streamwise velocity fluctuations. The 
streamwise phase distributions between the fundamental TS and subharmonic 
modes, necessary to show resonance, were unfortunately lacking. Further inves- 
tigations by Kachanov & Levchenko (1984), however, provided detailed phase and 
amplitude distributions documenting the existence of a synchronized phase locking 
between a 2-D TS wave and a pair of oblique waves propagating a t  equal and 
opposite angles to the flow. Kachanov & Levchenko believed this to be evidence of 
the Craik modes even though the angles of the subharmonic oblique waves differed 
substantially from the theoretical value satisfying the Orr-Sommerfeld equation. 
Irrespective of this difference (a possible explanation is provided by Herbert 1983 b) ,  
the resonant growth of the subharmonic disturbance - far in excess of that predicted 
by linear theory - was fully apparent. 

Kachanov & Levchenko had further observed that the parametric resonance not 
only led to the amplification of the TS subharmonic but also to the growth of a broad 
band of lower frequency disturbances. This they felt was tied to an observed 
stochastic modulation of the phase and amplitude of the subharmonic time trace 
which set up lower frequency sum and difference interactions. They surmised that 
the modulated subharmonic arose from random background disturbances, and 
attempted to document this process by superposing on their 2-D ribbon input a 
phase-modulated subharmonic signal. The resulting resonant condition under 2-D 
subharmonic forcing corresponded, within the experimental uncertainties, to those 
obtained when only natural random priming of the subharmonic existed. This result 
is not altogether unexpected since the growth of 2-D subharmonic disturbances is 
damped and would probably have little influence on the growth of 3-D disturbances 
in the regime where TS wave amplitudes are small. 

With the aid of a smoke wire (Corke et al. 1977), Saric & Thomas (1983) performed 
experiments on the growth of subharmonic disturbances in unstable boundary 
layers. From their flow visualization records, it  was clear that the streamwise 
subharmonic arose from a formed peak-valley structure, whereby peaks followed 
valleys and valleys followed peaks. Thus a sensor monitoring the streamwise velocity 
fluctuations along a mean stream path would detect the passage of peaks or valleys 
spaced two TS wavelengths apart, i.e. a TS subharmonic. By varying the initial 
amplitude of the TS forcing, they had observed the emergence of subharmonic modes 
with different spanwise wavelengths (A,). From that they distinguished between 
C-type and H-type mechanisms. 

An explanation of the H-type modes comes from the analysis of Herbert (1983b). 
He examined the stability to 3-D disturbances of a basic state consisting of a Blasius 
flow and plane TS waves. The unstable 3-D disturbances were found to be Squire 
modes, not Orr-Summerfeld modes as in the case of the Craik mechanism. The same 
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modes of the Squire equations were observed by Herbert (1983a) to  cause the 
subharmonic instability in Poiseuille flow. By this mechanism, the phase velocity of 
the 3-D modes is independent of the spanwise wavenumber, p = 2x/A, ,  and is close 
to that of the fundamental TS wave. Therefore, near-resonant conditions could exist 
independent of p, as opposed to the C-type modes which only exist for unique values 
of spanwise wavenumbers. An excellent recent review of this topic was given by 
Herbert (1988). 

1.2. Objectives 
In  the light of the important theoretical contributions on the weakly nonlinear 
interactions leading to the growth of 3-D disturbances in transitioning boundary 
layers, we proposed to  expand on the previously cited experiments by adding the 
capability for introducing controlled 3 - 0  inputs. These 3-D disturbances would take 
the form of oblique waves of different angles and intensities, which would be phase 
coupled to simultaneously generated 2-D disturbances. The simultaneous generation 
of both 2-D and oblique modes would prescribe an initial phase synchronism between 
the modes. As emphasized earlier, previous experimental studies have left this phase 
synchronism to develop naturally through coupling with background 3-D dis- 
turbances. 

With this, we intended to look a t  the two basic mechanisms for the growth of 
3-D subharmonic modes, and in addition, to address the apparent differences in the 
structure of breakdown between fundamental-mode (K-type) and subharmonic- 
mode breakdown (C- and H-type) conditions. For example, total u’/Um values 
documented for K-type conditions are of the order of 15%. In C- or H-type 
breakdown, the level is typically observed to  be an order of magnitude smaller. More 
fundamentally, for the K-type, the appearance of spike stages puts greater emphasis 
on higher frequency generation a t  breakdown, whereas measurements of C- or H- 
type transition suggests that interaction with low-frequency components is more 
important. 

2. Experimental apparatus 
2.1. Wind tunnel 

The experiment was performed in the I IT  Transition Wind Tunnel, a schematic of 
which is shown in figure 1. The same facility had been previously used by Bar-Sever 
(1984) and Corke, Bar-Sever & Morkovin (1986), to study the instability and 
transition to turbulence of boundary layers over random grain surface roughness. 
Details of the facility can be found in those two references. 

The test section dimensions are 73.7 cm by 15.1 cm cross-section by 2.5 m long. 
One sidewall acted as a measurement surface, upon which the Blasius layer was 
developed. This wall was constructed from two sheets of 20 gauge, 430 series stainless 
steel bonded on each side of a 2.5 cm thick honeycomb core. This formed one 
continuous, extremely flat and durable surface over the full height and length of the 
test section. This surface was smooth to a nearly optical-mirror quality without the 
need for polishing. This proved to be a great advantage when introducing lighting for 
flow visualization. 

A false floor and ceiling in the test section were part of a special treatment to 
inhibit the growth of any disturbances attributed to  three-dimensional corner flows. 
By that arrangement, seen in figure l ( b ) ,  a slightly higher static pressure was 
maintained in the measurement section, set up by a perforated grid a t  the 
downstream end. The difference in pressure between the measurement section and 
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(4 
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97 
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FIGURE 1.  Schematic drawing of (a, b) boundary-layer-transition wind tunnel and test section 
and (c) heating wire arrangement for seeding combined TS and oblique wave modes. 

the false ceiling and floor cavities caused fluid to be drawn off through small gaps at 
the corners. The gap openings were adjusted while visualizing the flow using a smoke- 
wire and monitoring the two-dimensionality of TS modes and degree of three- 
dimensional modes near the corners. With a moderate amount of iterations, very 
satisfactory suppression of corner disturbances could be achieved. 

The other sidewall of the test section was either a single section of clear Plexiglas, 
used when visualizing the flow, or a segmented access window used for introducing 
velocity probes. These probes were traversed by a computer-controlled motorized 
tri-axial traversing mechanism which was mounted outside the test section. In  the 
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y-direction (normal to the wall) a minimum resolvable displacement of 0.01 mm, or 
approximately 100 times smaller than the average boundary-layer thickness, was 
possible. 

2.2. Flow visualization 

For flow visualization, a sheet of smoke streaklines was introduced near the wall 
using the smoke-wire technique (Corke et al. 1977). The smoke wire consisted of a 
0.1 mm diameter wire which was suspended and held taut above the measurement 
wall by two support arms. The support arms were located outside the measurement 
portion of the test section, within the ceiling and floor cavities, so that they would 
not introduce a disturbance to  the flow. The distance of the smoke wire from the 
measurement wall was adjustable. This control was essential since the patterns that 
developed were dependent on the height a t  which the smoke was introduced. In this 
experiment, the smoke wire was placed at the height of the critical layer in order to 
best mark the instability waves and emerging structures associated with the 
transition process. Lighting was provided by strobe lights positioned next to the test 
section. These were oriented so that the light would obliquely reflect off the mirror- 
like measurement wall. Under this arrangement, with the camera viewpoint normal 
to the wall and in the absence of smoke, the field of view appeared black. Smoke 
streaks which convected into the field of view diffused the light and therefore 
appeared white on the otherwise black background. 

2.3. Instrumentation 
The basic instrumentation used in the experiment performed the tasks of providing 
voltage time series proportional to the three components of velocity, amplification of 
these, various stages of analog preprocessing and data reduction, signal conditioning, 
and interfacing to  computer analog-to-digital inputs. A primary goal reflected in the 
design of the set-up was the need to precisely set the forcing conditions from day to 
day, and to provide a real-time evaluation of the state of the flow. Equally 
important, the electronics were required to provide signals which could maintain the 
highest resolution possible to the A/D converted under conditions where the 
amplitude of velocity fluctuations taken a t  different points in space could vary by 
three orders of magnitude. 

Hot-wire sensors were constructed from 0.003 75 mm diameter tungsten wire. 
Copper was electroplated to the ends of the wire to provide an effective sensor length 
of 0.5 mm. These wires were soldered to  4 cm long (approximately four times the 
maximum boundary-layer thickness) fine diameter jewellers broaches in three basic 
configurations designed to measure different velocity components, primarily u ,  uv,  or 
uw. The long broach lengths were necessary to ensure that probes, when traversed 
normal to the wall, produced a minimum disturbance due to the larger diameter 
probe body. The sensitivity of such unstable boundary-layer flows to probe-body 
interference had been documented by Bar-Sever (1984). Small-diameter glass fibres 
spanned between the thin broaches a t  their midlength in order to stabilize them to 
flow-induced vibrations. The complete sensor design is given by Mangano (1987). 

In  all cases the hot-wire sensors were operated in a constant-temperature mode 
using DISA 55D01 anemometer units. Prior to digitizing, the analog outputs of each 
anemometer were split into two parts, one containing a d.c. component proportional 
to the mean velocity and the other which was d.c. removed and proportional to the 
velocity fluctuations. The signal containing the d.c. was d.c. shifted and amplified by 
the full amount possible, within the f l O V  limit of the A/D converter. The 
dominant factor in the selection of the gain was the d.c. variation over a y-traverse 
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through the layer. The gain on this signal was fixed. This signal was then passed to 
one channel of the A/D input. 

The other signal was band-pass filtered between 1.25 Hz and 160 Hz. The low- 
pass setting acted as an anti-aliasing filter for the digital acquisition rate of 384 Hz 
or 432 Hz (24 times the oblique wave frequency). The filtered signal then passed 
through a computer-controlled programmable gain circuit. When acquired through 
a separate channel of the AID, the computer always acted to maintain the highest 
gain for a sample record in order to minimize quantization error of the digitized 
values. That gain setting was used to reconstruct the total signal when the mean 
value was added back to the fluctuating part, with floating point precision, within 
the computer memory. 

3. Controlled three-dimensional mode forcing 
The simultaneous 2-D and 3-D wave generation was accomplished using an array 

of 0.05 mm diameter heating wires suspended a t  the height of the critical layer. 
These were periodically heated to  introduce controlled perturbations through local 
changes in the air viscosity. The oblique waves were produced by using a span- 
wise array of individual heating wires. Such an array is schematically represented in 
figure 1 ( c ) .  

