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Abstract

by

Dmitriy M. Orlov

This work presents the study of the single-dielectric barrier discharge aerody-

namic plasma actuator. The physics of the plasma discharge was studied through

the time-resolved light intensity measurements of the plasma illumination. Plasma

characteristics were obtained and analyzed for a range of applied voltage ampli-

tudes and a.c. frequencies.

Based on this data, electro-static and lumped-element circuit models were

developed. The time-dependent charge distribution was used to provide boundary

conditions to the electric field equation that was used to calculate the actuator

body force vector. Numerical flow simulations were performed to study the effect

of the plasma body force on the neutral fluid. The results agreed well with the

experiments.

An application of the plasma actuators to the leading-edge separation control

on the NACA 0021 airfoil was studied numerically. The results were obtained

for a range of angles of attack for uncontrolled flow, steady and unsteady plasma

actuation. The aerodynamic stall of the airfoil was studied. Improvement in

the airfoil characteristics was observed in numerical simulations at high angles of
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attack in cases with plasma actuation. The computational results corresponded

very well with experimental observations.
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CHAPTER 1

INTRODUCTION

1.1 Background

The aerodynamic plasma actuator is a particular configuration of the Single-

Dielectric Barrier Discharge, specifically, a surface discharge. The configuration

of the plasma actuator is simple. It consists of two electrodes arranged highly

asymmetrically. One of the electrodes is exposed to the surrounding air, and

the other is totally encapsulated in a dielectric material, as shown on Figure 1.1.

Typically, the plasma actuator’s electrodes are long and thin and are arranged

span-wise on an aerodynamic surface.

When a high 5 − 20 kV peak-to-peak AC voltage at frequencies from 3 to 15

kHz is applied, a plasma discharge appears on the insulator surface above the

insulated electrode, and directed momentum is coupled into the surrounding air.

The amount of the momentum coupling is effective in substantially altering the

airflow over the actuator surface.

The plasma actuators have been successfully used in different flow control ap-

plications, such as exciting boundary layer instabilities on a sharp cone at Mach

3.5 [44], lift augmentation on a wing section [13, 14, 46, 54], low-pressure turbine

blade separation control [31–34, 41], turbine tip clearance flow control [15, 45, 74],

bluff body control [8, 73], drag reduction [35, 78], unsteady vortex generation
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Figure 1.1. The aerodynamic plasma actuator in a chord-wise section.

[48, 50, 51, 75], and airfoil leading-edge separation control [12, 52, 58, 59, 61–63].

The advantages of the plasma actuator flow control device over traditional flow

control devices are: reduced size and weight, absence of moving parts, increased

reliability, inexpensiveness, high bandwidth (quick response), reduced drag, in-

creased aerodynamic agility.

Plasma actuator’s behavior is primarily governed by the buildup of charge

on the dielectric-encapsulated electrode. When AC voltage is applied, a plasma

discharge appears on the insulator surface above the encapsulated electrode, and

directed momentum is coupled into the surrounding air. In operation, the plasma

in the discharge appears on the surface of the dielectric each half-cycle of the

applied AC voltage.

To the unaided eye, the plasma appears as a relatively uniform diffuse dis-

charge, but optical measurements of the plasma indicate that it is highly struc-

tured in both space and time. The temporal nature of the actuator indicates that

this plasma is indeed a single dielectric barrier discharge [19]. The most important
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feature of the SDBD is that it can sustain a large-volume discharge at atmospheric

pressure without the discharge collapsing into a constricted arc.

The SDBD can maintain such a discharge because the configuration is self

limiting, as shown in Figure 1.2. To maintain a SDBD discharge, an AC applied

voltage is required. Figure 1.2 (a) illustrates the half cycle of the discharge for

which the exposed electrode is more negative potential than the surface of the

dielectric, being the cathode in the discharge. In this case, assuming the potential

difference is high enough, the exposed electrode can emit electrons. Because the

discharge terminates on a dielectric surface, the build up of the surface charge

opposes the applied voltage, and the discharge shuts itself off unless the magnitude

of the applied voltage is continually increased.

The behavior of the discharge is similar on the opposite half-cycle: a positive

slope in the applied voltage is required to maintain the discharge. In this half-

cycle, the charge available to the discharge is limited to that deposited during

the previous half-cycle on the dielectric surface, which now plays the role of the

cathode, as shown in Figure 1.2 (b). This self-limiting behavior due to charge

buildup on the dielectric surface impacts the spatial and temporal structure of

the plasma.

Although the plasma is composed of charged components, it is net neutral, be-

ing created by the ionization of neutral air, as many negative electrons as positive

ions exist in the plasma. Responding to the external electric field, the electrons

move to the positive electrode and the ions to the negative, resulting in an im-

balance of charges on the edges of the plasma. The charge imbalance sets up an

electric field in the plasma opposite to that of the external applied field. The re-
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Figure 1.2. The dielectric barrier discharge is self-limiting because
charge buildup on the dielectric surface opposes the voltage applied

across the plasma, when the applied voltage is negative going (a), or the
charge transferred through the plasma is limited to that deposited on

the dielectric surface, when the voltage reverses (b).

arrangement of the charges will continue until the net electric field in the plasma

is neutralized.

The density of the positive and negative charges will be equal in the bulk of the

plasma. Only on the edges will there be a charge imbalance, due to the thermal

motion of the particles. The thickness of the regions along the edges in which the

plasma supports a net positive or negative charge density is determined by the

shielding length, or Debye length, of the plasma.

The time scale of the charge rearrangement process in the plasma is on the

order of 10−9 − 10−8 seconds (for electron temperature of 1000− 10000 K, with a

mobility velocity on the order of 105 − 106 m/s [64]). This plasma formation time

is several orders of magnitude smaller than the time during which the plasma is

producing an effect on the surrounding air.

Thus, we see, that there are three separate temporal time scales that are

relevant to the SDBD process. The shortest time scale, of the order of 10−8

seconds, is associated with the initiation of the micro-discharges across the plasma
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actuator gap leading to charge redistribution. The second time scale is related to

the operation of the plasma actuator itself. It is defined by the period of the a.c.

cycle that drives the alternating current discharge. This time scale is on the order

of 10−4 sec (for an a.c. frequency of the order of 10 kHz), which is approximately

104 times slower than the time scale of the micro-discharges. The third timescale is

the one that governs the movements of the neutral fluid responding to the plasma

actuator. This time scale is on the order of 10−2 seconds.

The four order of magnitude difference in time scales allows us to assume that

the plasma formation and charge rearrangement processes are instantaneous. This

allows us to assume that the plasma is operating in a quasi-steady regime, when

the charges are rearranged in the region, so that they cancel the external electric

field everywhere, except the small regions near the electrodes. This leads to the

quasi-DC assumption used in modeling the plasma formation and computing the

plasma body force.

The dielectric barrier discharge process provides a means for efficiently ioniz-

ing gases at atmospheric pressure that is well suited for many chemical plasma

processes. As a results it is a well studied and understood process. One of the

earliest references was in 1857 when Siemens [70] proposed a novel type of elec-

trical gas discharge, that could generate ozone from atmospheric pressure oxygen

or air. Since then, the DBDs have been widely used for different applications.

The classical Dielectric Barrier Discharge configuration utilizes planar or cylindri-

cal electrode arrangements with at least one dielectric layer placed between the

electrodes.

The discharge investigated in the present research results from activating a

model at atmospheric pressure at frequencies typically in the 1−10 kHz range and
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voltages in the several kilovolts range. There is a wide variance in the terminology

used for the discharge in literature. The names assigned to the phenomena include

atmospheric glow discharge, surface barrier discharge (SBD), dielectric barrier

discharge (DBD), Single Dielectric Barrier Discharge (SDBD) and Surface Plasma

Chemistry Process (SPCP).

Despite of considerable progress in understanding the structure and the prop-

erties of such discharges, which principally occurred in the last few decades, the

present knowledge of this subject appears to be insufficient to provide an ade-

quate quantitative theoretical description for barrier discharge behavior in air at

high (atmospheric) pressure. Although, a classic symmetric DBD has been widely

studied, asymmetric electrode arrangements such as those used in the plasma

flow control actuators have not been studied, until recently. All the studies of the

plasma actuator that were done in the past years may be divided into three major

categories: the physics of the SDBD discharge, the optimization of the plasma

actuator, and the applications.

The physics of the discharge can be studied using different techniques. Some

of this methods are more direct. These may include the electric current and

light intensity observations [19–21, 37]. The others are less direct, and help to

study the plasma actuator physics through the effects that it produces on the

ambient fluid. One of the first techniques was based on the smoke visualization

and was used to demonstrate the plasma actuator effect [60, 65]. The other

methods include the hot wire, Pitot tube and DPIV flow velocity measurements

[60, 61], acoustic [9], accelerometer [57] measurements. Kozlov et al. [38] used the

spatially resolved cross-correlation spectroscopy to make well-resolved quantitative

estimates of the electric field strength and relative electron density. A conventional
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Schlieren technique was used by Wilkinson and Konkle-Parker [77] to visualize the

flow field induced by an SDBD plasma actuator. Enloe et al. have used the laser

deflection technique to measure the air density variations near and in the plasma

region.

A thorough study of the plasma actuator physics has been performed by Enloe

et al. [19–21]. In their work, they have used the photomultiplier technique to

study the temporal and spatial structure of the plasma discharge. Through the

comparison between the electric current in the actuator and the light emission

PMT measurements it was shown that these two correlate, and that we can use

the light intensity information to study the physics of the barrier discharge. It

was also discovered that there existed a noticeable difference between the two

halves of the a.c. cycle when the applied voltage was negative-going and when

it was positive-going. It was also show experimentally that power dissipated in

the plasma actuator was increasing as the applied voltage to the power of 7/2,

P ∝ V
7/2
app , and that this functional relation was typical for this surface dielectric

barrier discharges.

The same functional dependence was observed by Post [60, 61] for the plasma

induced velocity, U ∝ V
7/2
app . Post has also shown that the plasma actuators placed

in arrays had an additive effect, and two actuators working in array create a

plasma induced jet in which momentum of two is twice the momentum from a

single actuator. This characteristic of the plasma actuator was also observed by

Forte et al. [24] in their Pitot tube and LDV measurements.

Enloe et al. have performed the studies of the atmospheric composition on

the plasma actuator efficiency [18]. The presence of oxygen in the atmosphere is

known to allow for the formation of negative ions via attachment of electrons to
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the oxygen. As their results indicate, the actuator performance directly correlates

with the fraction of the oxygen in the atmosphere, and it’s efficiency increases

linearly with the percentage of oxygen.

Their has been a recent attempt by Anderson et al. to measure the dependence

of the plasma actuator effects on the air humidity [7]. Their results showed that

the plasma actuator performance did not change with the increase of the relative

air humidity. This is most probably due to the fact that a very small range of

humidities was checked (40-60 %). It also should be mentioned that the absolute

humidity is more important for the plasma actuator operation than the relative

humidity.

These studies of the plasma actuator had two major goals: one was to under-

stand the physics of the single dielectric barrier discharge, and the other was to

optimize the plasma actuator to increase its effectiveness.

The first major attempts on the plasma actuator optimization were done by

Post [61] and Enloe et al. [20, 21]. They have shown the vital role played by

the asymmetry. This was shown by covering the open electrode by a dielectric

layer. They have also studied the effects of the geometry on the performance of

the plasma actuator. It was discovered that the width of the lower electrode is

very important, and that this covered electrode should be sufficiently wide for the

plasma formation. It was also shown that a small gap or overlap of the electrodes

does not change the performance characteristics of the actuator, but affects the

stability of the plasma discharge ignition. The slight overlap makes the plasma

ignition more uniform.

The other important characteristic that affects the performance of the plasma

actuator is the form of the applied voltage signal. As the physics of the SDB

8



discharge suggested, the formation of the plasma is directly related to the voltage

change across the actuator. The steeper and longer the slope of the voltage signal,

dV
dt

, the more plasma is formed on the surface of the dielectric, the higher is the

induced flow velocity by the actuator. Post [61] tested different forms of the input

a.c. signal and found the best results when the applied voltage had the form of

the “positive sawtooth”.

As it was already mentioned, all the measurement techniques described above

provide plenty of indirect information about the plasma actuators. But these

experimental techniques do not allow us to obtain directly the information about

the distribution of electric field and electron density along the discharge axis.

Therefore, an important role in the investigation of such discharges is played by

numerical modeling.

One of the first models was developed by Massines et al. [43]. The one-

dimensional model was based on a simultaneous solution of the continuity equa-

tions for charged and excited particles, and the Poisson equation. The study

allowed one to to obtain spatial-temporal distributions for plasmas. It has been

shown that the processes in a discharge volume are characterized by such values

as mobility, diffusion coefficient, and ionization rate constant.

Research, related to the present work, has been done by Paulus et al. [55].

A particle-in-cell simulation was used to study the time-dependent evolution of

the potential and the electrical field surrounding two-dimensional objects during

a high voltage pulse. The numerical procedure was based on the solution of Pois-

son’s equation on a grid in a domain containing an L-shaped electrode, and the

determination of the movement of the particles through the grid. The simulation

showed that the charged particles moved toward the regions of high electric po-
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tential, creating high electric strength fields near the electrode’s edges. It also

proved that the plasma builds up on a microsecond time scale.

There was also an attempt to model the plasma actuator effects without mod-

eling the discharge process using an approximation model. A first-order approach

to modeling the effect of plasma actuators using the potential flow model was de-

veloped by Hall et al. [28, 29]. In this model, the plasma actuator was represented

by a doublet and incorporated into a Smith-Hess panel code. Hall has shown [29]

that after the calibration of the doublet strength, it could duplicate experimental

data for the change in airfoil lift characteristics due to applying plasma actuators.

The development of this model was driven by the experimental observations of

the similar streamline patternsproduced by the plasma actuator on the surface of

a flat plate in a uniform flow and those of an inversed doublet at the wall.

Enloe et al. [20, 21] provided a formulation for the body force produced by the

SDBD plasma actuator on the ambient air. Another model for the plasma body

force was presented by Roth et al. [65]. This model is based on the derivation of

the forces in gaseous dielectrics by Landau [39]. In this model, the body force is

proportional to the gradient of the squared electric field:

Fb =
d

dx

(

1

2
ε0E

2

)

(1.1)

As it has been shown by Enloe et al. [19] this model for the body force does

not account for the presence of the charged particles. For example, in the absence

of charged particles the body force calculated using equation (1.1) is not zero,

which is an obvious error. It has been also shown by Enloe et al. that the body

force given by equation (1.1) and in form derived in the present work are not

equal, except in the special case of a one-dimensional condition where ~E = Exî
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and Ey = Ez = 0, and ∂/∂y = ∂/∂z = 0. This special case is not relevant to our

aerodynamic applications.

Another model for the body force was given by Shyy et al. [69]. The time-

averaged body force was calculated as

Ftave = ϑαρcec∆tEδ (1.2)

where ϑ is the frequency of of the applied voltage, α is a factor to account for the

collision efficiency, ρc is the charge density, ec is the charge of electron, ∆t is the

time during which the plasma discharge takes place, E is the electric field, and δ

is the Dirac delta function.

Shyy et al. varied the parameters related to the electrode operation, including

the voltage, frequency, and free stream speed to investigate the characteristics of

the plasma-induced flow and the heat transfer characteristics. It was shown based

on their model that the induced flow velocities and heat flux vary proportionally

with the applied frequency and voltage.

One of the largest disadvantages of their model lied in the electric field formu-

lation that was based on an assumption that electric field strength E decreased

linearly as one moved away from the inner edge of the electrodes. This assumption

was not consistent with the physics of the discharge process, as recent measure-

ments have shown [49].

Suzen et al. [71, 72] utilized the electrostatic model with the exponential

weighting described in this thesis to compute the plasma body force using Enloe

formulation [20, 21]. In their work, they proposed to split the electrostatic equa-

tions into two parts: the first one is due to the external electric field, and the

second part is due to the electric field created by the charged particles. This is
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making the problem unnecessarily overcomplicated because it is known that the

electric fields can be superimposed. This idea is used later in this thesis.

On the other hand, there have been numerous models developed for dielectric

barrier discharges in air that include very complicate chemistry. These models

usually include 20−30 reaction equations with different reaction times and energy

outputs. These equations account for electron, ion-neutral, and neutral-neutral

reactions in different gases that are present in the air [26, 27, 38, 42, 53].

Mostly these models were developed for a simple one-dimensional dielectric

barrier discharge due to need of the vast computational resources. Recently, Font

et al. [22, 23] utilized these ideas to model the plasma discharge in the asymmetric

plasma actuator. In their model they included nitrogen and oxygen reactions

based on the experimental results of Enloe et al. [18]. With this model, Font was

able to show the propagation of a single streamer from the bare electrode to the

dielectric surface and back. Due to the fact that the complexity of the problem

requires significant computational power, modeling of the whole a.c. cycle is still

an open issue.

There also exists a group of simplified models in which the chemical reactions

are not considered, but the gas is still considered as a mixture of ions, electrons and

neutral molecules. These models were first derived for a simple one-dimensional

discharge [66, 68], and later extended to two-dimensional dielectric barrier dis-

charges [25, 56, 67].

Likhanskii et al. [40] modeled the weakly ionized air plasma as a four-fluid

mixture of neutral molecules, electrons, and positive and negative ions, including

ionization and recombination processes. Their simulations show a large impor-

tance of the presence of negative ions in the air. Likhanskii also points to the
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leading role of charging the dielectric surface by electrons in the cathode phase

which is critical, acting as a harpoon pulling positive ions forward and accelerating

the gas in the anode phase.

Although these models usually give results which precisely describe all of the

different processes involved in the plasma discharge, they are very time-consuming

and require significant computer resources. Such calculations were either per-

formed for simple one-dimensional symmetric domains, that are relevant to indus-

trial plasma processes, or for a single streamer propagation in a two-dimensional

case relevant to the plasma actuator geometry. Estimates of the computer re-

sources needed for these simulations in air at high pressure are significant. Such

simulations are not suitable as design tools used in the itterative optimization of

the plasma actuators and for their use in applications.

1.2 Objectives

Given this background into the SDBD plasma actuator, the objectives of this

work are the following:

1. Develop models for Single Dielectric Barrier Discharge plasma actuators that

contain the essential physic, but are computationally efficient enough to be

used in the design and optimization of flow control applications.

2. Derive the body force effect based on the SDBD models that ultimately does

not require emperically determined coefficients.

3. Using the model, investigate various parameters such as voltage amplitude,

frequency, and dielectric properties on the body force and power dissipated

to seek optimum designs of plasma actuators.
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4. Incorporate the space-time dependent body force into a numerical flow solver

to determine the effect the actuators have on the neutral flow.

5. Utilize the flow solver in a practical application of leading-edge separation

control and compare the simulation to an equivalent experiment.
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CHAPTER 2

PHYSICAL PROPERTIES OF PLASMA ACTUATOR.

Previous experiments by Enloe et al. [20] have shown that the bulk current

across the electrodes of a SDBD plasma actuator correlates with the light emission

of the plasma. Therefore it is useful to study the space-time development of

the light illumination in order to provide data that can be used in the physical

modeling of the SDBD process. To accomplish this, a TSI Model 9162 photo-

multiplier tube was utilized to measure the plasma light emission from an actuator.

The experimental setup is illustrated in Figure 2.1, and the schematic of the

electrodes arrangement relative to the photomultiplier is shown in Figure 2.2.

The photo-multiplier tube (PMT) used a double-slit optical tube in order to focus

on a narrow slit of the ionized gas. The slit was aligned to be parallel to the edge of

the exposed electrode. This provided a narrow view in the direction perpendicular

to that at which the plasma sweeps out over the encapsulated electrode. The

accuracy of the spatial measurements was 0.5 mm.

A representative time trace of the PMT output is shown in Figure 2.3 (c).

Also shown are the comparable input voltage and measured bulk current time

series acquired over the same time period. The current was measured by Pearson

Current Monitor Model 2100 inductive current pickup that was placed around the

wire lead to one of the electrodes. The response time of the inductive current

pickup was 20 nanoseconds. The voltage was measured with a high voltage probe
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Figure 2.1. Experimental setup used in measuring plasma light emission
for SDBD model validation.
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Figure 2.2. Schematic of experimental setup used in measuring plasma
light emission.

that was attached to one of the electrode leads. Both had frequency response that

was much higher than the a.c. frequency (5 kHz) used in the experiment.

The narrow spikes in the current and PMT traces correspond to the part

of the cycle when the plasma is present. These are narrow because they are

dominated by the short-time-scale micro-discharges. These appear in both the

current through the electrodes and the PMT output which is proportional to light

intensity. Comparing the two indicates that the actuator current and plasma light

emission are perfectly correlated, as had been previously shown by Enloe et al.

[20].

The plasma ignites and extinguishes twice in the a.c. period. The initiation of

the ionization occurs when the potential difference between the electrodes exceeds

a minimum threshold. When this occurs, the exposed surface of the dielectric

becomes a “virtual electrode” on which charge builds up. When the charge builds
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Figure 2.3. Representative voltage (a), current (b) and PMT output (c)
time series for SDBD plasma actuator.
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to a point where the potential difference between it and the exposed electrode is

below the minimum to cause the ionization, the plasma extinguishes. This is the

self-limiting character of the DBD process. We can observe this happening during

both halves of the a.c. cycle.

We note that the current and the light intensity are different between the

two halves of the a.c. cycle. The portion where the amplitude of the “spikes” is

smaller is during that part of the cycle when the electrons that were deposited on

the dielectric surface are then moving back to the bare electrode. This process

is not as efficient so that there are fewer electrons to collide with ions and the

current and the light intensity are weaker. In other experiments, by Enloe et al.

[20], the bare electrode was also covered by a dielectric layer, a so-called Double

Dielectric (DDBD), and the current amplitude associated with the ionization was

completely symmetric in the a.c. cycle.

A comparison will be made later to the current time series from the lumped-

element circuit model. The lumped-element circuit model, described in Chapter

4, simulates the charge and discharge occurring on the middle (msec) time scale

that is representative of the body force. Therefore to compare this with the

experimental current or PMT time traces, we draw a smooth curve that represents

the envelope of the peaks of the narrow spikes caused by the micro-discharges. If

one does this, the current traces from the model show similar character namely,

a comparable phase shift with respect to the input voltage time series, plasma

igniting and extinguishing twice in the a.c. period, and the non-equal current

amplitudes between the two events.

The envelope of the amplitudes of the narrow spikes can be obtained from the

experiment by taking multiple realizations that are phase locked with the input
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Figure 2.4. Space-time variation of the measured plasma light emission
for SDBD plasma actuator corresponding to one period, T , of the input

a.c. cycle.

voltage a.c. cycle. Because the micro-discharges are random in time, they occur

at different times during the plasma generation portion of the cycle. Therefore

when an average of many cycles is accumulated, the narrow spikes fill the space

to indicate the maximum amplitude envelope. This has been done while viewing

different slices of the plasma at different distances from the overlap junction of

the exposed and encapsulated electrodes. The result is shown in Figure 2.4.

Figure 2.4 shows the space-time variation of plasma light emission for one pe-

riod of the a.c. cycle. The light emission has been normalized by its maximum

value in the cycle. The time axis corresponds to the a.c. period of the input volt-

age. The position axis refers to the location over the encapsulated electrode, with
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Figure 2.5. Contour lines of space-time variation of the measured plasma
light emission for SDBD plasma actuator corresponding to one period,

T , of the input a.c. cycle.

zero corresponding to the the overlap junction of the exposed and encapsulated

electrodes.

The space-time character of the plasma formation over the actuator has a

number of interesting features. For example, there is a sharp peak at the time

of ignition. This occurs near the overlap junction. The plasma then sweeps out

from the junction to cover a portion of the encapsulated electrode. As the plasma

sweeps out, its light emission is less intense. The estimates are that the intensity

decreases exponentially from the junction. This leads to the exponential weighting
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Figure 2.6. Plasma sweep velocity as function of applied voltage
amplitude.

we have used in estimating the spatial dependence of the body force in our DNS

simulations [47, 48, 76].

Of particular interest is the velocity with which the plasma sweeps over the

encapsulated electrode. This can be determined from the slope, d(position)/dt, of

the left edge of the light-emission surfaces. This is shown in Figure 2.6 for a range

of applied voltage amplitudes at a fixed a.c. frequency (5 kHz). The result of this

work agrees with the previous result of Enloe et al. [20]. Similar information can

be determined from the lumped element model that will be discussed later.

Another interesting characteristic that we can obtain from the light emission

space-time surface is the maximum extent of the plasma. It is shown in Figure 2.7
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Figure 2.7. Maximum plasma extent as function of applied voltage
amplitude.

as function of the applied voltage amplitude along with the previously published

results of Enloe et al. [20]. It was observed to depend strongly on the applied

voltage magnitude. This result is very important for the design of the plasma

actuator. On one hand, the plasma does not extend beyond the end of the encap-

sulated electrode, and on the other hand, at low applied voltage amplitudes the

plasma does not extend far, and covers only part of the covered electrode.

A set of experiments has been run at the constant applied voltage amplitude

for a range of a.c. frequencies to find the dependence of the SDBD discharge char-

acteristics on the applied frequency. For these experiments, the voltage across the

plasma actuator was kept at Vapp = 5 kV, and the a.c. frequency was changed in
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the range of 5 − 11 kHz. The contour lines of the measured plasma light emis-

sion are shown in Figures 2.8 - 2.14. results from these contours are presented

in terms of the propagation velocity and plasma extent in Figures 2.15 and 2.16,

respectively. We notice, that the maximum extent of the plasma does not change

with frequency, as shown in Figure 2.16. This also means that the plasma prop-

agation velocity would increase with a.c. frequency because at high frequencies,

the plasma has less time during the a.c. period to expand to the same extent as

at low frequency. These results are shown in Figure 2.15.

A set of experiments has been run with the double-slit extension tube removed

from the PMT to collect all of the light emitted by the SDBD. The results for a

range of a.c. frequencies at a fixed voltage (5 kV) are shown in Figure 2.17. The

results for a range of applied voltage amplitudes at a fixed a.c. frequency (5 kHz)

are shown in Figure 2.18. The light intensity on this plot is represented by the

PMT signal amplitude generated in the photomultiplier.

Figure 2.17 shows the total light emission from an SDBD plasma discharge in

the whole a.c. period. It may be noticed that there is a maximum of the total

light emission at 6 - 7 kHz. This may be assumed to be the optimal frequency for

the plasma actuator operation.

Figure 2.18 shows the total amount of the emitted light in the whole a.c. period

and the light in the first and second halves separately as a function of the applied

a.c. voltage (peak-to-peak). It is clear that the second half of the a.c. period

has illumination levels that are lower than the other half period across the full

range of voltages examined. Drawn for reference is the line corresponding to V
7/2
app .

Previous measurements by Enloe et al. [20] had shown a proportionality of the

thrust produced by a plasma actuator as V
7/2
app . Later, Post [61] observed that the

24



0 2.5 5 7.5

0

1

2

Vapp = 5 kV,  fa.c. = 5 kHz

x (mm)

t /
 T

a.
c.

Figure 2.8. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 5 kHz.
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Figure 2.9. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 6 kHz.
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Figure 2.10. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 7 kHz.
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Figure 2.11. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 8 kHz.
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Figure 2.12. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 9 kHz.
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Figure 2.13. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 10 kHz.

30



0 2.5 5 7.5
0

1

2

3

4

Vapp = 5 kV,  fa.c. = 11 kHz

x (mm)

t /
 T

a.
c

Figure 2.14. Space-time variation of the measured plasma light emission
for SDBD plasma actuator at Vapp = 5 kV and fa.c. = 11 kHz.
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Figure 2.15. Plasma sweep velocity as function of applied a.c. frequency.
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Figure 2.16. Maximum extent of the plasma as function of applied a.c.
frequency.
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Figure 2.17. Total light emission for SDBD plasma actuator as function
of applied a.c. frequency.
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Figure 2.18. Total light intensity from the plasma actuator as function
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velocity maximum produced by a plasma actuator also was proportional to V
7/2
app .

The light intensity change with voltage in Figure 2.18 indicates that at least up

to a voltage of approximately 7 kV, the variation is proportional to V
7/2
app . The

deviation at the higher voltage may be the result of limited size of the covered

electrode which is insufficient to hold the charge build-up in the a.c. cycle.

Since the light intensity had been shown to correlate with current, this would

indicate that the dissipated power of the plasma has the same proportionality

to the voltage. Again a comparison of the plasma model behavior described in

Chapter 4 to these results presented here will be made later in the thesis.
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CHAPTER 3

ELECTRO-STATIC MODEL

3.1 Mathematical and Numerical Formulation

The first approach to explain the behavior of the plasma actuator is the electro-

static model, described in this chapter. It is based on the assumption of different

time scales that play different roles in the physics of the plasma actuator.

The characteristic velocities of the fluid transport of interest are on the order

of 10-100 m/s. The process of plasma formation is characterized by the electron

velocity in the plasma which is of the order of 105-106 m/s based on an electron

temperature of 1000-10000 K [64]. This significant difference in the characteristic

velocity time scales allows one to decouple the problem into separate parts asso-

ciated with (1) the plasma body force formation and (2) the fluid flow response.

In this chapter, the governing equations for the electro-static problem will be

formulated first. The equation for the plasma body force will then be derived

based on the solution of the electro-statics. Finally, the equations of the flow

problem will be presented.

The equations will be solved numerically in this chapter. The other part in

this chapter deals with the numerical formulation and solution approach.
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3.1.1 Electro-static Model

3.1.1.1 Governing equations for electro-static problem and body force

The plasma is an ionized quasi-neutral gas. In the general case, the system

can be represented by a set of four Maxwell’s equations given by

∮

L

~Hd~l =

∫

S

(

~j +
∂ ~D

∂t

)

d~S, (3.1)

∮

L

~Ed~l = −

∫

∂ ~B

∂t
d~S,

∮

(

~Dd~S
)

=

∫

ρcdV,
∮

(

~Bd~S
)

= 0,

where ~H is the magnetic field strength, ~B is the magnetic induction, ~E is the

electric field strength, ~D is the electric induction, ~j is the electric current, and

ρc is the charge density, while L is the contour of integration, S is the bounding

surface of the volume V . These Maxwell’s equations (3.1) can be rewritten in

differential form as

curl ~H = ~j +
∂ ~D

∂t
, (3.2)

curl ~E = −
∂ ~B

∂t
,

div ~D = ρc,

div ~B = 0.

It can be assumed that the charges in the plasma have sufficient amount of time

to redistribute themselves in the region and the whole system is quasi-steady. In
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this case, the electric current, ~j, the magnetic field, ~H, and the magnetic induction,

~B, are all equal to zero. In addition the time derivatives of the electric induction,

∂ ~D
∂t

, and the magnetic induction, ∂ ~B
∂t

are equal to zero. With this simplification,

only one of the Maxwell’s equations is left (3.2) to describe the given system of

charges with charge density ρc, that is

div ~D = ρc. (3.3)

The vector of electric induction, ~D, is related to a vector of electric field

strength, ~E, through the dielectric coefficient, ε, as

~D = ε ~E. (3.4)

The dielectric coefficient is a general property of the media. By definition, if an

electric potential, ϕ, is known as a function of space coordinates then it is possible

to compute an electric field strength, ~E, by

~E = −~∇ϕ. (3.5)

Substituting equations (3.5) and (3.4) into equation 3.3 gives the following

∇(ε∇ϕ) = −
ρc

ε0

. (3.6)

To examine the behavior of the charges in the electric field, we consider a

simple case when the electric field is acting along some direction s only. Let us

suppose that the electric field is acting on the charges as shown on Figure 3.1.

In this case, the equation of the motion of the plasma gas can be written as
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Figure 3.1. One-dimensional electric field acting on the charges.

mn

[

∂ ~up

∂t
+
(

~u · ~∇
)

~u

]

s

= qn ~E −
∂p

∂s
, (3.7)

where m is the mass of the ion particle, n is the number of the particles in the

plasma gas, up is the velocity of the plasma gas, q is the charge of the particle,

and p is the pressure of the plasma gas. Ignoring the diffusion processes and

assuming that the system is in steady state ( ∂
∂t

= 0), and that velocity gradients

can be ignored, the left side of the equation (3.7) vanishes. Substituting for

pressure the gradient ∇p which for an isothermal gas, ∇p = kbT∇n, where kb is

the Boltzmann’s constant, T is the temperature of the plasma gas, and n is the

number of the particles in the plasma gas, we obtain

qnE = kbT
∂n

∂s
. (3.8)

For the plasma under consideration, the ions lose only one electron and have

the charge q = −e, where e is the charge of the electron. Applying equation (3.5)

to the one-dimensional electric field, E = − ∂ϕ
∂s

, equation (3.8) becomes

e
∂ϕ

∂s
=
kbT

n

∂n

∂s
. (3.9)
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The solution of equation 3.9 is the Boltzmann relation

n = n0 exp

(

eϕ

kbT

)

, (3.10)

where n0 is the number of the molecules that are separated into ions and electrons

by the electric field, which is the so called background plasma density.

It can be seen from equation (3.10) that the charged particles have a larger

concentration in the regions of the high electric potential. According to this

equation, their density decays exponentially. Without loss of generality, these

results can be extended to the two-dimensional case.

The net charge density at any point in plasma is defined as the difference

between the net positive charge produced by ions and the net negative charge of

electrons. The difference can be related to the local electric potential, ϕ, by the

Boltzmann relation (3.10). Assuming a quasi-steady state with a time scale long

enough for the charges to redistribute themselves, we obtain

ρc = e (ni − ne) ≈ −en0

(

eϕ

kTi
+

eϕ

kTe

)

, (3.11)

where Ti and Te are temperatures of ion and electron species, respectively.

Substituting the equation for the charge density (3.11) into the Maxwell’s

equation (3.6), leads to the electro-static equation for this problem namely,

∇(ε∇ϕ) =
1

λ2
D

ϕ, (3.12)
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where λD is called the Debye length, which is the characteristic length for electro-

static shielding in a plasma. The Debye length is defined as

λD =

[

e2n0

ε0

(

1

kTi

+
1

kTe

)]

−
1

2

. (3.13)

The free charges in the plasma are shielded out in a distance given by the

Debye length (3.13). The Coulomb force between the particles in a plasma (in-

teraction between oppositely charged particles) is thus shielded by the mobility

of free charges, and so is reduced in range from ∞ to ∼ λD. The higher the

temperature of the particles, the more mobility they have, and the greater is their

range. When the density ne of electrons is high, the Debye length shrinks.