- -  

3.1. Periodic local heating 

The use of periodic heating to introduce controlled disturbances had been used by 
Liepmann, Brown & Nosenchuck (1982) to force plane TS waves in boundary layers 
in water. In  their case, they used a two-dimensional heating element made from a 
2.5 mm wide (in the flow direction) nichrome strip mounted flush to the boundary- 
layer wall. In that reference, the analogy between periodic heating/cooling and 
surface blowing/suction was made to give an equivalent effect on the vertical 
velocity component. The v /U ,  dependence given by them was 

For the estimated conditions of Liepmann et al. (1982), in water, with the distance 
from virtual origin x = 5.0 cm, heating strip streamwise extent 6 = 2.54 mm, local 
stability Reynolds number Rei = 316, Prandtl number Pr = 7.1 ; ambient tem- 
perature T = 20 "C, and temperature/viscosity sensitivity (TIP) (d,u/dT) = 0.51, the 
v /U ,  equivalence to a temperature perturbation amplitude A T  ("C) was 

abs - =0.0004AT (a 
In water, the local high dependence of viscosity on temperature required 

moderately low temperature amplitudes to force disturbances. The AT value used by 
Liepmann et al. (1982) was estimated to be 3 "C. For the present case, in air, an 
approximate factor-of-five reduction in (TIP) (dp/dT) and a factor-of-two reduction 
in Pri, between air and water, requires that an approximately ten times larger 
temperature fluctuation amplitude be used to obtain the same level of velocity 
perturbation. This assumes that the heating segments have the same physical 
streamwise width. Such high fluctuating temperatures are generally unrealistic since 
some portion is averaged and stored by the wall substrate leading to a local steady 
increase in the boundary-layer temperature. In air, this effect is stabilizing. 
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However, an improvement in this factor can be realized by reducing the streamwise 
extent of a heating segment, that  is replacing strips by wires. 

I n  the present experiment in air, heating elements consisting of 0.05 mm diameter 
wires, for the conditions x = 45 cm, ( = 0.05 mm, Re$ = 430, Pr = 0.71, T = 20 "C 
and (TIP) (dp/dT) = 0.119 yield a perturbation intensity dependence of 

abs - =0.0003AT. (a 
Therefore, under these conditions, temperature perturbation amplitudes which were 
comparable with those used in water could be used for the present experiment in air. 

3.2. Oblique mode generation 
The oblique wave generation was accomplished by using a spanwise array, a t  one x- 
location, of individual heating wires to produce time-periodic spanwise-phase- 
varying perturbations. In  such an application, for an individual heating segment of 
length s, a periodic time-series input period r ,  and a radian phase shift between 
adjacent heating wires $, spatially propagating waves would be produced with a 
wave angle 8 given by 

8 = arctan (Cr$r/2ns). 

Here C, is the streamwise phase velocity of the travelling oblique waves. Keeping the 
length of the wire-heater segments fixed, a t  a given phase velocity set by the free- 
stream speed, r and $ could be adjusted to produce waves a t  any desired angle. 

Pairs of waves with equal wave angles and opposite sign were produced by 
spanwise phase distributions which were symmetric about the centre span of the 
heating-wire array. Such wave pairs, along with a harmonic plane TS mode, formed 
wave triads such as shown in figure 1 ( c ) .  

In  terms of the dimensionless wavenumbers, a and p, the wave angle is given by 

8 = arctan (/?/a). 

In terms of the experimental parameters, 

A two-dimensional wave, (a ,  0 ) ,  for example, requires an input condition with $ = 0, 
that is, a spanwise uniform input to all wire heaters. 

In  the implementation of this approach we utilized 15 wire segments, each of 
length 3.8cm. These were placed end to end to  span the full width of the 
measurement section. At the operating velocity of 6 m/s and a highest 3-D 
subharmonic frequency of interest of 18 Hz, this system was capable of producing 
oblique wave angles of up to 61". These were produced at the limiting phase shift, 
$ = n. In  the course of this we have halved and doubled the number of wire segments. 
In the former case, the longer segment lengths limited the maximum wave angles to 
values which were less than those needed to produce the most amplified 3-D modes. 
Although the latter offered steeper angle capability, as will become apparent, the 
computer interfacing favoured 15 segments. 

The individual heating segments were made from 0.05 mm diameter stainless steel 
wire. The ends of each wire were copper plated to produce a central portion, equal 
to  the segment length s, of higher resistance, where the actual heating took place. A 
special low-heat-conduction substrate (Ardel) was inset into the back wall directly 
under the heating segments to minimize conductive losses and electrically insulate 
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the individual wires. Pairs of holes were drilled through the Ardel sheet to 
accommodate the 15 heating wires. The holes were located to space the wires ends 
1.6 mm (& s) apart. The centre of the eighth, or symmetry, wire segment coincided 
with the tunnel centreline ( z  = 0). 

In  early configurations, the wire segments were placed on the wall surface. In the 
final configuration, for the results presented here, the heating wires were suspended 
0.2 mm off the wall surface. This corresponded to the approximate height of the 
critical layer for the range of Reynolds numbers used. Using the local velocity, the 
Reynolds number based on the wire diameter was subcritical. The wires were held 
away from the wall by 0.6 mm outer diameter stainless steel tubes that were inserted 
through the wire holes in the Ardel. These were glued in place to provide the required 
clearance. The plated ends of the wires were then passed through these tubes and 
secured to the backside of the Ardel with screws. The wires were placed in tension by 
wrapping them around the screws before tightening. All electrical connections were 
made outside the tunnel test section on the backside of the measurement wall. 

A separate single 2-D heating wire spanning the width of the measurement section 
was placed 3 mm upstream of the 3-D segments. This wire was also suspended above 
the Ardel surface, a t  the slightly higher distance from the wall of 0.5 mm. A 
miniature temperature sensor located 3 mm downstream of the heating wires on the 
spanwise centreline was used to monitor the unsteady heating amplitudes. 

3.3. Control hardware 
The time-series wave form used to provide the periodic heating current to the wire 
segments was chosen to be a half-rectified square wave. This was selected over a 
unrectified sine wave, such as used by Liepmann et al. (1982), because the square 
wave only requires a changing output state which can be more easily produced by a 
computer or digital logic circuits. This was important for applications such as ours 
where a single processor controls the clocking of inputs to the 16 heating wires, and 
simultaneously moves sensors, acquires and pre-processes sensor outputs. 

This was done by controlling the state of the 16-wire segment through 1 bit each 
of a 16-bit parallel interface (15 bits for the 3-D segments, 1 bit for the 2-D segment). 
These were connected through two stages of circuitry which provided low power 
isolation and current amplification while preserving the half-rectified character of 
the parallel interface output. Approximately 1 W/cm of heating wire was required 
to reach the perturbation intensities needed in the experiment. Details of these 
circuits are contained in Mangano (1987). By this approach, the states of all i6  
heating wires could be changed simultaneously by transferring a single 16-bit word 
to the parallel output. 

The amplitude levels for the 3-D wires (as a group) and the 2-D wire were 
controlled separately using individual d.c. voltage sources. This was an important 
capability to have in order to investigate the effect of initial amplitudes on mode 
selection by Saric & Thomas (1983). The 15 3-D wires were connected in parallel to 
a single d.c. source. Any spanwise non-uniformity in heating amplitude between 
segments was minimized by matching their resistance values, set by the non-plated 
lengths. 

3.4. Control software 
The heating-segment control software was designed to be a user-interactive program 
which could provide different 2-D wave frequencies, 3-D wave frequencies and 
angles, phase shifts between 2- and 3-D waves, and forcing time-series duty cycles. 

In order to represent phase increments in the square wave, the period was divided 
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FIGURE 2. Schematic showing one cycle of periodic disturbance input broken into 25 parts to 
provide discreet phase shifts between heating wire segments (a ) ,  and sample time series used to 
produce 90P condition ( b ) .  

into 24 parts. This was taken to be the minimum phase increment corresponding to 
15’. A single period of the wave form, in figure 2(a ) ,  would represent a single period 
of the signal output to one of the 3-D heating wires. To produce a phase shift, $, 
between adjacent heating wires, required a similar square wave shifted in time 
(phase) relative to the other. For example, an output series shifted by 90” was shifted 
by seven phase increments. Single periods with appropriate phase shifts cor- 
responding to the control time series for all 16 wire heating segments were produced 
in the same manner. The state of each of the wire segments a t  each instant, 
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Growth of three-dimensional modes in Blasius boundary layers 103 

corresponding to &th of a period, was stored in one bit of a 16-bit digital word. 
Successive instants in time were stored in successive memory locations. 

The digital words containing the states of each segment were sequentially loaded 
into the output register of the parallel interface. The rate a t  which these digital words 
were sent was controlled by a programmable clock operating at a rate that was 24 
times the 3-D mode frequency. This produced the desired oblique mode frequency 
(divided into 24 parts) and the desired 2-D (TS) mode frequency divided into the 
number of parts commensurate with the ratio of 2-D and 3-D frequencies. 

In  figure 2(b) are presented sample time series outputs for the 3-D and 2-D 
segments to produce 45" waves. For our experimental conditions this requires a 90" 
phase shift between 3-D segments. Because of symmetry, only half of the 15 
segments, represented as bold lines, are shown in this figure. The top set corresponds 
to the spanwise phase distribution necessary to produce waves of positive angle. The 
middle set corresponds to the distribution necessary to produce wave pairs of equal 
and opposite angles. Since we were interested in producing wave triads, the two 
patterns were added (logically or-ed) together to produce equal and opposite wave 
pairs. The problem in performing that operation is apparent for wire segment 
numbers 1, 3, 5 and 7 in that figure. In those cases, adding the wave forms leaves 
those segments a t  a high state (heating) for all time steps, a physically unrealistic 
condition. To overcome this situation, the duty cycle of the output time series was 
reduced by one half before adding the two phase patterns. The resulting + duty 
pattern is shown as the solid-line wave forms in the lower part of figure 2(b). The 
corresponding 2-D wave form shown for the full-duty harmonic frequency condition 
is shown as the dotted line. Here the 3-D wave intersections and reinforcing 2-D 
crossing give a kinematic sense of the triads set up by the mode forcing. In  all cases, 

duty cycles were used for the 3-D inputs, and $ duty harmonic cycles were used for 
the 2-D inputs. Using this approach, other output series constructions were 
generated for the other wave-angle conditions. 

4. Experimental procedures 
4.1. Mode frequencies and initial amplitudes 

The conditions for the experiment are summarized with respect to the neutral 
stability loop for the Blasius layer in figure 3. For the velocity of 6.2 m/s used 
throughout these investigations, the Reynolds number a t  the location of the heating 
wires, flow visualization smoke wire, and streamwise bounds within hot-wire surveys 
were made are shown in this figure. The lines of constant non-dimensional frequency 
(F  = 2nfv/Vm) for plane TS modes used in the respective cases listed at the top are 
shown as the dotted (F = 88) and dashed (F = 79) lines. 

Only oblique modes that had a streamwise frequency that was the subharmonic of 
the input TS mode were investigated here. Non-harmonic combinations have been 
investigated by Dal-Ferro (1987) and Corke & Dal-Ferro (1987). For the non- 
dimensional subharmonic frequency, F = 39.5, two cases with oblique wave angles at  
f45" and f59" were studied. These have been designated 9OP and 150P because 
they required phase shifts between heating wires of 90" and 150", respectively. A 
third case, a t  a different streamwise subharmonic frequency, F = 44, used a phase 
shift of 180" to produce wave angles a t  f 61". The steeper wave cases were expected 
to be near the most amplified conditions given by Herbert (1983 b). 