The Debye shielding is valid if there are enough particles in the charge cloud.

The criteria for this is the dimensionless plasma parameter, Λ, that characterizes

unmagnetized plasma systems, defined as

Λ =
4

3
πλ3

Dne. (3.14)

If the plasma parameter is

Λ � 1, (3.15)

then it means that the plasma is weakly-coupled, and the Debye shielding is valid.

For the plasmas of consideration, the Debye length is approximately 0.00017 m

and the density of the charged particles is on the order of 1016 particles/m3 [64].

In this case, the criteria is Λ = 3.5 · 105. Therefore the equation (3.15) is satisfied,

indicating that the assumption of the Debye shielding is true.
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The equation of electro-statics is solved in the domain shown in Figure 3.3.

The value of the electric potential is set on the electrodes

ϕ |electrodes= ±ϕ0. (3.16)

The boundary conditions on the outer boundaries model the condition at the

“infinity”, where the electric potential, ϕ, is equal to zero

ϕ |outer boundary= 0. (3.17)

The solution of the electro-static equation (3.12) is the electric potential ϕ.

The electric field strength E is related to ϕ through Eq.(3.5). If we assume a

value for λD, then ρc can be found as

ρc = −
ε0

λ2
D

ϕ. (3.18)

Because there is an electric field in the plasma in regions where there is also a

net charge density, there will be a force on plasma. The electric force acting on a

single charge is given by Lorentz equation,

~f ∗

b = q ~E. (3.19)

Therefore the force density that acts on a continuous system of charges with charge

density ρc, can be written as

~f ∗

b = ρc
~E = −

(

ε0

λ2
D

)

ϕ~E. (3.20)
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This body force (3.20) is a body force per volume of plasma. This body force is

the basis of the plasma actuator effect on neutral air. We note that it is a vector

which acts in the vector direction of the electric field.

3.1.1.2 Numerical Formulation of Electro-static Problem

The governing equations for the electro-static problem (3.12) are discretized

using the standard centered second order scheme.

We rewrite the governing equation (3.12) as

ε∇2ϕ+ ∇ε∇ϕ =
1

λ2
D

ϕ. (3.21)

A standard definition of gradient (~∇) function is

~∇ =
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂, (3.22)

which gives us the following form of the governing equation:

ε
∂2ϕ

∂x2
+ ε

∂2ϕ

∂y2
+
∂ε

∂x

∂ϕ

∂x
+
∂ε

∂y

∂ϕ

∂y
=

1

λ2
D

ϕ. (3.23)

To solve the governing equation in a mathematical plane on a uniform grid

(ξ, η), the coordinate transformation is applied

ξ = ξ(x), (3.24)

η = η(y).
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In this case, the governing equation becomes

εξ2
x

∂2ϕ

∂ξ2
+ εη2

y

∂2ϕ

∂η2
+

(

εξxx +
∂ε

∂ξ
ξ2
x

)

∂ϕ

∂ξ
+

(

εηyy +
∂ε

∂η
η2

y

)

∂ϕ

∂η
=

1

λ2
D

ϕ. (3.25)

For an approximation of the first and second derivatives on a uniform grid we

use centered differences:

∂ϕ

∂ξ
=

ϕi+1,j − ϕi−1,j

2∆ξ
, (3.26)

∂ϕ

∂η
=

ϕi,j+1 − ϕi,j−1

2∆η
,

∂2ϕ

∂ξ2
=

ϕi+1,j − 2ϕi,j + ϕi−1,j

∆ξ2
,

∂2ϕ

∂η2
=

ϕi,j+1 − 2ϕi,j + ϕi,j−1

∆η2
.

Finally, we get an equation in the form:

Ai+1,jϕi+1,j +Bi−1,jϕi−1,j + Ci,j+1ϕi,j+1 +Di,j−1ϕi,j−1 = Ei,jϕi,j, (3.27)

where numerical coefficients A, B, C, D and E are the known coefficients of the

grid transformation and can be computed at every point of the domain before the
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iteration procedure:

A =
εξ2

x

∆ξ2
+
εξxx

2∆ξ
+

∂ε
∂ξ
ξ2
x

2∆ξ
, (3.28)

B =
εξ2

x

∆ξ2
−
εξxx

2∆ξ
−

∂ε
∂ξ
ξ2
x

2∆ξ
, (3.29)

C =
εη2

y

∆η2
+
εηyy

2∆η
+

∂ε
∂η
η2

y

2∆η
, (3.30)

D =
εη2

y

∆η2
−
εηyy

2∆η
−

∂ε
∂η
η2

y

2∆η
, (3.31)

E = 2
εξ2

x

∆ξ2
+ 2

εη2
y

∆η2
+

1

λ2
D

. (3.32)

The boundary conditions for this problem, given by Equations 3.16 and 3.17,

become

ϕ |ξ=(−1,0),η=0= 1,

ϕ |ξ=(0,1),η=0= −1,

ϕ |ξ=−2,η=(−2,2)= 0,

ϕ |ξ=2,η=(−2,2)= 0, (3.33)

ϕ |ξ=(−2,2),η=−2= 0,

ϕ |ξ=(−2,2),η=2= 0,

The equation (3.27) is then solved using the standard point Gauss-Seidel proce-

dure.
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3.1.2 Flow Problem

3.1.2.1 Governing Equations for Flow Problem

The governing equations for the fluid flow problem that we have selected are

the unsteady 2-D Navier-Stokes equations in primitive variables. In dimensional

form these are given by

u∗t + u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −

1

ρ

∂p∗

∂x∗
+ ν

(

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)

+ f
(x)∗
b , (3.34)

v∗t + u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −

1

ρ

∂p∗

∂y∗
+ ν

(

∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)

+ f
(y)∗
b ,

where x and y are the Cartesian coordinates and (∗) denotes dimensional terms,

and f
(x)∗
b and f

(y)∗
b are components of the body force in the x and y directions

respectively. The body force, ~f ∗

b , comes into the equations on the right hand side

as a solution of electro-static problem, point by point.

We define the stream function, ψ, as

u∗ =
∂ψ∗

∂y∗
, (3.35)

v∗ = −
∂ψ∗

∂x∗
,

and the vorticity, ω, as

~ω∗ = ~∇ · ~V ∗ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

∂
∂x∗

∂
∂y∗

∂
∂z∗

u∗ v∗ w∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂v∗

∂x∗
−
∂u∗

∂y∗

)

~k, (3.36)

ω∗ = ω∗

z =
∂v∗

∂x∗
−
∂u∗

∂y
=
∂2ψ∗

∂x∗2
+
∂2ψ∗

∂y∗2
.
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Transforming the governing equations (3.34) into the stream function-vorticity

form, we obtain

∂ω∗

∂t∗
+
∂ψ∗

∂y∗
∂ω∗

∂x∗
+
∂ψ∗

∂x∗
∂ω∗

∂y∗
= ν

(

∂2ω∗

∂x∗2
+
∂2ω∗

∂y∗2

)

+
∂f

(x)∗
b

∂y∗
−
∂f

(y)∗
b

∂x∗
,

∂2ψ∗

∂x∗2
+
∂2ψ∗

∂y∗2
= −ω∗. (3.37)

We nondimensionalize it using the free stream velocity, U∞, and characteristic

length, L, as

x =
x∗

L
, y =

y∗

L
, t =

t∗

L/U∞

,

ω =
U∞

L
ω∗, ψ = LU∞ψ

∗, (3.38)

f (x) = f
(x)∗
b

L

U2
∞

, f (y) = f
(y)∗
b

L

U2
∞

.

Finally, we obtain the stream function equation in nondimensional form,

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (3.39)

and the vorticity equation,

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
=

1

Re

(

∂2ω

∂x2
+
∂2ω

∂y2

)

+
∂f (x)

∂y
−
∂f (y)

∂x
. (3.40)

These equations are discretized and solved numerically.

3.1.2.2 Boundary Conditions

The boundary condition on the stream function at the solid boundary is given

by equation (3.52). Figure 3.2 shows the computational domain with for rigid
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Figure 3.2. Rectangular computational domain with solid boundaries.

boundaries A, B, C, and D. In this section, the boundary conditions will be formu-

lated for the boundary A, and this result will be extended to the other boundaries

at B, C, and D.

Considering equation (3.39) for the stream function at point (1, j), then

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

1,j

= −ω1,j . (3.41)

Along the surface, the stream function is constant, and its value is specified as

ψ1,j = 0. Then, along A,

∂2ψ

∂y2
|1,j= 0, (3.42)

and equation (3.41) is then reduced to

∂2ψ

∂x2
|1,j= −ω1,j . (3.43)
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To obtain an expression for the second-order derivative in the equation above,

we utilize a Taylor series expansion

ψ2,j = ψ1,j +
∂ψ

∂x
|1,j ∆x +

∂2ψ

∂x2
|1,j

(∆x)2

2
+ · · · (3.44)

Therefore along boundary A

v1,j = −
∂ψ

∂x
|1,j= 0. (3.45)

Therefore, the stream function at the point just above surface A is

ψ2,j = ψ1,j +
∂2ψ

∂x2
|1,j

(∆x)2

2
+O(∆x)3, (3.46)

from which

∂2ψ

∂x2
|1,j=

2(ψ2,j − ψ1,j)

(∆x)2
+O(∆x). (3.47)

Substitution of equation (3.47) into equation (3.43) yields an expression for the

vorticity at the surface A which is

ω1,j =
2(ψ1,j − ψ2,j)

(∆x)2
. (3.48)

A similar procedure is used to derive the boundary conditions at boundaries

B, C, and D. The appropriate expressions are, respectively,

ωIM,j = −
∂2ψ

∂x2
|IM,j=

2(ψIM,j − ψIMM1,j)

(∆x)2
,

ωi,1 = −
∂2ψ

∂y2
|i,1=

2(ψi,1 − ψi,2)

(∆y)2
, (3.49)

ωi,JM = −
∂2ψ

∂y2
|i,JM=

2(ψi,JM − ψi,JMM1)

(∆y)2
.
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As it was shown in [6], the first-order expression for ωi,1 often gives better

results than higher-order expressions. Although higher order implementation of

the boundary conditions in general will increase the accuracy of the solution, they

often cause instabilities in high Reynolds number flows. Therefore we have elected

to use the first-order expression given by equations 3.47 and 3.49.

3.1.2.3 Model Problem

Following the experiments by Post [61], in which plasma actuators were located

on an inner surface of a closed box, we consider the flow in a closed box with no

slip and no penetration conditions on all walls:

u∗wall = 0, (3.50)

v∗wall = 0.

After nondimensionalization, the boundary conditions become

uwall = 0, (3.51)

vwall = 0.

For the previously introduced stream function (3.35), the boundary conditions

for the stream function on the rigid walls is

ψ = Const = 0, (3.52)
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and from the definition of the stream function it follows that on the walls,

∂ψ

∂y
= 0, (3.53)

∂ψ

∂x
= 0,

which can be written in a short form as

∂ψ

∂~n
= 0, (3.54)

where ~n is a vector, normal to the wall.

The vorticity on the walls is computed numerically using ω and ψ values at

interior points according to equations (3.48) and (3.49). The governing equations

are temporal and therefore require initial conditions. The initial conditions for

the model problem will be discussed in Section 3.3.

3.1.2.4 Numerical Formulation of Flow Problem

The vorticity transport equation (3.40) is discretized using Forward Time Cen-

tral Space method. In this method the time derivative is approximated by a

first-order forward difference expression whereas second-order central difference

relations are used for the spatial derivatives.

For correct modeling of the convective terms, the use of an upwind differenc-

ing scheme is more appropriate [30]. Using the conservative form of the vorticity

transport equation, the convective terms are approximated with forward and back-

ward first-order differences on the nonuniform grid, while the diffusive terms are
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approximated with second-order centered differences:

ωn+1
i,j − ωn

i,j

∆t
+

1

2
(1 − εx)

ui+1,jωi+1,j − ui,jωi,j

xi+1 − xi
+

1

2
(1 + εx)

ui,jωi,j − ui−1,jωi−1,j

xi − xi−1

+
1

2
(1 − εy)

vi,j+1ωi,j+1 − vi,jωi,j

yj+1 − yj
+

1

2
(1 + εy)

vi,jωi,j − vi,j−1ωi,j−1

yj − yj−1

=
1

Re

2

(xi − xi−1)2(αx
i + 1)

[

ωi−1,j − ωi,j

(

1

αx
i

+ 1

)

+ ωi+1,j

(

1

αx
i

)]

+
1

Re

2

(yj − yj−1)2(αy
j + 1)

[

ωi,j−1 − ωi,j

(

1

αy
j

+ 1

)

+ ωi,j+1

(

1

αy
j

)]

+
fx

i,j+1 − fx
i,j−1

yj+1 − yj−1

−
f y

i−1,j − f y
i+1,j

xi+1 − xi−1

, (3.55)

where αx
i = xi+1−xi

xi−xi−1
and αy

j =
yj+1−yj

yj−yj−1
.

If u is positive, a backward approximation must be utilized. Thus, εx is set

equal to one. If u is negative, a forward approximation is used and therefore

εx is set equal to −1. The same analogy is applied to v and the corresponding

coefficient εy. The upwind formulation allows the information to be convected

only to the points in the flow direction and, therefore, more appropriately models

the physics of the problem.

The stream function equation that is given by equation (3.39) is classified as

an elliptic equation. The point Gauss-Seidel formulation for this equation gives

ψk+1
i,j =

1

2(1 + β2)

[

(∆x)2ωk
i,j + ψi+1,j

k + ψi−1,j
k+1 + β2(ψi,j+1

k + ψi,j−1
k+1 )

]

, (3.56)

where β = ∆x
∆y

.

The numerical procedure consists of the following steps:

1. Specify initial values for ω and ψ at time t = 0;
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2. Specify values for the body force, ~fb, in the domain, which are given as a

solution of the electro-static problem;

3. Specify the convergence parameter (as defined in Chapter 3);

4. Solve the vorticity transport equation (3.55) for ω at each interior grid point

at time t + ∆t;

5. Iterate for new ψ values at all points by solving the stream function equation

(3.56) using new ω’s at interior points;

6. Find the velocity components from u = ψy and v = −ψx in discrete form;

7. Determine values of ω on the boundaries using ω and ψ values at interior

points defined by equations (3.48) and (3.49);

8. Return to Step 4 if the solution is not converged.

The vorticity transport and the stream function equations are solved by the

numerical scheme described with boundary conditions as discussed previously.

3.2 Results

3.2.1 Body Force Results

The aerodynamic plasma actuator’s configuration used in experiments [20, 21,

61] consists of two electrodes, one which is exposed to the surrounding air and the

other which is completely encapsulated by a dielectric material. The electrodes

are placed in an asymmetric arrangement shown in Figure 1.1, that leads to a

predominant electric field direction.

To model this particular configuration, the electro-static equation is solved in

a square domain with asymmetric electrode configuration separated by a 3 · 10−3
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inch thick Kapton dielectric layer (ε = 2.8) located in the center of the domain.

The air has a dielectric coefficient close to the value given for a vacuum, ε = 1.0.

The configuration is shown on Figure 3.3. The value of the Debye length λD is

0.001 inches, which is characteristic for the plasmas of this type [64].

Figure 3.3. Computational domain with two electrodes separated by the
dielectric.
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The electro-static equation (3.12) was solved inside a 201x201 square domain

using the procedure described in Section 3.1.1.2. The boundary conditions that

were given by Eq. (3.16 - 3.17) are given as the normalized potential on the

exposed (upper) and encapsulated (lower) electrodes, namely

ϕ |upper electrode= 1.0,

ϕ |lower electrode= −1.0. (3.57)

(3.58)

On the outer boundaries, which are far from the electrode, the electric potential

is zero, namely

ϕ |outer boundary= 0.0. (3.59)

The error parameter was defined as the maximum absolute difference in the

electric potential variable in two consecutive pseudo-time steps. This is given as

ERR = max(
∣

∣ϕn+1
i,j − ϕn

i,j

∣

∣). (3.60)

In the present calculations, it was considered that the convergence was achieved

when ERR was less than 10−10. Such a low value was chosen to have sufficient

accuracy for body force calculations.

As it had been noticed in the experiments, the plasma exists only above the

encapsulated electrode, appearing as the blue glow. That is the region where the

Maxwell’s equation (3.12) has a non-zero charge term, ρc, on the right hand side.

In all the other sub-regions of the computational domain, the electro-statics were
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modeled by the Maxwell’s equation with zero charge density, namely

div ~D = 0. (3.61)

In this form, the Maxwell’s equation becomes the Laplace equation

∇(ε∇ϕ) = 0. (3.62)

Analyzing the electro-static equation (3.12), it can be noticed that the charges

are expected to move to the regions of high electric potential amplitudes. The

characteristic length of this region of high charge density is determined by the

Debye length coefficient. The smaller the Debye length, the narrower that region

located near the electrode and dielectric surface becomes.

To resolve the electric field in this narrow surface region, the Robert’s stretch-

ing [6] was used in the vertical direction, clustering the grid lines near the surface.

The equation for the location of the wall-normal grid points is

y =
hy

2

(βy + 1) − (βy − 1){[(βy + 1)/(βy − 1)]1−ȳ}

[(βy + 1)/(βy − 1)]1−ȳ + 1
, (3.63)

where hy is the size of the domain in the y direction, βy is the stretching parameter

in the y direction, taken to be 1.001, and ȳ is the coordinate of the nonclustered

uniform grid points.

The same Robert’s stretch was needed to be performed in the horizontal di-

rection, x, in order to cluster grid lines near the inner edge of the electrodes to

resolve the electric field in the region where the plasma existed, and where the

body force coupled with surrounding neutral air. The stretching formulation is
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given as

x =
hx

2

(βx + 1) − (βx − 1){[(βx + 1)/(βx − 1)]1−x̄}

[(βx + 1)/(βx − 1)]1−x̄ + 1
, (3.64)

where hx is the size of the domain in the x direction, and βx is the stretching

parameter in the x direction, this was again taken to be 1.001, and x̄ is the

coordinate of the nonclustered uniform grid points. The resulting non-uniform

solution grid is shown on Figure 3.4. A zoomed-in view of the grid near the

electrodes is shown in Figure 3.5.

In its mathematical formulation, this problem is very similar to the heat trans-

fer problem, in which the temperature variable plays the same role as the electric

potential in electro-statics. The dielectric coefficient ε is similar to the heat trans-

fer coefficient k.

The result of the electric potential computations is presented on Figure 3.6

showing the magnitude of the electric potential in the computational domain as

a function of the space coordinates. Referring back to Figures 3.4 and 3.5, Y is

the direction above and below the electrodes, X is the direction parallel to the

electrodes. The constant potential is seen to exist on the electrodes as specified by

the boundary conditions. The potential decays rapidly in space off the electrodes.

A zoomed-in view of lines of constant electric potential near the inner edges

of the electrodes is shown in Figure 3.7. Mathematically, these lines of constant

potential are similar to the iso-thermal lines in the heat transfer problem. The

lines circle around the electrodes, and the isolines of a higher electric potential are

closer to the upper electrode, while the low electric potential isolines are clustered

near the lower electrode. The electric potential lines are not symmetric about the

line running through the aligned edge of the electrodes because of the ionization
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Figure 3.4. Numerical grid for the electro-static problem with Robert’s
stretching applied to resolve electric field and body force near the

electrodes.

in the air over the covered electrode, which distorts the electric field lines in that

region.

The enlarged view of the region close to the inner electrode edges indicates

that there are large gradients in the electric potential that are produced by the

electrode geometry that produce a large electric field strength E. The electric field

corresponding to the potential field lines shown in Figure 3.7 is shown in Figure
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Figure 3.5. Zoomed-in view of the numerical grid for the electro-static
problem with Robert’s stretching applied to resolve electric field and

body force near the electrodes.
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Figure 3.6. Electric potential ϕ as a function of space coordinates.
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Figure 3.7. Lines of constant electric potential near inner edge of
electrodes.
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Figure 3.8. Electric field ~E in the upper part of the domain (air), near
inner electrodes’ edges.

3.8. The arrows indicate the vector direction which is generally towards the upper

electrode.

The body force calculated as given by equation (3.20) is presented on Figure

3.9. Note that the body force only exists where the free charges are present in the

air. This is only over the covered electrode. Everywhere else, the body force is

zero by definition.

The enlarged view of the body force vectors in Figure 3.9 gives a somewhat

distorted view of the extent of the body force produced by the asymmetric elec-
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Figure 3.9. Body force as result of electro-static equation solution.
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Figure 3.10. Body force on the fluid flow scale.

trode arrangement. In actuality it is localized to being very close to the dielectric

surface, in the Debye region. This is shown in Figure 3.10.

Figure 3.10 would indicate that the body force vectors have significant mag-

nitude everywhere above the insulated electrode, and that they are primarily

directed downward.

The body force vectors were used in the Navier-Stokes flow simulation for

the conditions of the actuator placed on the lower wall of an enclosed box with

zero mean flow. This configuration simulates an experiment by Post [61]. In the

simulation, the body force was impulsively started, similar to the Post experiment
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Figure 3.11. Incorrect flow resulting from non-weighted body force. The
largest velocity vector corresponds to |V | = 2 m/s.
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where the actuator was impulsively turned on. The result of the simulation is

shown in Figure 3.11. The simulation with the body force vectors shown in Figure

3.10 indicates that the impulsive start results in a starting vortex with a circulation

in a clockwise direction. In fact, the Post [61] experiment indicated that a starting

vortex occurred in the counter-clockwise direction, opposite of the simulation.

The answer to the discrepancy comes by noting that the body force is per

volume of plasma. Figure 2.4 showed that the light intensity from the plasma

actuator was not uniform over the covered electrode but was a function of the

distance from the edge of the exposed electrode. In addition, it was time dependent

sweeping out over the covered electrode during the a.c. cycle. This was illustrated

in the space-time maps of the light emission that were presented in Figures 2.8 to

2.14.

As a result, the time-averaged volume of plasma decreases with distance from

the edge of the exposed electrode. The static analysis used in obtaining the body

force in Figure 3.10 did not account for the decrease in plasma volume. In order

to compensate for this, the body force magnitude was weighted spatially using a

weighting function that was based on the spatial variation of the time-averaged

plasma illumination. Figure 3.12 shows a fit to the spatial illumination that was

used as a spatial weighting function, w(x), where

w(x) = e−x/0.0127. (3.65)

This was then used to correct the spatial variation in the body force as

~f ∗

b (x, y) = ~f ∗

b (x, y) ∗ w(x). (3.66)
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Figure 3.12. Spatial variation of light intensity from the plasma actuator.
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The result of applying the spatial weighting to the electro-static body force

that was shown in Figure 3.9 is shown in Figure 3.13. The weighting, which is the

strongly decaying exponential function, quickly suppresses the body force vectors

at distances away from the edge of the exposed electrode. The result is that

only the body force vectors near the edge of the exposed electrode are significant.

These vectors have a component that is directed along and away from the upper

electrode. Simulations to follow will show that impulsively starting this weighted

body force will result in a starting vortex that will produce counter-clockwise

circulation that agrees with the experimental observations.

After a weighting function has been applied to the body force as

~f ∗

b (x, y) = ~f ∗

b (x, y) ∗ w(x), (3.67)

where w(x) is the weighting function, the resulting body force is shown in Figure

(3.13). This body force is the force that comes into the Navier-Stokes equations.

3.2.2 Flow Problem Results with Spatially Weighted Body Force

The equations for the flow in stream function and vorticity form (3.39 - 3.40)

were solved on the identical grid to the upper half domain used in the electro-static

body force computations. This allows the body force values from the electro-static

problem to be transported to the flow solution grid point-by-point, without any

interpolation. The solution grid is shown in Figure 3.14.

The stream function and vorticity equations were solved numerically using the

procedure that was described previously. The actuator is located at X=0 and the

domain of the body force is 0 to 1 in X and 0 to 2 in Y . The Reynolds number

based on the length of the actuator (0.5 in.), a characteristic velocity of 1 m/s,
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Figure 3.13. Spatially-weighted body force.
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Figure 3.14. Computational domain, normalized by Xmax and Ymax,
actuator located on the bottom surface at X = 0.5.
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and the kinematic viscosity of air at standard temperature and pressure used in

the simulation, was 105.

In the solution of equation (3.39) the error parameter was defined as the maxi-

mum absolute difference in the stream function variable in two consecutive pseudo-

time steps, namely

ERR = max(
∣

∣ψn+1
i,j − ψn

i,j

∣

∣) (3.68)

Convergence was considered to be achieved when ERR was less than 10−16. At

this level of convergence, the convergence on vorticity given as the maximum

difference between two consecutive pseudo-time steps

ERR = max(
∣

∣ωn+1
i,j − ωn

i,j

∣

∣) (3.69)

was on the order of 10−10.

The boundary conditions were chosen as stated previously as no slip, no pen-

etration on all the walls of the box. Still air conditions were taken for initial

conditions:

u |t=0= 0 (3.70)

v |t=0= 0

In order to simulate the impulsively started plasma actuator in the experiments

by Post [61], the spatially-weighted body force was introduced into the stream

function and vorticity equations as a step function. This is illustrated in Figure

3.15.

Having no external flow in the simulation, the actuator body force is the only

source of fluid motion. The flow simulation a short time (0.25 ms) after the
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Figure 3.15. Body force is introduced into the Navier-Stokes equations
at time t = 0.

body force has been switched on is shown in Figure 3.16. This shows a starting

vortex that has a circulation in the counterclockwise direction. The simulation

at a slightly later time of 1.25 ms is shown in Figure 3.17. This shows that the

starting vortex has strengthened and expanded with the center further away from

the wall.

As mentioned, the simulation was intended to compare to the experiments of

Post [61]. Her experiment involved placing a plasma actuator, with an asymmetric

electrode arrangement that was identical in size and configuration to the simulated

actuator, on the floor in a sealed box. The actuator was impulsively started and

left on over a long period that was much longer than the response time of the

flow. Velocity measurements were made by her using PIV system. A photograph

and a schematic of her experiment is shown in Figure 3.18.
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Figure 3.16. “Starting” vortex near actuators at t = 0.25ms. The largest
velocity vector corresponds to |V | = 1.5 m/s.
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Figure 3.17. “Starting” vortex near actuators at t = 1.25ms. The largest
velocity vector corresponds to |V | = 3 m/s.
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Figure 3.18. PIV setup by Post [61].

Figure 3.19. PIV laser trigger setup by Post [61].
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Figure 3.20. “Starting” vortex at t = 2, 12, 35, 60 ms, PIV results by
Post [61].
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Figure 3.21. Velocity field of the developed jet flow at T → ∞.The
largest velocity vector corresponds to |V | = 4.7 m/s.
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Figure 3.22. Developed jet flow at T → ∞, PIV results by Post [61].

Post used a trigger signal on the PIV laser to capture the velocity field at cer-

tain time delays following the impulsive starting of the actuator. A schematic of

the laser trigger timing is shown in Figure 3.19. She then obtained ensemble aver-

ages of the velocity field generated by the impulsively started actuator. Examples

of those are shown in Figure 3.20. The actuator is located at x=−26 mm.

The experimental results correspond to time delays of 2, 12, 35 and 60 mil-

liseconds. These show the initial development of a starting vortex with counter-

clockwise circulation. As time progresses in the experiment, the starting vortex

grows in size and convects to the right in the positive x-direction.

Qualitatively the velocity field obtained in the simulation, shown in Figures

3.16 and 3.17, looks similar. The size of the spatial domain of the simulations is

approximately 6 by 6 mm. Therefore they are showing the starting vortex at a

very initial stage which is closest to the smallest experimental time delay shown

on the top plot in Figure 3.20.
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The solution for the flow field a long time after the actuator was impulsively

started is shown in Figure 3.21. The result from the experiment of Post [61]

is shown in Figure 3.22. Both show that the flow is drawn down towards the

actuator and then accelerated away from the actuator in the direction from the

upper to the lower electrode. The size of the spatial domain of the simulation is

only about one-tenth of the experimental domain in order to focus on the region

closest to the actuator. However qualitatively at least, the vector field is very

similar, indicating that the electro-static model for the actuator body force vector

is reasonably good.

3.2.3 Flow Problem Results with Temporally-spatially weighted body force.

Looking more closely at the light intensity results from photomultiplier exper-

iments, it can be noticed that the volume of plasma at any spatial location was

very dependent on time within the a.c. cycle. For example, close to the edge of the

upper (exposed) electrode, plasma light illumination intensity increased linearly

with time in each half of the a.c. period. This is evident in the light intensity

contours that were shown in Figure 2.5. This indicates that an improved body

force model from the electro-static calculations would add a second body force

weighting that would account for the time dependence of the ionization.

The temporally-spatially weighted electro-static body force was represented by

the form

~f ∗

b (x, y) = ~f ∗

b (x, y) · w(x) · a(t) (3.71)

where w(x) is the previously defined spatial weighting function, and a(t) represents

the linear temporal growth observed in the experiments. The total space-time
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Figure 3.23. Magnitude of the space-time weighting function used on the
electro-static body force for one half of the a.c. cycle.

weighting function , w(x) · a(t), is presented in Figure 3.23 for one half period of

the a.c. cycle.

The results of the numerical simulation for the flow generated by the actuator

on the bottom wall in a rectangular enclosure with the added temporal weighting

on the body force is qualitatively similar to previous case with only the spatial

weighting. When the actuator was impulsively started it produced a similar start-

ing vortex with counterclockwise circulation that grows in size and convects away

as before. At large solution times, the flow near the actuator again becomes a
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Figure 3.24. Method for introducing space-time weighting of
electro-static body force during time-steps of the Navier-Stokes solver.

steady tangential wall jet in the direction towards and away from the covered

electrode.

To compare the two cases of the two types of weighting on the body force, the

long time steady solution was considered. In particular, wall-normal profiles of the

x-component of velocity were compared. As a first step in comparing the profiles,

the distance from the actuator where the flow was self-similar was determined.

An example of this for the case with only spatial weighting for the steady (long-

time) solution is shown in Figure 3.25. Here the profiles were taken at different x

locations in the induced flow direction away from the actuator. The velocities in

the profiles were normalized by the maximum at that x-location. The wall normal

coordinate was normalized by the y-value of the velocity maximum. These are
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defined in the following.

Unorm =
U

Umax
(3.72)

ynorm =
y

y(Umax)

Focusing on the normalized profiles in Figure 3.25, we observe that by the

fourth location away from the actuators, the profiles begin to fall onto a single

curve. This is particularly evident in the lower part of the profiles up to the

height corresponding to Umax. Based on this result, velocity profiles for the two

body force weighting cases were compared at X = 0.5938. These are compared

at different times after the impulsive start of the actuator body force in Figures

3.26 and 3.27.

Figure 3.26 shows the velocity profiles for the case with only spatial weighting

of the body force. The profiles for the case with space-time weighting are shown

in Figure 3.27. Both of these show the character of an accelerating wall jet. The

outer part of the profile, above y∗ = 1 cm, has negative velocities due to reverse

flow produced by a flow recirculation in the box that was induced by the actuator.

One of the things that can be easily noticed on the comparison of the two cases

is that the space-time weighted body force resulted in a maximum velocity that

was approximately one-third that of the other weighting. This indicates that the

time response of the ionization is significant to the performance of the actuator.

It suggests that the performance would increase if the a.c. frequency is increased.

This is an aspect that will be examined with the lumped-element circuit model in

a section to follow.
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Figure 3.25. x-component velocity profiles normalized by maximum
velocities and the locations of maximum velocities at different locations
downstream of the simulated actuator with spatial weighting of the body

force and the steady (long-time) solution.
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Figure 3.26. x-component velocity profiles taken at X = 0.5938 for
different times following the impulsive start of the actuator body force.

Body force is spatially weighted only.
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Figure 3.27. x-component velocity profiles taken at X = 0.5938 for
different times following the impulsive start of the actuator body force.

Body force is spatially-temporally weighted.
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Figure 3.28. Maximum x-component velocity as a function of time for
impulsively started actuator body force. Star indicates first-order time

constant corresponding to where U
Ut→∞

= 1
e
.

The temporal response of the flow can be characterized by its response to the

impulsive (step) start of the actuator body force. To illustrate this, the maximum

velocities form Figures 3.26 and 3.27 as a function of time were plotted in Figure

3.28. This indicates that the maximum velocity of the flow induced by the actuator

reaches an asymptote after long time. If we consider this to be a first-order

response to a step input, the time constant corresponds to the time when the

velocity is 66.3 (1/e) of the values at large time. This point has been noted by

the star symbol in the figure.
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We observe that the time constant for the flow response is the same value

for the two initial conditions. Although these initial conditions were obtained by

using different weighting on the body force, they are essentially only different by

the amplitude of the step input. Therefore we expect the time constant to be the

same for the two trials with different initial amplitudes. The value of τ = 0.01 s

suggests a frequency response of 100 Hz. This result for the time constant value

corresponds well to the result from the experiment by Post [61].

Although the electro-static model for the plasma actuator could correctly de-

scribe its effect on a neutral ambient fluid, it cannot model the the effects of the

input voltage amplitude or a.c. frequency. The success of the simulations in this

section were due to experimentally determined ionization in space and time that

corresponds to a particular a.c. frequency and amplitude.

To illustrate the problem, if one would use the electro-static model with dif-

ferent input voltage amplitudes, the dimensionless plasma body force would be

[76]

fb = α · ϕ̄ · ∇ϕ̄, (3.73)

where α is the dimensionless scaling parameter given as

α =
ε0ϕ

2
0

ρ∞U2
∞
λ2

D

. (3.74)

As before ϕ0 is the amplitude of the electrode potential, U∞ is a characteristic

fluid velocity, and ρ∞ is a characteristic fluid density. Equations (3.73) and (3.74)

suggest that the plasma body force will increase quadratically with the input

voltage amplitude, namely

fb ∼ V 2
app. (3.75)
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Figure 3.29. Maximum induced velocity in electro-static actuator model
as a function of voltage.

If this form of the body force is used with the flow solver, the maximum induced

velocity is found to increase in proportion to the square of the applied voltage.

This is shown in Figure 3.29, in which Umax ∼ V 2
app.