The initial amplitudes were chosen to meet three criteria. The first was that the 
levels of two- and three-dimensional mode inputs be sufficiently large to overcome 
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FIGURE 3. Positions of heating wires, smoke wire and measurement stations with respect to 
Blasius neutral curve for experimental conditions. 

background levels. The second was that the location of enhanced growth of the 
subharmonic mode occur approximately midway down the test section, so as to allow 
a sufficient fetch for documenting a range of both linear and nonlinear development. 
The last criterion was that in at least one case the energy in the subharmonic mode 
should reach saturation limit and, past that  point, transition to turbulence should 
occur. This last criterion was only met for the 150P case. For the other two, the 
choice of their streamwise and spanwise wavenumbers meant that one, 180P, just 
reached subharmonic saturation by the end of the test section, and the other, 9OP, 
did not. The slower growth for these cases allowed a larger linear and weakly 
nonlinear range where more detailed surveys of the more slowly evolving instabilities 
could be performed. 

The streamwise development and location of energy saturation were controllable 
through combinations of 2-D and 3-D initial amplitudes. We chose to fix the 
amplitude of one, the 3-D subharmonic, and to adjust the other to satisfy the above 
criteria. The initial amplitude of the 3-D mode was primarily determined to be the 
minimum amount needed to  overcome the background disturbances. Since one of the 
objectives of the work was to investigate differences between the Craik (1971) and 
Herbert (1983 b )  mechanisms, we further constrained the level of plane wave (TS) 
forcing to be below the threshold value given by Saric & Thomas (1983) of 0.3% 
u' /U,  a t  Branch I1 of the neutral stability curve. This level of plane wave forcing 
was approximately four times lower than that used by Kachanov & Levchenko 
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FIGURE 4. The effect of the subharmonic mode amplitude at z = 152.5 cm on the initial 
amplitude of the fundamental (plane TS) mode for 150P condition. 

Forcing 
frequency 

Case (Hz) 

2D 32 
90P 32 

16 
150P 32 

16 
1 SOP 36 

18 

Phase 
shift 

(degrees) 

- 

90 

150 

180 

- 

- 

Temperature perturbation 

Individual 
(Volts TIST)  

45 0.33 % 
45 0.33 Yo 

2 0.31 % 
45 0.33 yo 

1.75 0.31 Yo 
50 0.33 yo 

2.25 0.31 % 

Summed 
(T16T) 
0.33 yo 
0.33 y o  
0.36% 
0.43 Yo 
0.29 ?'o 
0.41 % 
0.24% 

TABLE 1 .  Initial temperature fluctuation levels due to mode seeding (2-D wire resistance = 
45 ohms, 3-D wire resistance = 3 ohms, 6T = 7 "C). 

(1984). The ability to use such low levels of plane wave inputs was primarily a result 
of the controlled 3-D mode input provided by this experiment. 

The effect of forcing levels on the resonant growth of the subharmonic is depicted 
in figure 4 for the case designated 150P. Shown in that figure are the normalized 
amplitudes of maximum streamwise velocity fluctuations of seeded fundamental ( F )  
and subharmonic (LP) modes, measured a t  a fixed s-position 152.5 cm downstream 
of the heating wires. The quantity on the abscissa is the normalized r.m.s. 
temperature fluctuation which was measured with the miniature temperature sensor 
placed in the wakes of the heating wires, 3 mm downstream of the centre 3-D 
segment. ST is a local mean increase in air temperature due to the unsteady heating. 
The temperature perturbation in figure 4 is for the fundamental mode alone. This 
level was varied to see the effect on the growth of the oblique subharmonic mode. The 
level of forcing of the oblique mode was held fixed at the value given in table 1. 

Focusing on the fundamental mode, we observe an approximately linear 
dependence of the maximum u'/Um levels with temperature perturbation input. For 
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FIGURE 5 .  Laboratory coordinates and measurement locations for different experimental 
conditions. 

the subharmonic mode, when the initial TS temperature perturbation is below 
approximately 0.05 %, we observe little effect. Past that  initial level, we observe an 
exponential increase in the amplitude of the subharmonic with increasing initial TS 
mode input. The growth eventually saturates, with a maximum fluctuation level of 
approximately 5 % u'/U,, occurring a t  a temperature perturbation level of 0.33 Yn. 
Increasing the initial TS mode amplitude beyond this point causes transition to 
turbulence to occur a t  this x-location with the resulting decay in subharmonic mode 
energy seen in the figure. Exercises such as this lead to the selection of initial 
temperature perturbation inputs to 2-D and 3-D modes summarized in table 1 .  

4.2. Time-series acquisition 
Data time series were taken in 3-D space in the form of y-profiles for different 
streamwise, x, and spanwise, z,  locations. The (x, 2)-locations where profile data were 
taken are shown in figure 5. The x-coordinate in that figure is referenced to the 
position of the heating segments. The virtual origin of the Blasius layer was 
determined to be 45 cm upstream of the heating wires. In  all cases except 150P, the 
measurements were restricted to the test section centreline, 2 = 0, which coincided 
with a point of intersection of the equal-opposite angled oblique modes, and a 
fluctuation amplitude maxima. For the 150P case, spanwise positions (seen as circles) 
were investigated a t  four x-locations. The total spanwise extent of those surveys 
covered one half of the spanwise wavelength of the subharmonic mode, which 
corresponds to  three halves of the subharmonic lambda structure formed. 

At every (x, 2)-location, time series were taken a t  20 different y-positions. For the 
dual sensor probes, this consisted of 16 records of 512 time-series voltage pairs, plus 
a voltage proportional to the y-position of the sensors. The y-positions were not 
equally spaced but grouped roughly according to equal mean velocity increments. At 
any given y-position, the computer would first sample the time series so as to  
maximize the gain (resolution) to the A/D converter. With the appropriate gain 
setting, a record of time-series points would be acquired and stored as raw voltage 
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FIQURE 6. Streamwise growth of displacement (a) and momentum ( b )  thicknesses and shape 
factor (c) for all cases examined, with comparison to Blasius profile. 

values on digital magnetic media. The storage required the mode forcing cycle to be 
interrupted. Therefore, prior to  taking the next record of time-series points, the mode 
forcing was initiated and a 3 s delay was allowed before taking voltage samples to 
ensure that any start-up transients had convected past the measurement field. 

4.3. Processing techniques 
Linearization of the stored anemometer voltages was performed using a third-order 
polynomial with best-fit coefficients determined during sensor calibration runs. 
Typical calibration uncertainty was 0.01 m/s. The time-series velocity pairs were 
then summed and differenced to give the respective U and v or w component values. 
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To account for the growth of the boundary layer, a number of similarity quantities 
were computed and used to normalize the profile y-coordinate. These included the 
displacement thickness, S,, momentum thickness, S,, the ratio of these, H,,, and the 
Blasius variable q = y(U,/wz)i. The displacement and momentum thicknesses were 
determined by integrating the mean profile. The streamwise development of these 
are shown in figure 6. The comparison to the Blasius profile is also shown. For this, 
the Blasius virtual origin was found by the method of Bar-Sever (1984) and Corke 
et al. (1986). This involved finding, for a given mean velocity profile, the x-distance 
that minimized the squared error between it and Blasius. Analysis of all the profiles 
taken on the test section centreline for all the experimental conditions, forced and 
unforced, gave a consistent virtual origin a t  x = -45 cm (45 em upstream of the 
heating segments). 

In  these calculations, the largest errors came from the determination of the probe 
position from the wall. This was done by fitting a straight line to the lowest portion 
( U / U ,  < 0.40) of each mean profile. This generally involved three points. The linear 
function was then used to extrapolate the profile to  U = 0 which was enforced to be 
y = 0. The offset value was used to correct all of the y-positions of points in the 
profile. The mean profiles were derived from the Uw-sensor which, near the wall, was 
accurate to + 2 % .  This produced an uncertainty in the wall extrapolation and 
thereby y-position which could translate into a 14 % error in S,, a 5 % error in S, and 
an 8% error in HI,. Within these uncertainties, the comparison is acceptable. 

The eigenfunction modulus and phase distributions for the natural, forced and 
interacted modes was determined from computations of frequency spectra of the 
velocity time series a t  each spatial location. In  order to compute the phase 
development, the cross-spectra were determined. I n  each of the forced mode cases, 
the time series used to provide a phase reference were those taken closest to the wall, 
near the energy maxima for fundamental and subharmonic modes, on the centreline 
a t  the x = I00 cm locations (see figure 5). It was possible to use time-series 
information taken a t  a different time to provide a phase reference because the mode 
forcing and data acquisition were all phase locked by the control software. 

Since the data series were acquired in phase with the mode forcing, with 24 samples 
per subharmonic cycle, phase-averaged velocity series were easily obtained. Typically 
160 cycle averages formed from the sixteen 512-point data records was used. These 
phase-averaged time series formed the basic set used for calculations of velocity 
stream function and vorticity. Full details of those calculations are given by 
Mangano (1987). 

5. Results - natural and 2-D seeded modes 
5.1. Unforced conditions 

The response of the basic flow to natural (unforced) disturbances is documented here. 
Profiles of the mean and total fluctuating velocity a t  four downstream positions are 
presented in figure 7 .  For the mean profiles the two sets of data at each x-position 
were derived separately from the uw- or uw-sensors. These show a good degree of 
repeatability and collapse to Blasius. Even though they represent all modes, the y- 
distribution of total streamwise velocity fluctuations have a shape which is 
characteristic of the TS eigenfunction modulus. Representative time traces of 
u-fluctuations at the height of the critical layer are shown at two x-positions in 
figure 8. These show a periodic character with amplitude which is growing with down- 
stream distance. 
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FIGURE 7. Normalized mean velocity profiles determined from uw and uw velocity probes (a )  and 
total streamwise velocity fluctuations ( b )  at different downstream stations for unforced condition. 

The y-distribution of frequency spectra for the three velocity components a t  the 
most downstream location in this set is shown in figure 9. These document a band of 
frequency centred a t  approximately 26 Hz (F = 64). This compares well with the 
most amplified TS frequency of 25 Hz obtained from linear theory for a Blasius 
boundary layer for the conditions at x = 130 cm (Real = 1460). The y-distribution of 
energy in this band in all three components is unmistakeably TS-like. Of course the 
broad-band nature is expected owing to the natural, random character of free-stream 
disturbances. In these cases, the flow remains laminar over the full length of the test 
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FIGURE 8. Representative time traces of maximum streamwise velocity fluctuations a t  
(a )  z = 130 and ( b )  160 cm for unforced condition. 

section, and there is no indication of other bands of frequencies, outside the most 
amplified TS band such as subharmonic or other harmonically interacted modes, 
appearing in the spectra. 

5.2. Two-dimensional forced modes 

The effect of the addition of coherent plane-wave modes into the base state 
previously documented is shown in the next four figures. The frequency of this mode 
was 32 Hz (F = 79, a&, = 0.25), which was the same as used for the plane TS mode 
in the 9OP and 150P resonance cases. This frequency falls within the band of most 
amplified modes previously documented to occur in the natural (unforced) boundary 
layer (figure 9). For consistency, the initial amplitude of this plane wave was set to 
be the same as for the 9OP and 150P cases so that these results could also offer a 
direct comparison to those where oblique mode forcing was added to promote 
subharmonic resonance. These amplitude levels were listed in table 1. 