The problem with this result is that it contradicts all of the experimental

observations where the thrust force produced by a plasma actuator [20] and the

maximum velocity induced by the actuator [61] were observed to increase as V
7/2
app .

The difference in the voltage dependence can be explained by the fact that the

electro-static model does not account for charge build-up on the surface of the

dielectric or change in the volume of the plasma produced as a function of the
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input amplitude. Therefore there is the need for a better model that can account

for these effects. That model is the topic of the next Chapter.
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CHAPTER 4

LUMPED-ELEMENT CIRCUIT MODEL

In order to improve upon the electrostatic model for the plasma actuator pre-

sented in the previous chapter, two different lumped-element circuit models were

examined. The purpose of the lumped element circuit approach was to account

for the fact that the basic actuator configuration is a capacitive element (two elec-

trodes separated by a dielectric layer). In addition, the air is a resistive element

that has properties that depend on the degree to which it is ionized. Starting with

this basic formulation, two types of lumped-element models were considered. The

first is a temporal model with a fixed number of circuit elements. The second is

a space-time model that uses a large number of elements and can determine such

features as the plasma maximum extent and sweep velocity a priori.

4.1 Spatial Lumped-Element Circuit Model

4.1.1 Mathematical Formulation

The spatial lumped-element model uses a fixed number of circuit elements to

represent the actuator and air. This method was first suggested by Enloe [17].

The model, shown in Figure 4.1, consists of a number of capacitive elements, and

a single resistive element, representing the plasma. Each of this elements varies
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in time as the plasma discharge evolves throughout the AC cycle of the applied

voltage.

The exposed surface of the dielectric also plays a critical role in the circuit

dynamics. Even before the air ionizes, the dielectric surface communicates the

potential charge from the covered electrode. When the voltage potential is large

enough to ionize the air, the surface of the dielectric collects or discharges addi-

tional charge. As a result we refer to the dielectric surface as a virtual electrode

in the circuit.

Three capacitances can be established in the circuit. Capacitance C1 repre-

sents the capacitance between the exposed electrode and the top surface of the

dielectric. Capacitance C2 represents the capacitance between the top surface

of the dielectric and the encapsulated electrode. Capacitance C3 represents the

capacitance between the two physical electrodes.

When the air is ionized, a portion of capacitance C1 is bypassed by the con-

ductivity of the plasma. This can be accounted for by splitting the capacitance C1

into two elements: C1A, which is bypassed when the plasma is present, and C1B,

which is not. The total capacitance remains constant throughout the discharge

cycle, namely

C1A + C1B = C1 = Const. (4.1)

The same stipulation is made for the capacitance C2.

The values of the captaincies C2A and C2B can be calculated as

C2A(t) =
ε0zx(t)

d
(4.2)

C2B(t) =
ε0z[L− x(t)]

d
, (4.3)
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Figure 4.1. Spatial lumped-element circuit model of a single dielectric
barrier discharge plasma actuator.
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where d is the thickness of the dielectric, z is the span-wise length of the actuator,

ε0 is the permittivity of the free space, L is the length of the encapsulated elec-

trode, and x is the extent of the plasma. Variables x, C2A and C2B are explicitly

identified as functions of time, t.

Due to the complexity of the electrode geometry, calculating the capacitances

C1A and C1B from first principles is less straightforward. But an assumption can

be made that these C1A and C1B are proportional to C2A and C2B, respectively.

Thus

C1A(t) = αC2A(t) (4.4)

and

C1B(t) = αC2B(t) (4.5)

where α is a constant that can be estimated from experiments. The capacitance

C3 is a constant that is given from the dielectric material properties and the area

of the electrodes. it is easily estimated or found from experiment.

As the plasma expands over the dielectric, its resistance drops as the conduc-

tance path becomes wider. This variable resistance can be treated in the model

by making the conductance of the plasma, Gp proportional to the extent of the

plasma namely,

Gp(t) =
1

Rp(t)
=

(

G0

L

)

x(t), (4.6)

where G0 is the conductance of the plasma when the plasma reaches its maximum

extent at x = xmax. The value of G0 depends on the geometry of the actuator, and

the density and the temperature of the plasma. The conductance of the plasma

can be measured in the experiment.
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Figure 4.2. Schenatic showing three node points where voltage is
followed in the circuit in the spatial lumped-element circuit model of a

single dielectric barrier discharge plasma actuator.

To implement the model, it is necessary to follow the voltage at three node

points in the circuit as shown in Figure 4.2: the applied voltage Vapp, which appears

across the entire network, the voltage at the virtual electrode covered by plasma

which is designated as V2A, and the voltage at the virtual electrode not covered

by plasma which is designated as V2B . Due to the presence of the capacitances in

the circuit, it is necessary to define the applied voltage Vapp in terms of its time

derivative. In the case of a simple sinusoidal input, this is

dVapp(t)

dt
= V0ω cos(ωt), (4.7)

where V0 is the amplitude of the applied voltage and ω is its angular frequency.

The capacitance C2B is charged and discharged by the displacement current

flowing through the capacitance C2A. The voltage across capacitor C2B is V2B

which is governed by

dV2B(t)

dt
=
dVapp(t)

dt

(

C1B(t)

C1B(t) + C2B(t)

)

. (4.8)
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The voltage at the virtual electrode covered by the plasma discharge is given by

dV2A(t)

dt
=
dVapp(t)

dt

(

C1A(t)

C1A(t) + C2A(t)

)

+
Ip(t)

C1A(t) + C2A(t)
. (4.9)

This includes the real current through the plasma which is proportional to the

plasma’s conductance, G. The current flowing through the plasma is given as

Ip(t) = Gp(t) [Vapp(t) − V2A(t)] . (4.10)

Starting from the moment of air ionization, the extent of spreading of the plasma

over the dielectric covering of the lower electrode is given as

dx(t)

dt
= νV |Vapp(t) − V2A(t)| , (4.11)

where νV is the coefficient representing the increase in the sweep velocity with the

increase in applied voltage amplitude. The proportionality factor νV is empirically

determined from experiments. In the present work, νV = 10
m/s
kV

as seen in Figure

2.6. Because velocity of the plasma edge involves the absolute value of the voltage

difference across the plasma, the plasma expands in essentially the same way

regardless of the polarity of the ionization.

By solving the system of equations given by equations (4.7) through (4.11),

the voltages at each node in the circuit, and the physical extent of the plasma

can be determined as function of time. Examples of these and the sensitivity they

have on some of the empirically determined variables are presented in the next

section.
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4.1.2 Numerical Formulation of Temporal Lumped-Element Circuit Model

The governing equations of the lumped-element circuit model, given by equa-

tions (4.9), (4.9) and (4.10), can be rewritten as

dV2B(t)

dt
=

dVapp(t)

dt

(

C1B(t)

C1B(t) + C2B(t)

)

, (4.12)

dV2A(t)

dt
=

dVapp(t)

dt

(

C1A(t)

C1A(t) + C2A(t)

)

+
Gp(t) [Vapp(t) − V2A(t)]

C1A(t) + C2A(t)
.

From the first equation, the value of V2B can be evaluated directly since the values

of the capacitances are known at the time step t. The second equation is the initial

value problem, which can be written in a more general case of a first-order ordinary

differential equation as

dV2A

dt
= f(t, V2A). (4.13)

This initial value problem is solved using the standard IMSL routine IVPAG which

implements the Adams-Moultons’s method [1].

For this IVPAG routine, the time interval was specified along with the initial

values of the voltage V2A. As a solution we get the value of the voltage at the next

time step.

The numerical procedure consists of the following steps:

1. Specify initial values for the temporal lumped-element circuit model at time

t = 0;

2. Compute the voltage difference across the actuator, compare the value to

the plasma ignition threshold value which determines the plasma presence

on the dielectric surface;
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3. Solve the lumped-element circuit model equations at time t for the non-

ionized air if the plasma is not present and for the ionized air if the plasma

is present on the surface;

4. Get the values of the voltage on the surface of the dielectric V2A and V2B at

time t and the extent of the plasma x(t) at time t+ δt;

5. Increase the time t by δt and return to Step 2.

4.1.3 Results

In the results presented here, the a.c. input had an amplitude of Vapp = 20

kVp−p, and a frequency f = 3 kHz. The threshold voltage at which the ionization

initiated was taken to be Von = 2 kV.

There are two unknown parameters in the system: the ratio of the capaci-

tances of the air and the dielectric defined as α, and the maximum conductivity

of the plasma, defined as G. These two parameters were estimated by making

comparisons between the simulation results and experiments. Examples of the

dependence of the simulation results on these two parameters are shown by the

voltage traces in Figures 4.3 and 4.4. This shows time series plots of the applied

voltage, Vapp, the voltage at the dielectric surface, V2A, and the voltage differ-

ence across the plasma, Vapp − V2A, for a value of G = 10−4 mho and values of

α = 0.1, 0.2, 0.3, 0.4.

The voltage on the surface of the dielectric follows the applied voltage with

some small phase shift. The difference between the applied voltage and the voltage

on the surface of the dielectric defines if the air is ionized in the region. When

this difference is less than the threshold level, the air is not ionized. When the
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voltage difference, Vapp − V2A, exceeds the threshold, the air is ionized. As noted

in experiments presented earlier, the air is ionized twice during the a.c. cycle.

The simulations indicate that a change in the parameter G (for any fixed α)

has a more significant effect on the solution behavior than a change in α for a

given value of G. In particular, G has a large effect on the maximum extent

of the plasma, and therefore, on the value of the plasma resistance. Based on

experiments, the plasma resistance for typical actuator configuration was of the

order of 10 kΩ. This gives a value of G = 0.0001 mho. We observed that for

G = 10−4 and a range of α from 0.1 to 0.4, the phase shift and extent of when

the plasma formed with respect to the applied voltage a.c. period was similar to

what we observed in experiments. As an example to illustrate this, time traces

of the applied voltage and measured current passing between the electrodes from

an experiment is shown in Figure 4.5. The current in this case was rectified

before plotting to simulate the time series we would obtain from the PMT that is

proportional to the plasma illumination. As previously shown, the current through

the plasma correlates with the presence of the ionized air. In the time series of

the current, the band with the high frequency spikes defines the period of time

where the air was ionized. Comparing the points in the a.c. period of the applied

voltage where the air was ionized in the experiment to points in the simulation

where the voltage difference is above the threshold shows a qualitative similarity.

We chose to use α = 0.2 for the results to follow, although any value between 0.1

and 0.4 would have been equally as satisfactory.

The total current flowing through the actuator is a sum of the current flowing

through the plasma, Ip, and the displacement currents in the dielectric capacitive

99



0.0 0.5 1.0 1.5 2.0−10

−5

0

5

10

Time, t / Ta.c.

Vo
lta

ge
, k

V

α = 0.1

0.0 0.5 1.0 1.5 2.0−10

−5

0

5

10

Time, t / Ta.c.

Vo
lta

ge
, k

V

α = 0.2

Figure 4.3. Voltage time series for α = 0.1 and α = 0.2: applied voltage
(solid line), surface voltage (dashed line), voltage difference (dotted

line), and plasma threshold (dash-dotted line).
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element. This is given as

Itotal = Ip +
d(C1U1A)

dt
+
d(C2U2A)

dt
+ C3

dVapp

dt
. (4.14)

The current flowing through the plasma was given by Equation (4.10). We note

that the displacement currents in the dielectric capacitor elements are several

orders of magnitude smaller than Ip. This current will be used to determine the

power dissipated by the plasma.

The plasma is the only dissipative element in the circuit. Due to this, the

instantaneous power P (t) is given as

P (t) = Ip(t) |Vapp(t) − V2A(t)| . (4.15)

The average dissipated power as a function of the applied voltage is shown

in Figure 4.6. This is plotted on log axes to illustrate the power law relation

between the dissipated power and voltage. Except for the lowest voltage, the

dissipated power is proportional to the applied voltage to the 7/2 power. This is

consistent with actuator thrust measurements by Enloe [20] and induced velocity

measurements from Post [61] that both showed a 7/2 power-law dependence with

the applied voltage.

The total volume of plasma is proportional to the plasma extent, x(t). The

dependence of the plasma extent on the input voltage amplitude has been exam-

ined in the previously discussed experiments. Model simulations were performed

for a range of voltage from 10 kVp−p to 40 kVp−p. Figure 4.8 shows the model

predictions for maximum extent of the plasma.Shown for comparison are the ex-

perimental values from our experiment and from Enloe et al. [20]. All agree
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Figure 4.6. Average dissipated power as a function of the applied voltage
based on the actuator model.
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voltage amplitude for temporal lumped-element circuit model simulation

and experiments (Enloe [20] and present).

reasonably well. They indicate that the maximum extent increases linearly with

the applied voltage at a rate of approximately 1.25 mm/kV. This is important

because it has been show by Enloe et al. [20] that the thrust of the actuator was

limited if sufficient area of the covered electrode was not provided. That minimum

area is a function of the voltage.

The present model was successful at estimating the effect of voltage amplitude

on the body force and power dissipated by the plasma. In particular, the voltage
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dependence of the body force was found to agree with the experimental observa-

tions by Enloe [20] and Post [61]. A shortcoming of the model was that it needed

some empirically determined coefficients that were shown in experimental results

presented in Chapter 2, to be functions of frequency. Thus the present model is

only valid for the single frequency. Although, it might be possible to modify this

model to include a broader set of coefficients, the desire was to develop a model

that embodies more of the physics of the DBD process without the need of ex-

perimental coefficients. The attempt at that model which we term the space-time

lumped-element model, is presented in the next section.

4.2 Spatial-Temporal Lumped-Element Circuit Model

4.2.1 Mathematical Formulation

As it has been shown previously, the spatial lumped-element circuit model

correctly describes many of the characteristics of the SDBD plasma actuator. By

comparisons with experimental results, it was shown that the model predicts that

the power dissipated in the plasma resistive element increases with the 7/2 power

of the applied voltage. This correlates with the experimental results by Enloe et

al. [20] and Post [62] that showed that thrust and maximum velocity generated

by the asymmetric electrode arrangement of the SDBD plasma actuator varied as

V
7/2
app .

Despite all the advantages of the earlier model, it had a significant limitation

in that the dynamics of the ionization relied on empirical coefficients that were

functions of the applied voltage amplitude and frequency. Therefore the model

was not able to predict the actuator dependence outside its empirical calibration

space.
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Figure 4.9. The physical space over the encapsulated electrode is divided
into N sub-regions.

The space-time lumped-element circuit model presented here is intended to

model the details of of the ionization process to provide predictions of the body

force for a range of parameters without the need of experimental calibration. The

space-time lumped-element model follows from the previous model in that the

air and dielectric are represented as a network of resistors and capacitors. The

difference comes in that rather than being represented by a single parallel network,

the domain over the covered electrode is divided into N parallel networks, such as

illustrated in Figure 4.9. The characteristics of each parallel network depend on its

distance from the exposed electrode. For example, parallel network 1 is closest to

the exposed electrode and extends the shortest distance over the covered electrode.

Parallel network N extends the farthest distance over the covered electrode.

Each parallel network consists of an air capacitor, a dielectric capacitor, and

a plasma resistive element as in the previous model. In addition to these, zener

diodes were added to set the threshold voltage levels at which the plasma initi-

ates, and to switch in the different plasma resistance values based on the current
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Figure 4.10. Electric circuit model of a single dielectric aerodynamic
plasma actuator.

direction, namely from the exposed electrode to the dielectric, or from the dielec-

tric to the exposed electrode, that experiments have shown to be important. The

N-circuit arrangement is shown in Figure 4.10.

The value of the air capacitor in the n-th sub-circuit is based on its distance

from the edge of the exposed electrode. This is given by equation (4.16)

Can =
ε0εaAn

ln
(4.16)

where εa is the dielectric coefficient of air, ln is the representative distance over the

dielectric surface, and An is the cross section of this air capacitor. The crossection

An is the product of the span-wise size of the actuator, zn, and the height of

the capacitive element, hn. The schematic of this capacitive element is shown in

Figure 4.11.
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Figure 4.11. Schematic drawing of the n-th air capacitor.

The resistance value in the n-th sub-circuit is similarly based on its distance

from the exposed electrode. It is given by equation (4.17)

Rn =
ρaln
An

(4.17)

where ρa is the effective resistivity of the air.

The value of the dielectric capacitor for each sub-circuit is similar to the air

capacitance except that it is based on the properties of the dielectric material. It

is given by equation (4.18)

Cdn =
ε0εdAd

ld
(4.18)

where εd is the dielectric coefficient of the dielectric material, ld is the thickness

of this material, and An is the cross section which is equal to the product of

the span-wise size of the actuator, zn, and the width of the dielectric capacitive

element, dn, as shown in Figure 4.12.
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Figure 4.12. Schematic drawing of the n-th dielectric capacitor.

If we assume that the paths are parallel to each other, and the length of path ln

is proportional to its position number n, then it follows that the the air capacitance

of the n-th sub-circuit, Can, is proportional to 1/n, and the air resistance of the

n-th sub-circuit is proportional to n. Therefore sub-circuits that are furthest from

the edge of the electrodes, would have the lowest air capacitance and the largest

air resistance.