Representative time traces a t  two x-positions upstream and downstream of 
Branch I1 (see figure 3) are shown in figure 10. These were taken a t  the height of the 
critical layer where the maximum amplitudes occur. At the upstream position, a 
regular periodic mode is documented. The peak-to-peak amplitude is approximately 
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FIGURE 9. Normalized y-distribution of frequency spectra of three velocity components at z = 
160 cm for unforced condition. 

equal to that of the unforced condition measured 60 cm further downstream (x = 
160 cm in figure 7) .  Further downstream this mode has amplified. In  addition, there 
is some indication of an irregular subharmonic mode interspersed in the time trace. 

We gain further insight into these modes from velocity spectra such as shown in 
figures 11-13. At the upstream position, the input 32 Hz mode is well defined by a 
sharp spectral peak. The y-distributions of u and v velocity components are 
characteristic of a plane TS-mode eigenfunction modulus. The appearance of a peak 
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FIQURE 10. Representative time traces of maximum streamwise velocity fluctuations at 
(a) z = 100 and ( 6 )  160 cm for 2-D seeded only condition. 

in the w-component spectra suggests that a small amount of energy went into 3-D 
modes a t  this streamwise frequency. At an intermediate downstream position, x = 
130 cm in figure 12, these modes have remained coherent and have amplified. The 
appearance of a small peak in the spectra a t  the subharmonic frequency is now 
evident in the streamwise velocity fluctuations. Since this subharmonic is partly a 
result of stochastic input it is not expected to be regular in space or time. 

We have compared the growth rate of this mode a t  32 Hz with linear theory for 
a Blasius layer. The experimental growth is based on the rate of increase of the 
maximum streamwise velocity fluctuations a t  increasing x-positions taken from 
spectra such as presented here. These yield a dimensional amplification rate, -Ai 6, = 
-0.0070. At an intermediate Reynolds number, Res, = 1460, and non-dimensional 
frequency 27cfSl/U, = 0.1 14, linear theory predicts a maximum dimensionless 
amplification rate of approximately - 0.0075 which is in close agreement. 

At the last downstream position, x = 160 cm in figure 13, a quite broad-band 
energy distribution is evident in all three velocity components. Evidence of the 
initial TS frequency as well as a subharmonic still exist, but there is a generally larger 
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FIQURE 11. Normalized y-distribution of frequency spectra of three velocity components a t  
5 = 100 cm for 2-D seeded only condition. 

base fluctuation level compared to the upstream position. At this x-station, the mean 
profile is still Blasius, and the total maximum r.m.s. streamwise fluctuation 
amplitude is 6 % of the free-stream velocity. Of this fluctuation total, 1 .O YO is a t  the 
fundamental frequency and 0.6 '340 is a t  the subharmonic frequency. 
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FIGURE 12. Normalized y-distribution of frequency spectra of three velocity components at 
x = 130 em for 2-D seeded only condition. 

6. Results - resonance conditions 
6.1, Results from $ow visualization 

The flow visualization records in figure 14 document the basic state of the flow 
without any mode forcing ( a ) ,  when forcing only oblique waves with wave angles of 
+61° (180P), dimensionless wave numbers of (0.150, 0.281) ( b ) ,  and ( c )  with the 

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0022112089003058
Downloaded from http:/www.cambridge.org/core. University of Notre Dame, on 09 Nov 2016 at 19:58:23, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0022112089003058
http:/www.cambridge.org/core


Growth of three-dimensional modes in Blasius boundary layers 115 

UI 
- (%) 0.6 
u* 

0 
4.0 

O’O 15 30 45 60 
I I 1 I 

0‘ 
-(%) 0.1 urn 

0 
4.0 

W‘ 
-(%) 0.3 
urn 

0 
4.0 

o.< 15 30 45 60 
I I 

Frequency (Hz) 

FIGURE 13. Normalized y-distribution of frequency spectra of three velocity components at 
x = 160 cm for 2-D seeded only condition. 

combined forcing of the oblique wave condition of the middle photograph and forced 
plane TS waves at the harmonic wavenumber (0.300, 0). The field of view spans the 
full width of the measurement section and encompasses a region from 85 to 175 cm 
downstream of the heating segments as marked by the point lights at the bottom (see 
also figure 5 ) .  At the upstream edge of the photographs, Resl = 1250. 

Figure 14(a)  documents the existence of plane TS waves which travel the length 
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FrauRE 14. Visualization records documenting (a)  natural unseeded, (b)  seeded oblique wave 
alone and (c) seeded resonance conditions. 
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FIQURE 15. Spanwise distribution of maximum streamwise velocity fluctuations and phase for 
fundamental (plane TS) and subharmonic (oblique) modes for (a )  9OP at x = 150 cm, ( b )  150P at 
x = 130 cm and (c) 180P at x = 130 cm. 
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x (cm) 

FIGURE 16. Streamwise variation of phase and linear coherence off, if, $f and tf modes for 
150P condition. 

of the test section in the unforced condition. These correspond to the periodic 
velocity field and energy distributions seen in figures 7 ( b ) ,  8 and 9. The naturally 
growing modes are weak and easily overcome with mild seeding of oblique waves 
whose effect is shown visually in figure 14(b). With the addition of the seeded plane 
waves a t  twice the streamwise wavenumber of the oblique waves, the flow is seen to 
develop a spanwise array of lambda vortex patterns which ultimately stretch and 
break down to turbulence. The streamwise location where the lambda patterns first 
emerge is related to the initial amplitudes of the plane and oblique wave combinations 
as well as the spanwise wavenumber of the oblique modes. As will be apparent from 
hot-wire measurements presented in later figures, the first emergence of the staggered 
lambda patterns marks the region of enhanced growth of energy at the subharmonic 
(oblique mode) frequency through a resonant interaction with the fundamental plane 
mode. 

6.2. Wavenumber determination 
The spanwise variation of magnitude and phase of streamwise velocity fluctuations 
in fundamental (open symbols) and subharmonic (closed symbols) modes is shown in 
figure 15 for the three resonance cases. The x-location for the 150P and 180P 
conditions is 130 ern downstream of the heating segments. For the less amplified 9OP 
case, the x-position is slightly further downstream, a t  x = 150 cm, to give a 
comparison at subharmonic amplitudes comparable to the others. The spanwise 
measurements in these figures were taken a t  a fixed y, close to that of the critical 
layer, so that the fluctuation amplitudes surveyed are near their maximum a t  that 
x-position. 

Focusing first on the least amplified, 9OP case in figure 15(a), we observe a 
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90P 32 16 79 39.5 0.250 0.125 
150P 32 16 79 39.5 0.250 0.125 
180P 36 18 88 44 0.300 0.166 
150PC 32 16 79 39.5 0.250 0.125 
l8OPCt 36 18 88 44 0.300 0.150 

Case h,l4 a$, 0 (deg) (~r /um)l  (C,/U,);  
90P 59 0.106 40 (45) 0.38 0.38 

150P 40 0.157 52 (59) 0.38 0.38 
180P 30 0.212 52 (61) 0.36 0.36 
150PC 31 0.205 59 (59) 0.38 0.38 
l8OPCt 22 0.281 61 (61) 0.36 0.36 

Case 4 ag6, (C/U,)q j; (C/U,$ 

6, = 3.0 mm at the most upstream measurement point where Red, = 1250. 
t Taken from Corke & Dal-Ferro (1987). 

TABLE 2. Forced and dominant interactive modes. 

150PC 48 0.377 0.38 80 0.605 0.38 

spanwise-uniform amplitude and phase distribution for the fundamental mode which 
is consistent with a plane wave. The subharmonic mode is observed to have maxima 
and minima in fluctuation levels in span which is consistent with the seeded oblique 
wave intersections. The spanwise phase distributions document that the minima 
coincide with a 2x phase shift of that  mode. The spanwise distance, A,, giving a 2x 
shift in phase (also twice the distance between adjacent minima) was used to 
calculate the spanwise wavenumber, p = f 2x/h,. This can be similarly derived from 
the flow visualization records, such as figure 14 for the 180P case, as the spanwise 
distance between structure valleys. 

The spanwise distributions in the more amplified cases (figure 15b, c )  show similar 
behaviour, with the appropriate reduced spanwise wavelength. One can begin to 
detect some slight spanwise variation in the fundamental mode amplitude which is 
the precursor of a nonlinear interaction with the subharmonic mode leading to a 
3-D mode a t  the fundamental frequencies. This process will be discussed in great 
detail in a later section. 

The values of streamwise wavenumber were determined by measuring the 2- 
development of phase of the fundamental and subharmonic modes. A sample of these 
results, which also includes two interacted modes (3 and v), for the most amplified, 
150P, case is shown in figure 16. Also shown at  the top of the figure are the values 
of linear coherence. For these, the reference time series was taken at the streamwise 
position, x = 100 em, a t  the same cross-stream position, x = 0 em, and a t  the y -  
position of the subharmonic (and fundamental a t  this reference x) mode energy 
maximum. Based on these, the streamwise wavenumbers (slopes) and phase 
velocities, C, = 27cf/a, were calculated. All these modes have the same constant 
phase velocity, C J U ,  = 0.38, which matches that of the plane TS mode, and 
therefore satisfies the criterion for resonance. The same was also true for the other 
resonance cases (9OP and 180P) not shown here (Mangano 1987). 

These results, which document the seeded wavenumber conditions, are compiled 
in table 2. In  that table, the distinction 150PC corresponds to values obtained from 
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FIGURE 17. Downstream development of maximum streamwise velocity fluctuations in 

(b )  fundamental and (a) subharmonic modes for 150P condition. 

full eigenfunction profiles taken from time series acquired with the acquisition 
computer (C), rather than the other statistics which were acquired by hand as single 
spatial point values a t  a fixed y. The only difference that arises from these two 
approaches is in the determination of the spanwise wavenumber, p (and A = 2 x / p ) .  
As will be seen in later figures on the spanwise distribution of the subharmonic 
eigenfunction modulus, taking measurements in span a t  a fixed y set a t  the height of 
the centreline maximum, gives a slightly distorted measure of the spanwise energy 
distribution. The bracketed wave angles (0  = a tanp/a)  contain the expected values 
based on the input conditions. When determined from the full profile data taken off- 
centre, 150PC, these agreed well. Confirmation of the 180P case has come in off- 
centreline measurements by Corke & Dal-Ferro (1987) labelled 180PC in table 2. 

6.3. Centreline measurements 
The 2-growth of the maximum streamwise velocity fluctuations in the fundamental 
and subharmonic modes are documented for the three resonance cases in figure 17. 
The 3-D subharmonic is shown a t  the top (a )  in filled symbols and the fundamental 
a t  the bottom (b )  in similar open symbols. These were measured while moving 
downstream along a constant z =  0 line which passes through oblique wave 
intersections, and subharmonic energy maxima of figure 15. From the point of initial 
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FIGURE 18. Downstream development of mean velocity profile on centerline (z  = 0) for 150P 
condition. 

seeding, the fundamental plane TS mode grows according to linear theory until it 
reaches Branch I1 (x = 117 cm for the 9OP and 150P cases, x = 95 cm for the 180P 
case). By linear theory, the steep-angled subharmonic oblique waves are highly 
damped, and upstream of the TS Branch 11, their amplitude is considerably lower 
than that of the fundamental. This is best observed in the slower growing 9OP case 
where the amplitude of streamwise fluctuations in the subharmonic and fundamental 
modes a t  Branch I1 were 0.018 % and 0.227 %, respectively. I n  both the 150P and 
18OP cases, the initial amplitude of the fundamental mode was the same as for the 
9OP case. The higher amplitudes seen a t  Branch I1 are a result of an interaction with 
the faster growing subharmonic in the two cases in which the 3-D mode is more 
amplified. 

For finite amplitudes of the fundamental, energy transfer occurs between it and 
the subharmonic. Once the subharmonic grows to a large enough amplitude, it can 
gain further energy from the mean flow. The subharmonic mode continues to grow 
until it saturates. Past saturation, the flow transitions to turbulence which is 
manifested in a loss of linear phase locking with an upstream reference, a broad-band 
velocity spectrum, and a deviation from the Blasius profile to a more full profile with 
a smaller displacement thickness, a larger momentum thickness, and thereby larger 
shape factor and viscous drag. Downstream changes in the mean profile are 
documented for the most amplified 150P case in figure 18. 

Past Branch 11, energy a t  the initial TS frequency is expected to decay with 
downstream distance. Once the energy in the subharmonic mode grows to a sufficient 
level, however, energy in the fundamental mode is observed to grow in accordance 
with the subharmonic. It will be documented later that  this mode, a t  the fundamental 
frequency, is a new 3-D interacted mode with spanwise wavenumber +2/3. 

For the same initial amplitudes, the rate that the subharmonic mode grows is 
dependent on its streamwise and spanwise wavenumbers. This effect is shown in 
figure 19, which documents the x-development of the local dimensional amplification 
rates of the subharmonic mode for the three curves in figure 17(a). The solid and 
dashed curves directly show the effect of changing spanwise wavenumber ; /3S, = 
0.106 and 0.205 respectively. Of the three, the dashed (150P) case is the most 
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FIGURE 19. (a) Downstream development of aubharmonic mode amplification rate for three 
resonance conditions, and (b) effect of maximum amplification on spanwise wavenumber. 

amplified. The maximum amplification for the three cases is plotted versus their 
respective ratios of spanwise to streamwise wavenumbers in figure 19(b). Drawn for 
comparison is the theoretical dependence of spatial amplification determined by 
Bertolotti (1985) and Herbert & Bertolotti (1985), which was intended to model the 
experimental conditions of Kachanov & Levchenko (1984). In  this presentation the 
curve had been shifted upward to place it in the region of amplification rates for 
the initial amplitudes and Reynolds numbers in our experiment. The dependence on 
the wavenumber ratio is in remarkable agreement. 

The location of maximum subharmonic amplification roughly marks the first 
appearance of 3-D staggered peaks in the flow visualization records. For the 150P 
case, it occurs well upstream (approximately 20 cm, two subharmonic wavelengths) 
of the x-position of subharmonic energy saturation. The case with the same 
streamwise wavenumber (9OP) is similar. For the dotted curve case (180P), the 5- 

position of maximum amplification occurs further downstream and closely coincides 
with the point of energy saturation seen in figure 17. The close coincidence of these 
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two important points of development of the 180P subharmonic growth curve has 
been documented to produce extra strong nonlinear phase locking (Corke & Dal- 
Ferro 1987). 

As the subharmonic mode develops, there are a number of characteristic changes 
which take place in the boundary layer. These can be seen by examining the 
eigenfunction modulus and phase distributions in figures 20 and 21. For these we 
focus on the most amplified (150P) condition. As can be seen from figure 2O(a), the 
u-eigenfunctions moduli show little growth in the subharmonic mode (right) until 
x = 100 cm. For the fundamental mode (left), neutral growth is observed between 
x = 100 and 115 cm. The y-location of the eigenfunction maxima for both modes 
coincides with the height of the critical layer, y/6, = 0.7. The peak in the 
subharmonic distribution is relatively broad a t  this stage of development and 
therefore is considered to  roughly coincide with the y-height of the peak of the 
fundamental. At this x-position (1 15 cm), the level of the subharmonic eigenfunction 
maximum is roughly twice that of the fundamental. By the next measurement 
station, x = 122.5 cm, a factor-of-two growth and the movement from the wall of the 
energy maximum of the subharmonic mode now signals the strong nonlinear 
development. The simultaneous large growth in the fundamental maximum and its 
movement from the wall indicates a tie to subharmonic development. 

Up to and including the x = 122.5 cm position, the y-distribution of the u- 
eigenfunction phase of both the fundamental and subharmonic modes, in figure 
21 (a), are similar to that of a TS mode. A little over one TS wavelength downstream, 
the y-phase distribution begins to change. This is fully established by x = 137.5 cm 
in figure 21(b). In  this case, it goes from the ‘wave-like’ TS distribution to a 
‘ structure-like ’ distribution with the phase changing nearly linearly away from the 
wall. This distribution holds until the loss of linear phase coherence past energy 
saturation. We interpret this change in phase character to be an indication of the 
reorientation and stretching by the mean flow of the now-formed lambda structure. 
Off the structure centreline, at this point of development, the wave-like phase 
distribution still exists (Mangano 1987). 

With increasing downstream distance, the maxima in the u-eigenfunctions of both 
modes continues to grow and move steadily from the wall. Beyond the point of 
subharmonic saturation, the subharmonic eigenfunction maximum decreases but the 
location continues to move away from the wall, even to the last examined x-location. 
Past saturation, the eigenfunction of the fundamental collapses to a self-similar 
distribution. The collapse appears to be a consistent precursor of full transition. At 
this stage there is little linear phase coherence with the fundamental mode (figure 
16). The mean velocity profile, seen in figure 18, has changed from the Blasius 
distribution to the more full distribution of a turbulent layer. It has not yet appeared 
to reach self-similarity by the last station, however. The deviation of the mean profile 
a t  his stage is localized to  the centreline of the lambda structure. On either side of 
this z-position, the mean profile is still Blasius (Mangano 1987). As such, the 
structure is essentially breaking down in an outward progression from its centreline. 

The centreline x-development is further illustrated in the selected time series and 
component velocity spectra in figures 22 and 23. Upstream of Branch I1 a t  x = 
100 cm, the amplitudes of streamwise velocity fluctuations of the fundamental and 
subharmonic modes are nearly equal. Approximately two subharmonic TS 
wavelengths downstream (at x = 115 cm), the subharmonic mode has grown by a 
factor of two over the fundamental. Some very low-amplitude broad frequencies also 
begin to appear near the wall in the v- and w-component spectra. The amplitudes of 
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FIGURE 21. Vertical distribution of phase and linear coherence for fundamental and 
subharmonic modes along z = 0 line at (a) x = 122 and (b) 137 cm for 150P condition. 

these broad-band components decrease away from the cross-stream centreline of the 
lambda structure (Mangano 1987). 

The broad-band components which first appeared on the centreline in the v- and 
w-components near the wall have progressively spread away from the wall by x = 

145 cm (figure 23c). The u- and w-component spectra still show a dominant peak at 
the subharmonic frequency, which is still growing, being upstream of the point of 
energy saturation. Past the point of saturation at x = 160 cm (figure 23d) the broad 
frequencies now appear fully in the u-component spectra and time series. The 
subharmonic peak is still dominant although decreasing in magnitude. In  this 
process, there was no indication of coherent higher frequency ‘spike’ stages as in the 
case of Klebanoff et al. (1962). Rather there appeared to be a smooth merging and 
filling of broad-band frequency components. I n  a later section we shall attempt to 
quantify this process which we feel is fundamental to the transition to turbulence 
involving two or more resonantly phase-locked modes. 

5-2 
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FIGURE 24. Spanwise distribution of subharmonic mode u-eigenfunction moduli a t  (a )  z = 115, 
( b )  130, (e) 145 and (d )  160 ern for 150P condition. 

6.4. 08-centreline measurements 

Off-centreline measurements were performed for the 150P case at four x-positions of 
115, 130, 145 and 160 cm downstream of the heating wires (figure 5).  The first is just 
upstream of Branch I1 for the TS mode, and the last two are just upstream and 
downstream of the point of energy saturation. At the two upstream positions, the 
distribution of streamwise fluctuations in figure 24 gives a sense of the initial lambda- 
shaped structure. I n  these and similar figures, the distributions have been plotted in 
3-D perspective and reflected about z = 0 to give a more physical view. At this x- 
position the maximum is a t  the cross-stream centreline. By the next x-position, the 
u-eigenfunction maxima have moved to just off-centre positions. On the centreline, 
the fluctuation maximum is moving away from the wall. Clear minima are now 
evident a t  x = +23 mm. The distance between these was used in computing the 
spanwise wavenumber in table 2 denoted as 150PC. The corresponding eigenfunction 
phase seen in figure 27 documents a 'structure-like' stretched distribution a t  the 
centre with ' wave-like ' character near the amplitude minima. The subharmonic 
structure holds this same basic spanwise character past energy saturation, although 
the centreline maximum continues to move away from the wall and the spanwise 
extent of the stretched y-distribution of phase distribution increases. 

The v-fluctuations in figure 25 develop a maximum on the centreline, initially 
away from the wall a t  x = 130 cm. As the lambda structure develops, this centreline 
maximum moves towards the wall and intensifies so that, by x = 160 cm, it is the 
location of the maximum v-component fluctuations. I n  contrast, the maximum w- 
component fluctuations develop on the sides of the lambda structure, where the u- 
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and v-fluctuations are a minimum. This can be clearly seen a t  the two positions (130 
and 145 cm) upstream of energy saturation in figure 26. In  addition, a peak away 
from the wall on the centreline is seen to develop. Directly on the centreline this is 
seen to decay as the flow passes the point of energy saturation. 

In the process of development of the subharmonic mode, a number of nonlinear 
interactions are expected to take place. These result in the generation of other 3-D 
modes which are phase locked with the initial input modes. The dominant 
interactions documented in this investigation for input modes with wavenumbers 
( q 0 )  and ($a, * P )  were 

(a ,O)+(@,  kP) = ($4 * P ) ,  cia, *P)+(ia, +p, = (a ,  *2P), 

($4 *P)+(a ,O)  = (%, * P I ,  ($a, * P ) - & ,  kP) = (0, k2P).  

The streamwise phase development of the first three were presented in figure 16. 
The spanwise wavenumber of these three modes was verified from the spanwise 
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FIQURE 28. Spanwise distribution of #f mode u-eigenfunction moduli at (a )  5 = 115, ( b )  130, 
(c) 145 and (d) 160 cm for 150P condition. 

distributions of the u-eigenfunction moduli shown in figures 28-30. These can be 
compared to the spanwise distribution of moduli of the subharmonic mode in figure 
24. In that figure, the minima a t  the spanwise positions z = +23 mm are indicative 
of the spanwise wavelength required to give a spanwise wavenumber PSI = 0.205. 