For a time-varying applied voltage, the voltage on the surface of the dielectric

at the nth parallel network is given as

dVn(t)

dt
=
dVapp(t)

dt

(

Can

Can + Cdn

)

+ kn
Ipn(t)

Can + Cdn
, (4.19)

where Ipn(t) is the time varying current through the plasma resistor. The zener

diode in the parallel network has two functions. The first is setting a threshold on

the voltage differential between the exposed electrode and the dielectric surface

above which the air is ionized (plasma formed). In equation (4.19), the diodes are
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represented by the variable kn. When the threshold voltage is exceeded, kn = 1.

Otherwise kn = 0.

The second function of the zener diodes was to switch in either one of the re-

sistances representing the plasma resistance based on the direction of the current,

from the exposed electrode to the dielectric surface or vice versa. This is meant

to represent the experimental observations that the current and corresponding

plasma illumination were different based on the current direction. The resistance

values are designated as Rnf or Rnb (representing forward or backward going cur-

rent). The ratio of the two plasma resistances used in the simulation were
Rnf

Rnb
= 5.

This was based on the difference in the estimated current observed in experiments.

With this background, the current through the plasma resistance, Ip(t) is given

as

Ipn(t) =
1

Rn
[Vapp(t) − Vn(t)] . (4.20)

where Rn = Rnf or Rnb based on the current direction.

This space-time formulation of the lumped-element circuit model has many

advantages over the previous model. One advantage is that it allows us to specify

the number of the sub-circuits N making up the actuator. Ideally, as N → ∞, the

numerical solution should approach the asymptotic solution. As the tests of the

code showed, values of N ≈ 102 appear to be sufficient to capture the essential

physics. This is shown in Figure 4.13.

A second advantage of this formulation is that it is temporal. Therefore the

effect of the a.c. frequency or wave form can be examined. Dynamics such as the

sweep-out velocity of the plasma can then be determined a priori.
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4.2.2 Numerical Formulation of Space-Time Lumped-Element Circuit Model

The governing equations of the lumped-element circuit model, given by equa-

tions (4.19) and (4.20), can be rewritten as

dVn(t)

dt
=
dVapp(t)

dt

(

Can

Can + Cdn

)

+ kn

1
Rn

[Vapp(t) − Vn(t)]

Can + Cdn
. (4.21)

This is a typical initial value problem, and it can be written in general form as

dVn

dt
= f(t, Vn), (4.22)

or as a finite difference equation

δVn = f(t, Vn)δx (4.23)

This equation is is solved using the standard Runge-Kutta 45 method. In this

method, we made two mid-point derivative evaluations, which led us to the fol-

lowing equations:

k1 = δtf(tm, V m
n ),

k2 = δtf(tm +
1

2
δt, V m

n +
1

2
k1),

k3 = δtf(tm +
1

2
δt, V m

n +
1

2
k2), (4.24)

k4 = δtf(tm +
1

2
δt, V m

n +
1

2
k3),

(4.25)
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and the voltage on the next time step can be calculated from the previous time

step using the following equation

V m+1
n = V m

n +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(∆t5). (4.26)

This method is implemented using the standard MATLAB function ode45 [5].

In MATLAB the Runge-Kutta routine uses a variable, continuously adjusted time

step. The adaptive time-stepping algorithm takes small steps where the function

is changing rapidly and can take really big time steps where the function is smooth

and not varying much.

For the initial conditions at t = 0 we took Vn = 0 on the surface of the

dielectric. On each of the next time steps the initial conditions on Vn were taken

from the solution on the previous time step.

Thus, the procedure consists of the following step.

1. Calculate the values of resistances and capacitances in each of the parallel

networks;

2. Specify initial values of the voltage on the dielectric surface at time t = 0;

3. Specify the time step δt;

4. Specify the time interval: [t, t+ δt];

5. Solve the ODE given by equation (4.21) using the ode45 routine in MATLAB

on the specified time interval;

6. Check for the plasma presence in all the parallel networks, if the plasma

is present in the n-th network, set the plasma presence coefficient kn = 1,
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if the threshold for the plasma ignition is not reached in the n-th parallel

network, then set kn = 0;

7. Calculate the plasma current and set the resistance of the plasma depending

on the direction of the plasma current;

8. Reinitialize the initial values of the voltage on the surface for the ODE solver

solution on this time step;

9. Increase time by δt;

10. Return to Step 4.

4.2.3 Results of Space-Time Lumped-Element Circuit Model

As an example, the electric circuit equations (4.19) were solved for 100 parallel

circuit elements making up a SDBD actuator. For this, the applied voltage was

a sine wave with amplitude of 5 kVp−p, and a frequency of 5000 Hz. In order to

resolve the dynamic motions of the plasma, a computational time step of 8 · 10−7

seconds was used. This corresponded to 250 time steps within each cycle of the

a.c. input period.

The solution of the model equations gives the voltage on the surface of the

dielectric, Vn, for each parallel circuit element. An example of this for the first

five circuit elements, closest to the exposed electrode, is shown in Figure 4.14.

We observe that there is a shift in time of the peak voltage in successive current

elements. This reflects the sweep out of the plasma over the dielectric surface.

Figure 4.15 shows the time series in the current through the first five circuit

elements in the model. Plasma is formed where the current is non-zero. This

is observed to occur twice per a.c. period at the time periods when the voltage
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Figure 4.14. Voltage on the surface of the dielectric in the first five
sub-circuits (n=1,2,3,4,5) obtained from space-time lumped element

circuit model.

difference between the exposed electrode and dielectric surface exceeds a threshold

level. Again we observe that the time when the plasma first forms increases as

the sub-circuit is further from the exposed electrode. As with the voltage, this

reflects the sweep out of the plasma during the input a.c. cycle.

It may be noticed that the plasma current is not symmetric during the a.c.

cycle - the current going through the plasma resistive elements is larger during

one half of the cycle than the current going in the opposite direction during the

other half of the cycle. But the total current in the circuit is the sum of the real
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Figure 4.15. Plasma current in the first five sub-circuits (n=1,2,3,4,5)
obtained from space-time lumped element circuit model.
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and displacement currents in the parellel networks, and it can be written as

Itotal(t) =
N
∑

n=1

(

Ipn(t) +
d(Cna(Vapp(t) − Vn(t)))

dt

)

. (4.27)

The charge transfered through the circuit is given by

Qtotal =

∫ 1

t=0

Itotal(t)dt. (4.28)

Integrating the total current for one a.c. period, as given by Equations (4.27) and

(4.28), we get

Qtotal = 0. (4.29)

This results signifies the conservation of charge in the system.

As has been noted previously in the experiments, the electric current in the

plasma relates directly to the light emission from the SDBD, and thus is an indi-

cation of the volume of the plasma. Therefore to compare to the experiments, the

rectified plasma current from the model in time and space above the dielectric-

covered electrode is shown in Figure 4.16. Zero on the space axis corresponds

to the edge of the exposed electrode. The time axis is shown as a fraction of

the input a.c. period. This can be directly compared to Figure 2.4 that showed

the space-time variation of the plasma illumination. The rectified current from

the model is very similar to the experimental result. It clearly shows the largest

current at the edge of the exposed electrode and the rapid decay when moving

away from electrode’s edge. In addition, the model simulates ionization occurring

twice during the a.c. cycle, and the difference in the magnitude of the current in

the two halves of the cycle.
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Figure 4.16. Rectified plasma current for one a.c. period of input
obtained from space-time lumped element circuit model.
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Figure 4.17. Contour lines of constant rectified plasma current obtained
from space-time lumped element circuit model.

The same result shown in Figure 4.16 is plotted in Figure 4.17 as contour lines

of the constant plasma current. This again illustrates the good agreement between

the model and the photomultiplier experiments shown in Figure2.5.

The results from the photomultiplier experiments and from the space-time

lumped-element circuit model can be compared quantitatively. There are two

important characteristics of the plasma discharge that can be extracted from this

data. The first is the maximum extent of the plasma over the surface of the

dielectric. The results from the model and experiments are show in Figure 4.18.
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Also included in the figure are experimental results from Enloe et al. [21]. The

figure shows the extent of the plasma as a function of the peak-to-peak voltage.

First, we notice that the plasma extent varies varies approximately linearly with

the input voltage. Second, we observed very good agreement between the model

results and the experimental results. The agreement with our experiment is better

because the model used a dielectric coefficient for PC board material (glass-epoxy)

which was used in our experiments. The experiments by Enloe et al. [21] used

Kapton film which has a different dielectric coefficient and thickness.

This result is very important for the design of plasma actuator. Post [61] noted

that at higher voltages, if the width of the covered electrode was too small, the

magnitude of the induced velocity would asymptote. A similar result was found

for the thrust produced by the actuator in experiments by Enloe et al. [21].

Another distinctive feature that can be compared is the sweep out velocity.

This corresponds to the space-time slope of the outer edge of the light intensity

contours. A comparison for the plasma sweep velocity between the space-time

simulations and plasma illumination experiments are shown in Figure 4.19. Also

included in the figure are results from the experiments of Enloe et al. [21]. The

simulation shows that the plasma sweep velocity increases slightly with the applied

voltage amplitude. The agreement with the experiment is very good. The range

of sweep velocities is from 75 to 110 m/s.

Another set of numerical simulation has been performed to study the depen-

dence of the major plasma characteristics, such as the maximum plasma extent

over the surface of the dielectric and the plasma sweep velocity, on the applied a.c.

frequency. These results were again compared to the experimental results. The

comparison between the experimental results and the space-time lumped-element
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Figure 4.18. Comparison between space-time model and experiments for
the maximum plasma extent over covered electrode as function of

voltage.
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Figure 4.19. Comparison between space-time model and experiment for
plasma sweep velocity as function of voltage.
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Figure 4.20. Comparison between space-time model and experiment for
maximum extent of the plasma as function of applied a.c. frequency.

circuit model simulation are presented in Figures 4.20 and 4.21. As it can be seen

in these figures, the model predicts that the maximum plasma extent over the

encapsulated electrode does not increase with the increasing a.c. frequency. This

also means that the plasma propagation velocity would increase linearly with the

applied frequency. This is consistent with the experimental observations. The

results obtained from the numerical simulation for the plasma sweep velocity are

in the range of 75-200 m/s and match the experimental result very well.
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Figure 4.21. Comparison between space-time model and experiment for
plasma sweep velocity as function of applied a.c. frequency.
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These results are necessary to obtain the plasma body force. The solution for

the voltage on the surface of the dielectric serves as the time-dependent boundary

condition of the electric potential, ϕ, in the electrostatic equation (4.30) at the

electrodes. The extent of the plasma on the surface of the dielectric specifies

the region of the presence of charges above the encapsulated electrode, as shown

in Figure 4.22. The value of the electric potential on the exposed electrode are

specified to be the applied voltage Vapp(t). The boundary conditions at the outer

boundaries are set to the “infinity” boundary conditions (ϕ = 0). With these

boundary conditions, the electrostatic equation

∇(ε∇ϕ) =
1

λ2
D

ϕ (4.30)

is solved as previously described in Chapter 2. This is done at each time step

of the lumped-element circuit model to account for the time dependence of the

ionization. The solution of the electrostatic equation is then used to calculate the

time-dependent body force produced by the plasma, given as before as

~f ∗

b = ρc
~E = −

(

ε0

λ2
D

)

ϕ~E. (4.31)

The procedure for the body force computation then consists of the following

steps:

1. Specify initial values for the Lumped-element Circuit Model at time t;

2. Solve the Lumped-element Circuit Model equations at time t;

3. Get the values of the voltage on the surface of the dielectric Vn at time t

and the extent of the plasma xp at time t;
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Figure 4.22. Computational domain for calculation of unsteady plasma
body force.
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4. Set the boundary conditions for the electric potential on the dielectric sur-

face “virtual electrode” equal to the voltage values Vn, and for the electric

potential on the upper electrode equal to the applied voltage Vapp;

5. Define the region of the charges presence over the surface of the dielectric

between the junction of the electrodes and the extent of the plasma xp;

6. Solve the electrostatic equation for the electric potential ϕ as described in

Chapter 3;

7. Calculate the plasma body force ~fb at time t as described in Chapter 3;

8. Increase the time t by δt and return to Step 1.

Following this procedure, an example of the normalized magnitude of the

plasma body force for the asymmetric electrode arrangement illustrated in Figure

4.22 is shown in Figure 4.23. This shows the body force distribution in space and

time. It can be noticed that the largest magnitude of the plasma body force is

near the edge of the exposed electrode. From that location the magnitude decays

rapidly over the surface of the dielectric. Recall that experiments indicated that

the plasma illumination decreased exponentially. This is consistent with the de-

cay that comes from the solution of the lumped-element circuit model. It justifies

the exponential weighting that was used in the electrostatic model described in

Chapter 3.

Another feature that can be noticed from Figure 4.23 is that the body force

peaks four times during one a.c. cycle. This is clearly seen in Figure 4.24 where

the maximum value of the body force near the edge of the electrode is plotted as

a function of time for one a.c. period. The fact that the body force has four peaks

is resulting from the body force formulation (4.31) and the fact that during the
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Figure 4.23. Normalized plasma bodyforce magnitude as function of
time and position over covered electrode.

a.c. cycle the electric potential, ϕ, is equal to 0 when Vapp = 0, and the electric

field, ~E is equal to 0 when applied voltage reaches its maximum and minimum

values.

Another important feature of the plasma body force is the direction of the

force vector during the A.C. cycle. To illustrate this, the body force vectors and

amplitudes have been plotted at four time locations corresponding to four peaks

in the body force. This is shown in Figures 4.25 - 4.28. This illustrates that the

actuator force vector is always in one direction, from the exposed electrode towards

the covered electrode. Because the body force magnitude peaks four times within
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Figure 4.24. Normalized maximum value of the plasma bodyforce
magnitude as function of time. Dots indicate where the snapshots of the

body force vector fields are taken.
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Figure 4.25. Plasma body force vector field and body force amplitude at
t = 0.2 · Ta.c.. The body force is normalized by the maximum value in

the a.c. cycle.

the a.c. period and two of the peaks are slightly smaller this might be represented

as “Push-push-Push-push” for one a.c. period

These observations suggest that the spectral analysis of the body force may

reveal important features of the plasma discharge and also serve as a tool for

comparison with the experimental data. For example, the spectrum results can

be directly compared to the acoustic or accelerometer measurements of the plasma

actuator [57].
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Figure 4.26. Plasma body force vector field at t = 0.4 · Ta.c.. The body
force is normalized by the maximum value in the a.c. cycle.
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Figure 4.27. Plasma body force vector field at t = 0.7 · Ta.c.. The body
force is normalized by the maximum value in the a.c. cycle.
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Figure 4.28. Plasma body force vector field at t = 0.9 · Ta.c.. The body
force is normalized by the maximum value in the a.c. cycle.
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We performed the spectral analysis of the plasma body force signal shown

previously in Figure 4.24. The resulting spectrum is shown in Figure 4.29. it can

be noticed that the dominating frequency in this spectrum is twice the frequency

of the plasma actuator. This result is consistent with the body force signal shown

in Figure 4.24 where the both peaks of the body force are approximately equal.

This domination of the second harmonic was also noticed in the experiments by

Porter et al. [57]. In their experiment, the spectrum of the accelerometer signal

showed the dominance of the second harmonic in one of the studied cases (7 kHz),

but not in the other two cases (5 and 6 kHz). This difference in their observations

may be explained by the transfer to the filamentary regime at lower frequencies

when the plasma becomes non-uniform.

Using the space-time lumped-element circuit model we were able to study the

effect that different dielectric materials had on the plasma body force. Three

different materials were tested with the dielectric coefficients ε = 10, 100, and

1000. A set of numerical simulations has been carried out for a range of a.c.

frequencies from 1 Hz to 10 kHz. The results of these simulations are presented

in Figures 4.30 and 4.31 for the plasma body force and the power dissipated by

the actuator.

From the body force results we notice that for each material tested there exists

the optimal frequency at which the plasma actuator output is maximum in terms

of the force produced. This result is consistent with the general theory of the

RC circuits. On the other hand, it has been noticed that the dissipated power

increases with the a.c. frequency, and reaches its maximum values at high a.c.

frequencies. This suggested that at the higher a.c. frequencies this power does

not turn into the body force any more. Instead, it goes into the ohmic heating.
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Figure 4.30. Effect of dielectric material on plasma body force.

The other interesting feature that can be noticed here is that the optimum

frequency of the plasma actuator depends on the dielectric properties of the ma-

terial, and decreases with the increasing dielectric coefficient. Our simulations

showed that it shifts from the kHz range to the Hz range for ε changing from 10

to 1000.

The space-time lumped-element circuit model showed excellent agreement with

the experimental results. It allowed us to calculate the time-dependent volume of

the plasma over the electrodes during the a.c. cycle. It also provided an efficient
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Figure 4.31. Effect of dielectric material on power dissipated by the
plasma actuator.
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manner for calculating the plasma body force that could be easily incorporated

into the Navier-Stokes flow solvers.
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CHAPTER 5

MODELING OF LEADING-EDGE SEPARATION CONTROL USING

PLASMA ACTUATORS.

5.1 Background

The maximum lift and stall characteristics of a wing affect many performance

aspects of aircraft including take-off and landing distance, maximum and sustained

turn rates, climb and glide rates, and flight ceiling [11]. In a 2-D wing, the

maximum achievable lift is ultimately limited by the ability of the flow to follow

the curvature of the airfoil which affects the pressure gradient. When the pressure

gradient becomes too adverse, the flow separates. In many cases at extreme angles

of attack, this occurs at the leading edge.