For the g f mode, the eigenfunction moduli show their three-dimensional character 
by the most upstream position, x = 115 cm, in figure 28. By x = 145 cm, clear 
minima are evident in span a t  z = +23 mm, indicating the same spanwise 
wavenumber as the subharmonic. The spanwise distributions of the $ f eigenfunction 
moduli in figure 29 are somewhat slower to develop. However, by x = 145 cm, clear 
minima are evident at z = +23 mm, indicating again the same spanwise wavenumber 
as the subharmonic mode. 

On the cross-stream centreline of these two 3-D modes, their streamwise growth 
follows that of the subharmonic. A t  the point of subharmonic mode saturation (x = 
155 cm in figure 17), the maximum fluctuation level in these two modes was 
approximately 10 times smaller than the subharmonic with uLf12 = 0.45 and uifIz = 
0.30. Kachanov & Levchenko (1984) had observed about the same factor difference 
between the subharmonic and g modes, but in their case the j mode was 
approximately 100 times smaller than the subharmonic level. They had not verified 
the spanwise wavenumber of these modes. 

The spanwise distribution of the eigenfunction moduli for the mode at the TS 
frequency is shown in figure 30. At the most upstream position (upstream of Branch 
11) the spanwise distribution is almost uniform, except for a slight warping due to the 
growing subharmonic. By x = 130 cm, the spanwise variation has become more 
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FIGURE 29. Spanwise distribution of jf mode u-eigenfunction moduli a t  (a )  x = 115, ( 6 )  130, 
(c) 145 and ( d )  160 cm for 150P condition. 
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FIGURE 30. Spanwise distribution of fundamental mode u-eigenfunction moduli at (a )  z = 115, 
( 6 )  130, ( c )  145 and (d )  160 cm for 150P condition. 
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z (mm) 

FIGURE 31. Percent spanwise variation of boundary-layer displacement thickness a t  z = 145 cm 
for 150P condition. 

pronounced. By x = 145 cm three minima in span are visible. The distribution a t  
z = 0 appears different because it coincides with the centre span of the subharmonic 
mode structure. The spanwise spacing of these three minima indicates a spanwise 
wavelength approximately one-half that of the subharmonic mode. In  terms of the 
spanwise wavenumber, it is the harmonic value, * 2 p ,  which was predicted in the 
summing interaction above. 

One of the most interesting interactions is that which produces a spanwise 
variation of the mean flow, namely (0, k2p).  A measure of this is the spanwise 
distribution of the time-averaged boundary-layer displacement thickness shown in 
figure 31. This is presented as the local percentage variation of the displacement 
thickness from the spanwise average a t  x = 145 cm. 

Viewing the interacted modes as a whole, it is clear that their spatial character and 
x-development are similar to that of the subharmonic. Since the energy transfer is 
mediated by the subharmonic mode, the decrease in the fluctuation maximum a t  the 
centre span and movement away from the wall of the u-eigenfunction modulus at  
x = 145 ern should also be manifest in the interacted modes. This was indeed the 
case in all the interacted modes documented in these figures. 

6.5. Coherent motions 
The high degree of phase locking and spatial stationarity of the 3-D structures 
afforded by seeding initial 3-D disturbances allowed us to perform detailed phase 
reconstructions of the developing flow. In  these, we have focused here on the most 
amplified 150P case. Figure 32 shows a time-.series representation of phase-averaged 
uw-velocity vectors a t  two x-positions of 115 and 130 cm, which were well documented 
in previous figures. These are presented in the (y,x)-plane at  the cross-stream 
intersection of oblique modes ( x  = 0). In  the Eulerian frame with time increasing 
from left to right in this figure, the flow direction is from right to left. The timescale 
covers three subharmonic cycles. The u- and w-scale is read from the isolated vector 
shown at the upper right side of each plot. Also, to better show details, the y- 
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FIGURE 32. Phase-averaged reconstructions of uw-vectors time series a t  (a )  x = 115 and 
(6) 130 cm, on z = 0 line for 150P condition. 

coordinate has been expanded by a factor of ten compared to the x-scale of the 
subharmonic cycle, obtained by using the convection velocity. 

At the upstream position, both fundamental and subharmonic modes are evident. 
The fundamental cycle corresponds to 12 time increments. On the outer part of the 
layer we observe a strong reinforcement of the positive v-component producing 
strong outward flow regions which are periodic with the subharmonic cycle. Near the 
wall, phase cancellations develop a stagnation line which forms a t  an angle to the 
flow direction. At the next x-position, figure 32(b), the stagnation line is very 
apparent as the dark intersection of upward- and downward-pointing vector arrow 
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FIQURE 33. Phase-averaged reconstructions of vw-streamlines in (y, 2)-plane at  comparable 
representative time instants a t  (a) 2 = 115, ( b )  130, (c) 145 and ( d )  160 crn for 150P condition. (Data 
have been reflected about z = 0 line). 
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heads. The downstream side is raised away from the wall where fluid would 
encounter a higher mean velocity. The upstream side is displaced towards the wall 
into a lower mean velocity region. The resulting perturbation field is therefore the 
mechanism for the 3-D mode formation and stretching observed in the flow 
visualization records. I n  span, the locations of the peaks and valleys alternate with 
the 180" phase shifts of the subharmonic cycle. Past this x-position, this perturbation 
field remains relatively unchanged, even past energy saturation. 

Although this view provides an accurate perspective of the development of the 
3-D structure, it remains somewhat simplified because it does not account for the 
full three-dimensional nature of the flow. For example, a t  the locations of the oblique 
mode intersections, the contribution to the alternating v-component by the 
subharmonic is a maximum (figure 25). Off centre, the w-component becomes equally 
important (figure 26) and leads t o  a more complicated perturbation field. We attempt 
to bring out details of this through vw-streamlines in the (y,z)-plane. The full 
temporal development of these have been compiled by Mangano (1987). Only 
representative time (phase) instants are presented here, in figure 33, in order to give 
a sense of the coherent motions associated with the lambda structure. They 
correspond to time instants a t  the four x-positions for which eigenfunction moduli 
were presented in previous figures. They represent only one of the 24 encompassing 
a complete subharmonic cycle, but were selected to give a sense of the basic character 
of the organized motions and its increasing complexity as it progresses towards 
transition. 

At the most upstream position (x = 115 cm), the streamlines depict cross-stream 
circulation patterns, with the outer circulation inducing that of the opposite sense 
near the wall. As a convention the dashed lined contours indicate circulation in the 
clockwise direction. The streamlines have units of m2/s with the lowest level (CLO) 
and level increment (CINC) given at  the top. The phase instant selected for this and 
the other three x-positions corresponds approximately to  the point where the peak 
of the upstream structure overrides the valley of the downstream structure. In figure 
32 a t  x = 130 cm, this corresponds to the time instant of 0.1 s. If one follows the 
pattern of streamlines in time, the direction of circulation in the outer part alternates 
in sign with the subharmonic cycle. The change in sign in the outer part disrupts the 
inner counter-circulation until it re-forms with the opposite sense in response to the 
outer flow. 

By x = 130 cm, the strength of the cross-stream circulation has intensified, but the 
patterns are no more complex. With further x-development we observe an increased 
number of counter-rotating pairs with three at x = 145 cm and four a t  160 cm. Recall 
that a t  the further x-position, the flow is past energy saturation and moving well 
towards a turbulent state. I n  the light of this, the degree of coherence of these 
motions is surprising. The full 3-D reconstructions of vortex lines and tracer particles 
performed by Corke & Dal-Ferro (1987) for some of these subharmonic resonance 
cases gives a more complete picture of the coherent motions associated with this later 
stage of transition. 

6.6. Nonlinear phase locking 

In order to further document the phase locking that existed between the subharmonic 
and 3-D modes produced by sum and difference interactions, cross-bicoherence 
estimates were calculated. Corke et al. (1989) had previously used this statistic to 
document the nonlinear interaction involved in vortex formation, pairing and 
feedback in an axisymmetric jet flow. Other investigators have made use of 
bispectral estimations to study other complex nonlinear flow systems such as 
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transition to turbulence in a two-dimensional wake (Miksad et al. 1982; Miksad, 
Jones & Powers 1983 ; and Solis, Miksad & Powers 1986) and instability and feedback 
in an impinging shear layer (Knisely & Rockwell 1981). Because of the spatially 
changing energy levels in the modes of interest in this problem, the normalized 
bispectrum, or bicoherence was used. In  this'.manner the emphasis was on the 
nonlinear phase locking which is necessary for efficient energy transfer between 
modes. To further emphasize the upstream influence and downstream development 
of spatially growing disturbances, the cross-bicoherence was calculated for spatially 
separated time series. 

The cross-bicoherence (CBC) is defined as 

where 

is the cross-bispectrum, with i ,  j, and k equal to either i or j, referring to one of two 
mean removed time series, u, with wavenumbers all a2, and a3 respectively. The 
notation I I is the modulus of the component, - denotes the transformed function in 
the wavenumber domain and < ) the ensemble average. These wavenumbers are 
related to each other such that al+a,+a3 = 0. In the present experiment, the time 
series were the streamwise velocity fluctuations, acquired at different spatial 
locations in the shear layer, u(z,y,z,t), and at a fixed upstream reference. The 
reference used is the same (z = 100 cm) as for the linear phase and coherence 
estimates, such as in figure 16. For the case when i, j, and k are the same, that is a 
single time series, ,8,,,(al, a,) will be symmetric with respect to a1 and uz, and will be 
referred to as the autobicoherence (ABC). 

In  the above equation, the calculation of the quantity 

<IU%)12 lqaz)12) 

requires considerable computer time and memory storage. Therefore, it was 
convenient (and common) to replace it by 

<I % (011 1 I 2, ( I q a 2 ) l  2, 

Justification for this substitution is given by Corke et al. (1989). 

values of the CBC indicate a high degree of triple phase locking 
As with the linear coherence, the value of the CBC varies between 0 and 1. High 

@t("l) + q . 2 ,  = %(a,) 
from realization to realization. Here 6,(al) is the instantaneous circular phase angle 
of C,(al). The maximum level of the CBC estimate is however dependent on the 
signal-to-noise ratio of the data series. When no such phase locking exists the CBC 
has a value of zero. 

The upper frequency limit of the cross-bicoherence is set by the Nyquist criterion, 
such that the sum of any two frequencies, fl and f2 ,  can not exceed half the sampling 
frequency. The region of validity takes the form of the bold outlined right-angled 
triangles (top and bottom) shown in figure 34. Other regions outside this, not 
exceeding the Nyquist limit, are omitted because of symmetry. The magnitude of the 
CBC is drawn as constant-level contours, in this case with values of 0.35, 0.65 and 
0.85. 

By our convention, in figures 34-39, the frequencies for the upstream reference, 
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FIGURE 34. (a) Auto-bicoherence estimate and ( b )  autospectrum for streamwise velocity 
fluctuations at reference position, r = 100 em, z = 0, y at position of maximum u', for 150P 
condition. 

designated by subscript 1 ,  are read from the abscissa. The frequencies read on the 
ordinate correspond to the downstream position and are designated by subscript 2.  
The ordinate frequencies are either added (top) to  or subtracted (bottom) from those 
read on the abscissa to give the third frequency which is read as the intercept of a 
-45' line to the abscissa. The third frequency also corresponds to the downstream 
position (subscript 2) .  The downstream coordinate is indicated in the middle of the 
figure. For reference, above each of the CBC estimates appears the power spectra (in 
dB) of u-time series from the upstream fixed reference position and from the 
downstream position. These are shown as respective solid and dashed curves. They 
have been plotted so that the autospectra of the time series with changing x has been 
shifted downward 20 dB with respect to the reference autospectra. The full dynamic 
range of both is 50 dB. For the same resonance conditions, the reference spectra do 
not differ from one figure to  the next. The dotted curve is the linear coherence 
between the upstream reference and downstream time series. Its ordinate value 
ranges from 0 to 1. 
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FIGURE 35. (a )  Cross-bicoherence estimate and (b)  autospectra and linear coherence at z = 115 cm. 
z = 0, y at position of maximum u'. Cross-statistics are with respect to reference position 
documented in figure 34. 

Figure 34 documents the triple phase locking that existed in the sum and difference 
interactions listed in the previous section. These are shown in the form of the ABC 
for the time series a t  the reference position, x = 100 cm. The respective interactions 
have been numbered. In  terms of the fundamental TS frequency, f = 2xaC,, these are 

(1) +f+tf=f ,  (6) if-;! = f, 
(2) f + t f =  If, 
(3) if+tf= 2f, 

(4) f+f = 2f> 

( 5 )  f-tf= if, 

(7) 2f-tf = If, 
(8) $f-f= if, 
19) Zf-f=f, 

(10) 2f-If= if. 
The lack of a peak for an interaction involving gf suggests that phase locking with 
this mode was not significantly above the background levels. 

Moving approximately three TS wavelengths downstream of the reference, the 
CBC in figure 35 document triple phase locking in space for all the above interactions 
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FIGURE 36. (a) Cross-bicoherence estimate and ( b )  autospectra and linear coherence at z = 130 cm, 
z = 0, y at position of maximum u’. Cross-statistics are with respect to reference position 
documented in figure 34. 

except those corresponding to peaks 3 and 4. I n  the above interactions with the CBC, 
the first frequency refers to the reference position, the second and third refer to the 
downstream position. Therefore the lack of peaks 3 and 4 indicate a loss of significant 
phase locking with respect to the upstream reference in the second harmonic, Z f ,  
downstream. A t  the top of the figure, the autospectra (shifted down 20 dB) has about 
the same broad-band level as a t  the upstream position. 

Another three TS wavelengths downstream, the autospectra a t  the top of figure 36 
show an approximate 15 dB rise in the broad-band levels. The subharmonic mode 
has grown by approximately 10 dB. Beyond this x-position the subharmonic will 
continue to grow, but its rate of growth will decrease (figure 19). It is still however, 
four TS wavelengths upstream of the point of energy saturation (figure 17). 

What can account for the rapid increase in broad-band fluctuations Z To answer 
this we look to the bicoherence estimates. If all of the mode locking were confined to 
if, f ,  zf, 2f,  the contours a t  these frequencies would be circular and of small diameter 
(to roughly the band width). In  fact, the contours are substantially elongated. These 
document that the coherent modes are also nonlinearly phase locked with 
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FIGURE 37. (a )  Cross-bicoherence estimate 

\ 

141 

nd ( b )  autospectra and linear coherence at  , ,  = 145 em, 
z = 0, y at position of maximum u'. Cross-statistics are with respect to reference position 
documented in figure 34. 

harmonically centred broad-band modes. This effect is robust enough to remain 
significant over the span of distance of the three TS wavelengths corresponding to 
figures 34 and 35. In  the case of the summed interactions, the -45" diagonal 
contours through peaks 2 and 3 in figure 36 involve frequencies in the band on either 
side of $ f and f which sum to produce the respective coherent modes $ f and 2f. For 
the difference interactions, the nonlinear phase locking of these higher modes with 
the $ f  side bands is seen as the vertically elongated contours. The combination of 
these shows how energy in an intermediate band of frequencies can be channelled to 
both higher and lower frequencies. This basic process is mediated by the primary 
fundamental/subharmonic interaction. 

With increasing downstream distance and increased subharmonic amplitude, the 
range of broad-band modes is seen to shift towards lower frequencies. This is seen 
clearly in figure 36 as the vertical band a t  upstream subharmonic frequency. The 
significance of the vertical orientation is that this lower-frequency band of modes is 
not in the upstream reference, read on the abscissa. Where did they originate ? the 
CBC estimate at  the s-position immediately upstream (figure 35) indicates that they 

_ .  
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FIGURE 38. (a )  Cross-bicoherence estimate and ( b )  autospectra and linear coherence at x = 160 cm, 
2 = 0, y at position of maximum u'. Cross-statistics are with respect to  reference position 
documented in figure 34. 

came about through difference interactions with the higher-frequency subharmonic 
side bands of peak 5. At the downstream position, these lower frequencies interact 
with the subharmonic to fill the band of frequencies between f and f (summed) and 
below $f (differenced). The effect of this is seen in the autospectra at the next 
downstream station in figure 36 as the further growth of energy in these bands. 

Recall that the x-position in figure 37 is still two TS wavelengths upstream of 
energy saturation. The higher broad-band levels now present have diminished the 
phase locking with the upstream reference except in narrow bands around f and if 
modes. The band below peak 1 leads to the loss of phase coherence with the 
fundamental that is observed a t  the next x-position, past energy saturation, in 
figure 38. Except for the phase locking that still exists for the subharmonic, the 
spectrum is quite broad band and sharply contrasted to the upstream reference 
spectrum. 
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6.7, Natural subharmonic mode development 

To this point we have purposely looked a t  the subharmonic resonance mechanism 
and transition to turbulence with specific 3-D input wavenumber content in order to  
fully define the state of the flow and to  fully phase lock the growing modes 
everywhere in space. In  natural transition with stochastic inputs, we can hardly 
expect the flow to be so well behaved. We therefore want to contrast the results in 
boundary layers with 3-D mode seeding to produce subharmonic resonance, to those 
with a natural subharmonic interaction. To do this we consider a case where only 
2-D TS modes are seeded. We chose this case over a fully natural (unforced) case, 
because the plane TS cycle provides a phasing signal which could be used for spatial 
cross-statistics. This type of forcing is of course similar to the more traditional 
approach such as by Kachanov & Levchenko (1984) and Saric & Thomas (1983). 

The TS-only forced case we chose has the same TS frequency and initial amplitude 
as the 150P case so that they offer a direct comparison. This case has been previously 
documented in figures 10-13. The bicoherence estimates are presented at  three z- 
positions in figure 39. At the reference position (x = 100 cm in figure 39a), the ABC 
documents a triple phase locking of the fundamental with its harmonic only. This can 
be contrasted to the ABC in figure 34. Six TS wavelengths downstream this 
interaction diminishes and the CBC in figure 39 ( b )  document a broad band of modes 
which are nonlinearly phase locked with the TS mode. At the centre of this band is 
the TS subharmonic mode. The resonance interaction with the subharmonic and 
broad side bands in this case lead to a very rapid spectral filling (figure 39c). In this 
case the subharmonic mode does not reach a high saturation level, less than 1%, 
which is comparable with what has been seen by others for natural subharmonic 
mode transition. It appears that the side-band interactions with the fundamental 
have in this case spread energy rapidly and efficiently to reduce the large-amplitude 
growth of the subharmonic. 

7. Discussion 
7.1. Growth of 3 - 0  disturbances 

As pointed out in 3 1, one of the primary motivations of this experiment was to study 
fundamental processes leading to  the first growth of three-dimensional modes leading 
to the transition to turbulence. Here we focused on subharmonic resonance 
mechanisms attributed to both Craik (1971) and Herbert (1983 b ) .  

Previous experiments studying the growth of 3-D modes in boundary layers have 
used vibrating ribbons or wires which were designed to primarily excite 2-D TS 
modes of prescribed frequency and streamwise wavenumber. The ultimate 
development of 3-D states occurred through uncontrolled processes. For a fixed TS 
frequency, the only other parameter that these experiments could vary was the 
initial amplitude. A general approach, it seems, was to  increase the initial amplitude 
so that 3-D modes and breakdown could be achieved before the end of the test 
section. I n  the cases of Klebanoff & Tidstrom (1959), Klebanoff et al. (1962) and 
Williams, Fasel & Hama (1984) a relatively large initial amplitude, u’/U,, of 
approximately 1 YO was used. 

Primed by the results of Saric & Thomas (1983), we took special care to keep a low 
initial forcing amplitude of both the 2-D and 3-D modes in our present experiment. 
As described in $4, the levels were adjusted to achieve transition to turbulence in the 
most amplified case (150P) and kept fixed for all other cases, even if transition was 
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not fully achieved. For the first time in a study like this, we could adjust both the 
2-D and 3-D amplitudes separately. Our approach was to set an initial amplitude for 
the 3-D subharmonic mode and adjust the 2-D initial amplitude to achieve 
saturation of the subharmonic within the lqst third of the test section length. With 
some experience, we found that if we 'over-forced' the 3-D subharmonic mode, we 
observed a subharmonic mode downstream with a harmonic spanwise wavenumber 
(+a, It 2p). An interesting characteristic was that under these conditions the flow was 
able to sustain a much larger fluctuation level before energy saturation. Although the 
regular subharmonic (+a, kp) development looked well behaved, the emergence of 
this other mode was not explainable through simple nonlinear interactions of the 
principle input modes (a,O) and (+a, +p).  One possible interaction to produce this 
was between the primary subharmonic and a mode with wavenumbers (a, kp). The 
origin of this mode might come about from the generation of a higher harmonic with 
the larger initial 3-D subharmonic input. To avoid this, we purposely kept the level 
of the 3-D mode seeding below a value needed to produce the ($a, k2p) mode 
downstream. In future experiments we plan to investigate this in mare detail. 

Table 1 documents the initial temperature perturbation level for the 3-D modes in 
all cases to be 0.31 '3'0. Using the analogy of the equivalence between the unsteady 
heating and v-fluctuation intensity, the initial velocitj perturbation produced by 
unsteady heating of this magnitude was estimated to be approximately 0.07 %. This 
was only just above what we consider to be the base disturbance level of the wind 
tunnel. Such a very low level is only required because we provided a perfect coherent 
phase locking between the 2-D and 3-D modes which promoted the strongly 
nonlinear resonance mechanism. 

At Branch I1 of the neutral stability curve, the u'/Um level of the fundamental 
mode is only approximately 0.25'3'0, as taken from figure 17 for the 9OP case where 
resonance has not yet occurred by Branch 11. At this sam.e x-location, the 3-D 
subharmonic was highly damped and was a t  an amplitude level of less than 0.05 YO. 
These amplitudes are well below the 0.3% limit observed by Saric & Thomas to 
produce C-type modes, and are considerably below levels previously used by others 
investigating 3-D mode breakdown and transition to turbulence. 