One approach to prevent leading-edge separation is to increase the leading

edge radius. This is the principle effect of a leading edge flap. An example is a

Krueger flap, which consists of a hinged surface on the lower side of the wing that

can extend out and ahead of the wing leading edge. A slotted leading-edge flap

(slat) is the leading-edge equivalent of the trailing-edge slotted flap. It works by

allowing air from the high-pressure lower surface to flow to the upper surface to

add momentum to the boundary layer to overcome an adverse pressure gradient,

and prevent flow separation.

Conventional multi-element wings and wings with movable control surfaces

such as the leading-edge slats contain gap regions that are a major source of air-
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frame noise and unsteady structural loading, especially at high deflection angles.

Most of the noise originates from the separated flow in the gap regions. It is also

known that the hinge gaps contribute to as much as 10% of the form drag com-

ponent of the viscous drag on the wing [11]. In order to improve the aerodynamic

performance of the wing, it is desirable to either completely replace the traditional

moving surfaces with hingeless control surfaces, or limit the deflections of moving

surfaces without compromising the wing’s performance. Both these alternatives

necessitate other approaches for controlling flow separation over the surface of the

wing. The following simulation addresses one such approach by using a single-

dielectric barrier discharge (SDBD) plasma actuator to control leading-edge flow

separation on the wing in a manner that might potentially replace leading-edge

slats.

5.2 Problem Formulation

The numerical simulation was performed on a NACA 0021 airfoil with chord

length of .3048 m. This was intended to match an experiment on a NACA 0021

airfoil with a plasma actuator on the leading edge. The experiment investigated

a range of free-stream speeds from 10 to 30 m/s giving a range of chord Reynolds

numbers of 0.205·106 to 0.615·106. Lift and drag measurements in the experiment

were measured using a force balance. Lift and drag coefficients were measured for

a range of angles of attack from 0 to 25 degrees. Therefore these experimental

results provide a basis for comparison to the numerical simulations.

The first step in the simulations was to compute the body force produced

by the actuator at the leading edge. For this the electro-static model described

in Chapter 3 of the thesis was used. As pointed out in the discussion of this
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model and the motivation of the space-time lumped-element model, the electro-

static model does not include the spatial variation of the charged air over the

dielectric-covered electrode. However we can compensate for that effect by adding

an experimental decay weighting of the body force as discussed in 3.2.2. The

experimental spatial weighting agreed well with experimental observations of the

plasma light illumination presented in Figure 3.12, and the space-time simulations

presented in Chapter 4, Figure 4.23.

Using the electro-static SDBD actuator model, the body force computations

were performed on an unstructured grid using COMSOL Multiphysics (FemLab)

[2]. The center line of the actuator was located at the leading edge (x/C = 0). A

schematic of the actuator arrangement on the airfoil is shown in Figure 5.1. The

exposed actuator was located on the pressure side of the airfoil, and the embedded

electrode was placed on the suction side. In order to represent the experiment,

the electrodes were 1/2 in. wide. The dielectric material was a thick layer of a 3

mil Kapton.

For the simulation, the grid was manually refined near the location of the

actuator. The final numerical grid for the body force calculations is shown in

Figure 5.2.

The boundary conditions were the same as discussed in the electrostatic model

section 3.1.1.1. This was a static electric potential equal to the applied voltage

to the electrodes of 5 kVp−p. The electric potential far from the electrodes at the

boundaries of the computational domain was set to zero. As before with body

force calculations, the plasma was taken to be only over the dielectric that covers

the electrode. The governing equation for the region over the exposed electrode
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Figure 5.1. Schematic of the plasma actuator on the leading edge of
NACA 0021 airfoil for body force computations.
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Figure 5.2. Unstructured grid near leading edge of NACA 0021 airfoil
for plasma body force computations.
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Figure 5.3. Computed steady plasma body force vectors near leading
edge of NACA 0021 airfoil, shown on structured computational grid used

for flow solver.

was Laplace equation given as

∇(ε∇ϕ) = 0. (5.1)

The governing equation for the region over the covered electrode was Poisson’s

equation given as

∇(ε∇ϕ) =
ϕ

λ2
d

. (5.2)

The solution gives the body force magnitude and vector directions. These are

shown in Figure 5.3. In this case, the body force values were taken from the

unstructured grid and interpolated onto a structured grid used in the solution of

the flow field. For this, the experimental spatial weighting (equation (3.65) in

section 3.2.1) has been applied.
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Figure 5.4. Full view of computational grid used for the flow simulation
of the NACA 0021 airfoil.

The flow simulation was performed using FLUENT. The structured C-type

grid was meshed around the airfoil using GAMBIT [4]. The surface of the airfoil

was meshed with 400 grid points. There were 100 grid points used in the direction

normal to airfoil surface, with a majority of the grid points located in the region

of the boundary layer. The inlet boundary was located 10 chord lengths from

the airfoil leading edge, and the outflow boundary was located 20 chord lengths

downstream the airfoil trailing edge. The full computational grid used in the flow

simulations is shown in Figure 5.4. A zoomed-in view near the airfoil is shown in

Figure 5.5.

The governing model equations for the flow were 2-D unsteady Reynolds-

averaged Navier-Stokes (RANS) equations. Our intention was that the flow be

incompressible. In FLUENT, if the density is defined using the ideal gas law for
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Figure 5.5. Zoomed-in view of computational grid showing grid point
clustering in the region of the boundary layer.
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an incompressible flow, the solver computes the density as

ρ =
pop

R
Mw

T
(5.3)

where, R is the universal gas constant, Mw is the molecular weight of the gas,

and pop is the operating pressure. In this form, the density depends only on the

operating pressure and not on the local relative pressure field.

FLUENT solves conservation equations for mass and momentum. The equa-

tion for conservation of mass has the form

∂ρ

∂t
+ ∇ · (ρ~v) = Sm. (5.4)

Conservation of momentum in an inertial (non-accelerating) reference frame is

given as [10]

∂

∂t
(ρ~v) + ∇ · (ρ~v~v) = −∇p + ∇ · (τ) + ρ~g + ~F (5.5)

where p is the static pressure, τ is the stress tensor, and ρ~g and ~F are the gravi-

tational body force and external body forces, respectively. ~F also contains other

model-dependent source terms such as user-defined sources. The stress tensor τ

is given by

τ = µ

[

(∇~v + ∇~vT) −
2

3
∇ · ~vI

]

(5.6)

where µ is the molecular viscosity, I is the unit tensor, ∇~v = ∂ui

∂xj
and ∇~vT =

∂uj

∂xi
,

and the second term on the right hand side is the effect of volume dilation. The

plasma actuator body force is introduced into the momentum equation as the

body force vector ~F .
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The standard boundary conditions were used. They induced no-slip and no-

penetration on the airfoil surface. Pressure far-field conditions are used in FLU-

ENT to model the free-stream condition at infinity. This is where the free-stream

Mach number and static conditions were specified. The pressure far-field bound-

ary condition is a non-reflecting boundary condition based on the introduction of

Riemann invariants for a one-dimensional flow normal to the boundary. For flow

that is subsonic, there are two Riemann invariants, corresponding to incoming

and outgoing waves:

R∞ = vn∞
−

2c∞
γ − 1

(5.7)

Ri = vni
+

2ci
γ − 1

(5.8)

where vn is the velocity magnitude normal to the boundary, c is the local speed

of sound and γ is the ratio of specific heats (ideal gas). The subscript ∞ refers to

conditions being applied at infinity (the boundary conditions), and the subscript

i refers to conditions in the interior of the domain (i.e., in the cell adjacent to the

boundary face). These two invariants can be added and subtracted to give the

following two equations:

vn =
1

2
(Ri +R∞) (5.9)

c =
γ − 1

4
(Ri −R∞) (5.10)

where vn and c become the values of normal velocity and sound speed applied on

the boundary.

At a face through which flow exits, the tangential velocity components and

entropy are extrapolated from the interior. At an inflow face, these are specified

as having free-stream values. Using the values for vn, c, tangential velocity com-

ponents, and entropy, the values of density, velocity, temperature, and pressure
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at the boundary face can be calculated. For the present simulation, the inflow

was set at 35 m/s (corresponding to M = 0.1). The angle of attack was varied by

changing the angle of the flow at the inflow boundary. The turbulence parameters

were defined at the far-field boundary in terms of the turbulence intensity and

turbulence viscosity ratio. The turbulence intensity of the inflow was set to 0.1%.

This value corresponds to the maximum value of the turbulence intensity in the

experiments. The turbulence viscosity ratio was set to be 10. This value was

suggested in FLUENT documentation for outer flows.

An additional equation for energy conservation was included in formulation.

FLUENT solves the energy equation in the following form:

∂

∂t
(ρE) + ∇ · (~v(ρE + p)) = ∇ ·

(

keff∇T −
∑

j

hj
~Jj + (τ eff · ~v)

)

+ Sh (5.11)

where keff is the effective conductivity equal to k + kt, where kt is the turbulent

thermal conductivity, defined according to the v2-f turbulence model, and ~Jj is

the diffusion flux of species j. The first three terms on the right-hand side of

Equation 5.11 represent energy transfer due to conduction, species diffusion, and

viscous dissipation, respectively. Sh includes the heat of chemical reaction, and

any other volumetric heat sources defined. In Equation 5.11,

E = h−
p

ρ
+
v2

2
(5.12)

where sensible enthalpy h is defined for ideal gases as

h =
∑

j

Yjhj, (5.13)
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where Yj is the mass fraction of species j and

hj =

∫ T

Tref

cp,j dT (5.14)

and Tref is 298.15 K.

A second order implicit formulation was used for time and space discretiza-

tions. The SIMPLE algorithm was used for the pressure-velocity coupling. This

algorithm uses a relationship between velocity and pressure corrections to enforce

mass conservation and to obtain the pressure field. In the SIMPLE algorithm, an

approximation of the velocity field is obtained by solving the momentum equa-

tions. The pressure gradient term is calculated using the pressure distribution

from the previous iteration or an initial guess. The pressure equation is formu-

lated and solved in order to obtain the new pressure distribution. From this the

velocities are corrected and a new set of conservative fluxes are calculated. A

more detailed description of the SIMPLE algorithm may be found in the Fluent

documentation files [3].

The first simulation was performed at 0 degrees angle of attack. The flow was

initialized from the inflow boundary. Afterwards, the solution at higher angles of

attack used the previous converged solution at one degree smaller as the initial

condition for the simulation.

The identification of vortical structures has been performed using the −λ2

technique developed by Hussain [36]. In this technique, the eigenvalues of the

symmetric tensor S2 + Ω2 are considered: here S and Ω are the symmetric and

antisymmetric parts of the velocity gradient tensor ∇u. The vortex region is

identified by the negative values of the second eigenvalue, λ2.
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In planar flow, the velocity gradient can be written in general form as

∇u =







a b

c −a






, (5.15)

where a = ux, b = uy and c = vx. Therefore, we get that the S2 + Ω2 matrix in

this case would be given as

∇u =







a2 + bc 0

0 a2 + bc






, (5.16)

and the characteristic equation can be written as

(a2 + bc− λ)(a2 + bc− λ) = 0. (5.17)

This equation has the solution

λ1,2 = a2 + bc. (5.18)

Thus, negative λ2 requires that

u2
x + uyvx < 0. (5.19)

5.3 Results

During the first phase of the simulations, the base flow without flow control

was modeled. The behavior of the lift and drag coefficients was taken to be the

convergence criteria for the flow problem. The lift and drag coefficients conver-
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gence time series are shown in Figure 5.6 for the low angle of attack (5 degrees)

and in Figure 5.7 for high angle of attack when the airfoil is completely stalled

(25 degrees).

As the simulations showed, at lower angles of attack, below approximately 12

degrees, the linear airfoil theory holds and the slope, dCL

dα
= 2π. Therefore at least

in this region the solution is known. In addition, the experimental results for this

airfoil gave an indication of the stall angle of attack.

The v2 − f turbulence model was used in these simulations. This model has

been shown to predict the boundary layer separation correctly [16]. Our calcu-

lations performed with the v2 − f turbulence model showed decrease in lift and

increase in drag at 18 degrees. This agreed best with the experiment. Based on

these tests, the v2−f turbulence model was used for all of other calculations with

and without the plasma actuators.

The v2-f model [16] is quite similar to the standard k-εmodel, but incorporates

near-wall turbulence anisotropy and non-local pressure-strain effects. The v2- f

model is a turbulence model that is valid all the way up to solid walls, and therefore

does not need to make use of wall functions. Although the model was originally

developed for attached or mildly separated boundary layers, it also accurately

simulates flows dominated by separation. The distinguishing feature of the v2- f

model is its use of the velocity scale, v2, instead of the turbulent kinetic energy,

k, for evaluating the eddy viscosity. The v2 can be thought of as the velocity

fluctuation normal to the streamlines. It has been shown to provide the right

scaling in representing the damping of turbulent transport close to the wall, a

feature that k does not provide.
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Figure 5.6. Lift and drag coefficients convergence history at 5 degrees
angle of attack, Ufs = 35 m/s, uncontrolled flow.
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Figure 5.7. Lift and drag coefficients convergence history at 25 degrees
angle of attack, Ufs = 35 m/s, uncontrolled flow.
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Figure 5.8. Lift coefficient versus angle of attack at Ufs = 35 m/s for
uncontrolled flow.

Figure 5.8 documents the baseline computations for the NACA 0021 airfoil.

This shows the expected lift coefficient slope of 0.11 degrees−1. The maximum lift

coefficient for this airfoil is approximately 1.2. The airfoil stalls at approximately

18◦ angle of attack. This simulation is reasonably close to this value, although

the drop-off in lift is not as sharp as in the experiment.

For the second part of the simulation, a steady actuator effect was included

in the governing equations. As described earlier,the plasma actuator was located

at the leading edge of the airfoil. With FemLab, the plasma body force was
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introduced using the User-Defined Function Module. For the steady actuator, the

body force was constant in time. That is its magnitude was the same at each time

step of the calculations.

The third part of the simulation dealt with “unsteady” plasma actuation.

The previous experimental work [12] has indicated that better flow re-attachment

would occur by operating the actuator at a periodic frequency. The optimum

frequency was found in experiments to correspond to F+ = fc/Ufs = 1. An

example of the unsteady operation used in the experiment is shown in Figure 5.9.

This switches on and off the a.c. carrier that ionizes the air in the experiments at

a prescribed frequency and duty cycle. The experiments found that a 10% duty

cycle was effective.

In the simulations, the body force was represented in the discrete computa-

tional time steps of the time dependent formulation. For example, if 100 time

steps represented the full period of the actuator at F+ = 1, for a 10% duty cycle,

the body force would be non-zero for 10 time steps, and zero for the other 90 time

steps. This was implemented using the User Defined Function Module just like

with the steady actuator effect.

A sample test case was performed in the still air (Ufs = 0 m/s) to illustrate the

effect of the plasma actuator presence on the airfoil surface. For this the actuator

was impulsively switched on, and maintained for a long time period. Velocity

vectors recorded a short time after the actuator was started are shown in Figure

5.10. Note that this is similar to the simulations that were done on a flat surface in

Figures 3.16 and 3.17 of Section 3.2.2. As in the previous example, the impulsively

started actuator produced a local wall jetting effect and a “starting” vortex that

is turning counterclockwise. Figures 5.11 - 5.13 shows the vector field 0.02, 0.06
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Figure 5.9. Example of short duty cycle a.c. input for unsteady
operation of plasma actuators (a) and its numerical representation (b).
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Figure 5.10. Velocity vector field near leading edge of airfoil at
t = 0.00001 seconds after the impulsive start of the actuator. The

largest velocity vector corresponds to |V | = 4.03 m/s.

and 0.18 seconds later, respectively. This shows the flow sweeping over the leading

edge of the airfoil. There is still a counter-clockwise circulation associated with

the impulsive start of the actuator. The wall jet magnitude in this simulation

reached a maximum value of 8.37 m/s.

An example of the effect of the plasma actuator on the flow over the airfoil at

a post-stall angle of attack of 23 degrees is considered. The flow over the airfoil

without any actuation is shown in Figure 5.15. This shows a large separation

bubble that starts from the leading edge and extends past the trailing edge. The

streamlines show a large circulation indicating flow reversal over the airfoil and

into the wake. This is supported by the λ2 = 0 contours which show the large

separation structure. The streamlines look very much like the streamline pho-
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Figure 5.11. Velocity vector field near leading edge of airfoil at t = 0.02
seconds after the impulsive start of the actuator. The largest velocity

vector corresponds to |V | = 8.34 m/s.

tographs of similar airfoils at post-stall angles of attack such as those by Post

[61].

In contrast to the case with the actuator off, Figure 5.16 shows streamlines

for the same angle of attack (23 degrees) with a steady plasma actuator on. This

shows that the flow is attached at the leading edge, leaving only a smaller trailing

edge separation. Visually, the wake of the airfoil is significantly smaller, which

will translate into lower overall drag.

In case of the unsteady flow actuation, the flow is still attached at the leading

edge of the airfoil as it is shown in Figure 5.17. The point were the boundary

layer separates from the airfoil surface is approximately at the same location as

in the steady actuation case. But the separation bubble appears to be shorter
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Figure 5.12. Velocity vector field near leading edge of airfoil at t = 0.06
seconds after the impulsive start of the actuator. The largest velocity

vector corresponds to |V | = 8.36 m/s.

than the one during the steady actuation. This agrees well with the experimental

observations [52].

A series of simulations at a range of angles of attack with steady and unsteady

plasma actuators were conducted. The results of these are summarized in terms

of the lift coefficient versus angle of attack and lift-drag polars. These are shown

in Figures 5.18 and 5.19. The drag polar and the lift-to-drag ratio are shown in

Figures 5.20 and 5.21. In general both the steady and unsteady plasma actuators

significantly increased the stall angle of attack.

The experimental results obtained at a slightly lower free stream speed of 30

m/s are presented in Figure 5.22. Overall, they are showing the same trend. The

unsteady actuation at the optimal frequency of F+ = 1 delays the airfoil stall
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Figure 5.13. Velocity vector field near leading edge of airfoil at t = 0.18
seconds after the impulsive start of the actuator. The largest velocity

vector corresponds to |V | = 8.37 m/s.

angle by 5 degrees, this significantly improves the airfoil characteristics at high

angles of attack.

The results of this simulation show good agreement with the experiments. The

plasma actuator placed near the leading edge of the airfoil delay the separation

and increases the stall angle of attack. The unsteady flow actuation shows even

better results than the steady actuation improving the airfoil characteristics at

high angles of attack.
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(a)

(b)

Figure 5.14. Velocity vector field (a) and contour lines of λ2 = 0 (b) at
t = 0.01743 seconds in still air. The plasma actuator is working in

unsteady mode at 120 Hz. The largest velocity vector corresponds to
|V | = 4.49 m/s.
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(a)

(b)

Figure 5.15. Contour lines of stream function (a) and λ2 = 0 (b), no
actuation, 23 degrees angle of attack.
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(a)

(b)

Figure 5.16. Contour lines of stream function (a) and λ2 = 0 (b) for
steady actuation, 23 degrees angle of attack.
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(a)

(b)

Figure 5.17. Contour lines of stream function (a) and λ2 = 0 (b) for
unsteady actuation at 120 Hz, duty cycle of 10%, 23 degrees angle of

attack.
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Figure 5.18. Lift coefficient versus angle of attack at Ufs = 35 m/s for
uncontrolled flow, steady and unsteady actuation.
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Figure 5.19. Drag coefficient versus angle of attack at Ufs = 35 m/s for
uncontrolled flow, steady and unsteady actuation.
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Figure 5.20. Drag polar at Ufs = 35 m/s for uncontrolled flow, steady
and unsteady actuation.
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Figure 5.21. CL

CD
versus angle of attack at Ufs = 35 m/s for uncontrolled
flow, steady and unsteady actuation.
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Figure 5.22. Comparison between numerical and experimental data for
lift coefficient versus angle of attack for uncontrolled case, steady and

unsteady actuation. Numerical simulations performed at Ufs = 35 m/s.
Experiment performed at Ufs = 30 m/s, adopted from [52].
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

This chapter presents conclusions related to the study of the physics of the sin-

gle dielectric barrier discharge and the numerical model created to simulate it. In

addition it summarizes the results of the numerical simulation of the leading-edge

separation control on an airfoil. Finally it makes recommendations for the future

work toward understanding the physics of the plasma actuator and modifying the

electric circuit model to include these physics.

6.1 Conclusions

This section presents conclusions on the experimental investigation, modeling

and numerical simulation of the plasma discharge and its application to leading-

edge separation control.

6.1.1 Physics of Discharge

The single dielectric barrier discharge plasma actuator was characterized through

a set of experiments. The focus was on the study of the light emission from the

plasma actuator related to the plasma formation on the dielectric surface. These

experiments were fundamental in understanding the physics of the discharge on

the time scale associated with the applied a.c. cycle.
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The double-slit photomultiplier was used to measure the light emission from

the plasma actuator. Through the comparison with the electric current results,

it was shown that the light emission directly correlated with the formation of

the plasma discharge, and could be used as the measure of the volume of plasma

on the dielectric surface. The light emission was measured while varying several

parameters. One of the parameters was the applied a.c. voltage amplitude. The

other parameter varied was the applied a.c. frequency.

The photomultiplier experiments revealed a very complex structure of the

plasma discharge. During the operation of the plasma actuator, the plasma ap-

pears on the surface of the dielectric near the overlap junction of the electrodes.

The volume of the plasma increases during the a.c. cycle, and the plasma sweeps

across the surface. Given that the covered electrode is sufficiently wide, the plasma

growth stops when the voltage difference across the plasma region becomes less

than the voltage needed to maintain the plasma. This happens when the applied

voltage reaches its maximum or minimum values. At this moment the plasma on

the dielectric surface quenches.

The effect of the applied voltage amplitude on the discharge characteristics

was investigated. For this, the a.c. frequency was kept constant at 5 kHz, and

the amplitude of the applied voltage was varied in the range of 5-10 kVp−p. The

total light emission from the plasma actuator was found to be L ∝ V
7/2
app . This

agreed with the experimental results of Post [61] for the maximum plasma induced

velocity and results of Enloe et al. [20, 21] for the thrust produced by the plasma

actuator. In this set of experiments it was also found that the plasma propagation

velocity increased slightly with the applied voltage amplitude. The plasma sweep

velocity was found to be in the range of 70-110 m/s. It was also found that the
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maximum extent of the plasma increased linearly with the voltage amplitude.

These results agreed with the previous observations by Enloe et al. [20, 21].

The effect of the applied a.c. frequency was also studied. For this, a fixed

applied voltage amplitude of 5 kVp−p was used. In these experiments, the a.c.

frequency was changed in the range of 5-11 kHz. It was found that the extent

of the plasma over the dielectric surface did depend on the a.c. frequency. This

resulted in a strong linear dependence of the plasma sweep velocity on the a.c.

frequency. The observed sweep velocities were in the range of 80-180 m/s.

6.1.2 Electrostatic Model

In the experiments, it has been observed that there exist three different time

scales associated with the plasma actuator. The first time scale, relates to the

formation of the microdischarges, which is on the order of 10−8 seconds. The

second time scale, defined by the a.c. frequency of the applied voltage, is on

the order of 10−4 seconds. The largest time scale in the operation of the plasma

actuator is associated with the neutral fluid response time which is of the order

of 10−2 seconds.

This difference in time scales allowed us to construct a quasi-steady electro-

static model for the plasma actuator and to derive the plasma body force from

first principles. This model included the idea of the Debye shielding in the plasma.

The electrostatic model was used to study the asymmetric electrode arrangement.

The distribution of the electric potential, electric field and the charge density were

calculated near the electrodes. From these, the plasma body force was calculated.

The importance of accounting for the volume of the plasma over the covered

electrode was also shown. This was done by applying the spatial weighting to the
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body force results. The exponential form of the weighting function was chosen

to reflect the experimental observations. Another type of the weighting that was

used was a temporal weighting. It represented the linear growth of the volume of

plasma during the a.c. cycle.

The spatially weighted and temporally-spatially weighted plasma body forces

were used in the flow solver to model the flow in the closed box with the plasma

actuator located on the bottom wall. The plasma body force computed separately,

was introduced into the right hand side of the momentum equation point by point.

The numerical simulations showed the formation and growth of a starting

vortex that was previously observed in the experiments by Post [61]. It was also

shown that at T → ∞, the induced flow developed into a the jet flow with the fluid

drawn to the actuator and then accelerated downstream. The velocity profiles in

the similarity region were used to compare the solutions for the spatially weighted

and temporally-spatially weighted plasma body force cases. It was shown that the

flow development was similar in both cases, but the maximum velocities in the jet

were lower in case of the temporal-spatial weighting.

It was shown that the electrostatic model could be used to simulate the aero-

dynamic plasma actuator if the volume of plasma was know for the particular

applied voltage conditions. An attempt to extrapolate these results to other volt-

age amplitudes was not possible with this model.

6.1.3 Lumped-element Circuit Model

To account for the change in the volume of plasma with respect to the applied

voltage amplitude and frequency, the lumped-element circuit model was created.

This model represented the plasma actuator as a parallel network of resistive and
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capacitive elements. The capacitive elements representing the dielectric allowed

us to model the accumulation of the charge on the surface of the dielectric.

Two types of the lumped-element circuit models were tested. The first model

was a coarse spatial lumped-element circuit model. In this model, the plasma was

represented by the time-varying resistive and capacitive elements. The values of

these depended on the volume of the plasma present over the dielectric. As tests

of this model showed, the power dissipated in the plasma actuator was P ∝ V
7/2
app .

This result is consistent with the results of Post [61] for the maximum velocity in

the plasma jet and Enloe et al. [20, 21] for the thrust produced by the plasma

actuator.

The second model was a spatial-temporal lumped-element circuit model. It was

developed to simulate the internal structure of the plasma discharge. This model

represented the plasma a series of parallel networks, each consisting of resistive

and capacitive elements, and zenor diodes that controlled the values based on the

current direction. The advantage of this model was that it could investigate the

effect of amplitude and frequency without the need of experimentally determined

coefficients. Prior to any other tests, this model was tested for the optimal number

of parallel sub-circuits.

The space-time lumped-element circuit model allowed us to obtain the in-

formation about the current in the plasma, which has been shown previously to

correlate directly to the light emission form the plasma. The results of the current

distribution were found to be consistent with the light intensity measurements.

The effect of the applied voltage amplitude and a.c. frequency on the plasma

characteristics was examined with the space-time lumped-element circuit model.

The results were found to be in good agreement with the experimental results. The
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maximum extent of the plasma was increasing linearly with the applied voltage

amplitude, but was almost constant over the entire range of the a.c. frequencies

tested. The plasma sweep velocity was found to increase linearly with the applied

voltage amplitude and a.c. frequency.

The results of space-time lumped-element circuit model were used to calculate

the time-resolved plasma body force. It was found that the plasma body force has

four peaks during the a.c. cycle, and that the direction of the plasma body force

is the same all the time. Spectral analysis performed on the plasma body force

time series showed that the dominating frequency in the spectrum was two times

the a.c. frequency.

The effect of the dielectric properties of the material was studied with the

space-time lumped-element circuit model. The plasma body force calculations

were performed for three different materials with ε = 10, 100, and 1000. It was

shown that for each material tested there exists an optimal frequency at which

the plasma body force is maximum. It was found that the optimal frequency

decreased as the dielectric coefficient increased. The power dissipated in plasma

due to ohmic heating monotonically increased with frequency. Therefore, too high

a frequency is inefficient in terms of converting the input power into the body force.

6.1.4 Leading-edge Separation Control

With this approach, the leading-edge separation control on NACA 0021 us-

ing single-dielectric barrier discharge plasma actuator was studied numerically.

FLUENT software was used to solve two-dimensional unsteady Reynolds-averaged

Navier-Stokes equations with the v2 − f turbulence model.
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The plasma actuator was modeled on the leading edge of the airfoil. The

plasma body force computations were carried out using FemLab. The body force

was then introduced into the flow solver using the user defined function.

The effect of the plasma actuator body force on the fluid was studied in still

air. The formation of the starting vortex was observed near the actuator. The

steady plasma actuator working for a long time form a jet near the airfoil surface.

The unsteady plasma actuator was observed to form a periodic series of vortexes

near the leading edge.

First, the flow around the airfoil was computed without any actuation for a

range of angles of attack at 35 m/s inflow velocity. The convergence of the solution

was based on the lift and drag coefficients. It was shown that at the lower angles of

attack the airfoil characteristics were consistent with the linear airfoil theory, that

is having the slope dCL

dα
= 2π. The aerodynamic stall of the airfoil was observed

at 18 degrees.

The leading-edge separation control with the steady and unsteady flow actu-

ation was studied numerically. During the steady actuation, the plasma body

force was permanently present. For the unsteady actuation, the body force was

present only for 10% of the duty cycle. The frequency of the unsteady actuation

corresponded to F+ = fc/Ufs = 1.

In both cases, the separation bubble was observed to become smaller. The

point of the separation was seen to move from the leading edge downstream to

half-cord of the airfoil. This reduction of the separation bubble resulted in the

increase of the lift and decrease of the drag of the airfoil.

It was found that the steady actuation increased the lift coefficient and delayed

the stall by approximately 2 degrees of angle of attack. The unsteady actuation
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was shown to produce even better results. The stall angle in that case was in-

creased by 5 degrees. These results are consistent with the experiments for the

same conditions.

6.2 Recommendations For Future Work

6.2.1 Physical Properties of Plasma Discharge

Recent experiments have shown the superiority of the Teflon dielectric over

the traditional Kapton and PCB materials. This appears in the greater velocity

of the plasma induced jet, and therefore, in the greater momentum transfered

to the fluid. This advantage is probably due to the larger thickness of the Teflon

dielectric layer which leads to a more uniform plasma discharge without filaments.

This phenomenon of transition from the uniform plasma to filamentary discharge

needs to be studied. This can be done by measuring the light emission from

the filamentary and uniform plasma discharges using a photomultiplier. These

experiments may also be accompanied by the acoustical measurements from the

plasma actuator.

The SDB discharge plasma can also be studied optically with the fast CCD

camera. The rate of data acquisition of this type of cameras (up to 105 images per

second) allows one to obtain images of single discharge streamers. This informa-

tion can help to further improve our knowledge about the physics of the discharge

and refine the phenomenological model for plasma actuators.

In the present research one form of the input voltage signal has been studied,

particularly the sinusoidal wave form. Additional data needs to be collected for

different form of the input voltage signal to calibrate and test the space-time

lumped-element circuit model. PMT measurements of the light emission from
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the plasma actuator may be done for the “triangle”, “positive sawtooth” and

“negative sawtooth” wave forms. These tests should be performed for the range

of different applied voltage amplitudes and a.c. frequencies. This would give the

information about the conditions of the plasma formation and quenching as well

as the dependence of the plasma characteristics on the voltage form.

The other open question in the physics of the SDB discharges is how the

momentum is transfered to the neutral fluid. There exist several theories which

propose the PUSH-push, PUSH-pull and other mechanisms for the plasma actu-

ators, meaning that during the a.c. cycle the plasma actuator creates a strong

and a weak body forces which act either in the same direction, or in opposite

directions. This question may be resolved by the velocity measurements directly

in the plasma region. Aero-optical laser devices and methods developed at the

University of Notre Dame may be used for this. In these methods, the density fluc-

tuations are estimated from the deflections of the laser light which passes through

the fluid. For this experiment, the glass may be used as the dielectric material,

and the bottom surface of this insulator may be cover with the reflecting material,

which would act as a mirror for the laser light. The velocity fluctuations may be

calculated from the obtained density fluctuations. These experiments are intended

to show if the fluid is accelerated during both halves of the a.c. cycle.

6.2.2 Improvements to the Lumped-element Circuit Model

Some improvements may be made for the lumped-element circuit model and

plasma body force computations. As mentioned in the previous subsection, the

plasma discharge may transition from the uniform regime to the filamentary

regime. This formation of filaments may be accounted for in the model through
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introduction of another resistive element with a possibly lower resistance value.

This resistive element should be included into the circuit along with the zenor

diode element which would govern the initiation of the filaments. The condition

of this initiation may be possibly formulated using the voltage threshold for this

transition from the uniform plasma. The value of the transition threshold voltage

may be obtained experimentally.

The other improvement that may be done to the space-time lumped-element

circuit model regards the breakdown of the dielectric layer. The condition for this

breakdown and eventual shortage of the actuator circuit can be estimated from

the dielectric strength of the material used for insulation.

In this work, the Lumped-element circuit model was tested for the sinusoidal

applied voltage. In practical applications, the forms of the input signal are also

used, such as the triangle wave, the “positive” and the “negative” sawtooth signals.

The Lumped-element Circuit Model should be also tested for these forms of the

input voltage. The results may be compared to the existing experimental results.

Another modification may be done in terms of the charge density estimation

which is later used in the body force computations. The Lumped-element Circuit

model gives us the information about the electric current that flows through the

plasma actuator in each of the sub-circuits. This current is directly related to the

number of the charges and their velocities. This means that if we can estimate the

velocities of the charges in the plasma, then we can compute the ionization rate

in each of the sub-circuits, and calculate the plasma body force directly without

solving the Poisson electrostatic equation. The velocity of the charges can be

estimated in several different ways. For example, this can be done assuming the

Maxwell’s distribution for the gas particles.
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6.2.3 Applications

The success of the numerical simulation of the leading edge separation control

open the possibilities for numerical study of other applications of the plasma

actuators for flow control. For example, the active boundary layer control on

the pitching airfoils may be studied computationally. The experimental data for

this type of flow control was gathered previously by M. Post [61]. This study

can be extended to include the plasma actuator into flow control on the micro air

vehicles, UAVs, and flapping wings. In this simulations, the optimal configuration

and active control strategy can be obtained for each flow control. This would help

to optimize the performance of the plasma actuators in the experiments.

Another aspect of the flow actuation, which is of big importance, deals with

the role played by the plasma actuators in the laminar-to-turbulent transition and

transition delay and control. This study may be done by utilizing the eN method,

which had been shown to work fairly well for the situations in which the level of

the free stream turbulence intensity is relatively low (flows around airfoils with

turbulence intensity < 1%).
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