What is the significance of the amplitude thresholds for the selection between C-, 
H- and K-type modes? In our cases, for the same initial amplitudes of TS and 
oblique modes, the characteristics of the 3-D modes was dictated by the wavenumber 
content (streamwise and spanwise) of the seeded inputs. The dependence on the ratio 
of streamwise to spanwise wavenumber was shown in figure 19(b).  

If the energy in free-stream disturbances in our tunnel were evenly distributed 
over a wide range of 3-D wavenumbers, then we should expect that the 3-D features 
that would emerge through an interaction with TS modes would have a spanwise 
wavenumber approximately that of the 150P case. That is, for the same initial 
amplitude level, this is the more amplified 3-D state. The fact that we could observe 
the emergence and document the less amplified, smaller spanwise wavenumber 9OP 
condition was because we put greater energy into those spanwise wavelengths, and 
thereby exceeded the background levels of other more amplified 3-D modes. 

In  the present experiment, when seeding specific streamwise and spanwise 
wavenumbers, the effect of initial amplitude would only advance the point of 
subharmonic energy saturation and ultimate breakdown upstream. Under such 
controlled conditions, this is the expected behaviour. Under less controlled 
conditions, the effect of initial amplitude, or to a greater extent of an exact initial 
amplitude threshold, on the natural selection of spanwise wavelengths of 3-D 
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subharmonic modes clearly must also depend on the character of the free-stream 
disturbances. 

In all cases, a t  our levels of initial forcing, we never observed fundamental (K- 
type) transition. K-type appears to  result only with much larger levels of initial TS- 
mode forcing and/or in the presence of coherent steady longitudinal vorticity as in 
the case of the numerical simulations of Singer, Ferziger & R,eed (1986). Since neither 
of these were present in this experiment, the absence of K-type behaviour is 
expected. 

One of the goals of this investigation was to try to delineate between the two basic 
theoretical mechanisms, C- and H-type. The conditions for that comparison 
primarily correspond to the 9OP and 150P cases. Table 2 documents some of their 
experimentally derived characteristics. One of the basic requirements for C-type is 
that the interacting subharmonic 3-1) mode must have the same phase velocity as 
that of the fundamental TS mode. For a 3-D Orr-Sommerfeld mode, the phase speed 
depends on the spanwise wavenumber and Reynolds number. In  our experiment, the 
9OP and 150P cases were conducted a t  the same Reynolds numbers, with the same 
streamwise wavenumbers. The wave numbers in table 2 were made dimensionless 
using the displacement thickness a t  Res, = 1250. Comparisons to linear temporal 
theory are made at Res, = 1000 where 8, = 2.4 mm. At this Reynolds number, the 
18OP case has a, 8, = 0.24, a;8, = 0.12 and pis1 = 0.22. Linear theory predicts phase 
speeds (Cr/Um)l = 0.35 and (Cr/Um); = 0.39. Similarly, for the 9OP case, a18, = 0.20, 
a;S, = 0.10 and = 0.125 yielding (Cr/Um)l = (Cr/Um); = 0.34; and 150P case, 
a,8, = 0.20, a;81 = 0.10 and ,13;S1 = 0.164 yielding (Cr/Um), = 0.34 and (Cr/Um); = 
0.36. For the 9OP case, we have used the spanwise wavenumber for the expected 45’ 
wave angle, since, when the full eigenfunction profiles were examined in the 150P and 
18OP cases (C designation), the expected wave angles (bracketed) were obtained. 

The measured phase velocity for the TS mode in the 18OP case is within 3 YO of the 
expected value. For the 9OP and 150P the agreement is not as good (approximately 
an 1 1  % difference). The difficulty arises in our experiment due to finite-spaced 
measurement stations which limited the number of streamwise samples of phase. For 
the 180P case, we were able to take more finely spaced streamwise increments for the 
phase measurements (Mangano 1987) which undoubtedly lead to a better agreement 
with theory. 

Of the three cases examined, only the 9OP satisfies the Craik resonance criterion, 
namely, equal phase velocities between the fundamental plane TS and subharmonic 
oblique modes. In  that case, we indeed documented the resonant growth of the 
subharmonic mode. 

For our other two cases (150P and 180P), subharmonic resonance was also 
documented. These two clearly do not satisfy Craik’s criterion, that is, by our 
selection of spanwise wavenumber, the wave-propagation properties with respect to 
the fundamental TS mode are suitably different. Examination of the streamwise 
phase development for fundamental and subharmonic modes in these two cases 
(150P in figure 16) verified that the subharmonic mode (as well as other interacted 
modes) had reached a phase-velocity synchronization with the fundamental TS, 
independent of their spanwise wavelengths. This observation is in complete 
agreement with Herbert and not explainable by Craik’s mechanism. Calculations for 
the conditions of these two cases have recently been performed by Crouch (1988, 
Figs. 4.23 and 4.24). These show good agreement between experiment and theory in 
regard to the streamwise growth of the fundamental TS and 3-D subharmonic modes. 
In the case of the most amplified condition, the correspondence is especially good 
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even up to the point of subharmonic energy saturation. The dependence of the 
maximum subharmonic amplification on the ratio of streamwise to spanwise 
wavenumber (seen in figure 19b) was also accurately predicted (dotted) for H-type 
conditions by Bertolotti & Herbert (1985). 

7.2. Nonlinear interactions and transition to turbulence 
With the downstream growth of the subharmonic 3-D mode, we have documented 
basic changes in its character which we associate with its nonlinear development and 
transition to turbulence. These have included a movement of the subharmonic 
eigenfunction modulus maximum away from the wall to a point above the height of 
the critical layer, and an altering of the eigenfunction phase distribution from ‘wave- 
like’ to ‘structure-like’. Coincident with this was a similar change in the 
eigenfunction character of the initial fundamental wave prompting the growth of a 
new 3-D mode a t  the initial fundamental frequency, with harmonic spanwise 
wavenumber, *2/3. Other interacted modes included ($01, +p), ($a, +/3) and 

The subharmonic mode grows to a high level but eventually saturates, and beyond 
that point decays. In  this process, the modes nonlinearly phase locked with the 
subharmonic shift toward lower frequencies. These lower-frequency modes were 
traced to  broad side bands on the initial fundamental and subharmonic modes and 
higher-harmonic coherent sum and difference modes. The origin of these is 
presumably small imperfections in mode tuning produced by stochastic input from 
free-stream disturbances. This picture of the source of low-frequency components is 
consistent with the explanation given by Kachanov & Levchenko (1984). At the end 
of this stage the velocity spectrum is quite broad band, and the mean profile is more 
full indicating an increase in the viscous drag and a decrease in the shape factor. 
These characteristic changes first appear on the centreline of subharmonic lambda 
structures, and eventually progress outward in span from individual structures. 

In the process of subharmonic mode growth, the two fundamental points of 
development were the location of maximum subharmonic amplification, and 
subharmonic energy saturation. The former marked the approximate location of the 
first appearance of 3-D modes in the flow visualization records. The location of these 
depended on the initial amplitudes of the seeded modes and on their streamwise and 
spanwise wavenumbers. In the 18OP case, these two points closely coincided. This 
was found to result in extra strong nonlinear phase locking with higher-frequency 
discreet modes. 

Similarly low-frequency sum and difference interactions and subharmonic side- 
band frequencies were documented with less well controlled conditions of only 2-D 
TS forcing. In  this case these contributed to lower-frequency difference interactions 
and broad-band spectral filling a t  a more rapid rate than with the controlled 3-D 
cases. This apparently accounts for the limited maximum fluctuation level that the 
flow can sustain prior to the growth of broad-band modes in natural subharmonic 
transition seen here and by others. The maximum level of total velocity fluctuations 
in our case was only approximately one third that of the 3-D seeded cases. 

For subharmonic mode transition to turbulence, the method of ‘breakdown’ was 
found to be fundamentally different from that attributed to K-type. Most notably 
the change of phase velocity which occurred upstream of energy saturation, the high 
inflexional mean profile, the form of the y-eigenfunction phase distribution, and the 
generation of large-amplitude regular high frequencies past energy saturation, 
observed for K-type transition were not present here. For subharmonic transition, 

(0, f 2/31. 
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irregular higher-frequency components are observable in the time traces when the 
subharmonic energy is sufficiently large and nonlinear behaviour is evident. This can 
occur well upstream of subharmonic saturation and upstream of where the mean 
profile first deviates from a Blasius one. Some of these frequencies are attributable 
to sum and difference interactions with the subharmonic mode, as described earlier. 
The broad-band frequencies begin to fill the layer starting from the wall and first 
appear a t  the cross-stream centre of lambda structures. By the point of subharmonic 
energy saturation, time traces on the centreline show broad-band frequencies a t  all 
parts of the subharmonic cycle, not just on the high-velocity part as for the 
fundamental with K-type. 

The basic difference between these two forms of transition is that for subharmonic 
breakdown, the resonant interaction between two modes allows an efficient 
mechanism for intercomponent energy transfer and early spectral broadening not 
present for fundamental mode (K-type) breakdown. By this approach the breakdown 
process can be explained through a secondary instability of basic modes rather than 
through higher-order (tertiary or quartic) instabilities mechanisms often attributed 
to higher-frequency mode generation in K-type. In the scenario presented here, the 
flow does not ‘violently break down’ but rather progresses through a natural 
sequence of sum and difference interactions leading to a smooth merging to a 
turbulent state. 

8. Conclusions 
Subharmonic resonance was the mechanism for the growth of 3-D modes in a 

Blasius boundary layer. This involved an interaction between initial TS waves at  a 
fundamental frequency, and pairs of subharmonic oblique waves of equal angles and 
opposite sign. These modes were produced by a spanwise array of heating wires 
placed near the critical layer. Through software control, the spanwise wavenumbers 
of oblique modes was variable. The interaction was marked by a matching of phase 
velocities, resonant energy exchange and enhanced growth of the subharmonic mode 
leading eventually to large amplitudes and energy saturation. For different spanwise 
wavenumbers, the maximum amplification rate was in good agreement with 
predictions arising from an H-type mechanism. 

With the growth of the subharmonic mode, other nonlinear 3-D interacted modes 
were produced. Their streamwise and spanwise wavenumbers had been exper- 
imentally verified. Owing to the spatial stationarity afforded by the 3-D mode 
seeding, phase averaging brought out the coherent motions associated with the 
staggered lambda structures observed in flow visualization. The eventual saturation 
of the subharmonic mode was marked by a loss of precise phase locking between the 
subharmonic mode and higher interacted modes. This initially stemmed from 
fundamental-mode side bands which acted through sum and difference interactions 
with the subharmonic to produce low-frequency broad-band modes. Downstream, 
these modes interacted with the subharmonic to  gradually fill the spectrum. With 
low initial amplitudes, this is expected to be the chief scenario for the natural growth 
of three-dimensionality and transition to  turbulence in most boundary-layer flows. 

The authors wish to express thanks to colleagues who have especially influenced 
this work by their past discussions and frequent input, especially Mark Morkovin and 
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