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EXPERIMENTAL INVESTIGATION AND MODELING OF TIME RESOLVED

THRUST OF A FLAPPING WING AIRCRAFT

Abstract

by

Thomas B. Apker

This work presents a novel method of measuring the unsteady thrust of a hov-

ering flapping wing vehicle and the development of phenomenological models to

simulate it. The measurements were taken using a balance beam with the flap-

ping wings mounted at one end and a counterweight plus an accelerometer mounted

at the other. The trust axis of the flapping wings was mounted vertically, and the

counterweight was adjusted to balance the weight and average thrust of the flapping

wings. An accelerometer mounted above the counterweight measured the unsteady

thrust. This method decoupled the force sensing element from the mass of the

flapping wings, as opposed to standard force sensors that use a linear spring. This

study showed that the spectral content of the flapping wings extended to 15 times

the flapping frequency, well above the resonant frequency of the mass-spring-damper

system formed by a load cell and flapping mechanism. High speed video of the wings

was used to determine the motion of the flexible structure. This motion was used

to develop phenomenological linear models of flapping wing thrust generation. The

results show that this approach to linear modeling produces a system of equations

that can be used for flight dynamics simulation and controller design.



This dissertation is dedicated to caffeine, capsaicin and most of all Kirstin.
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CHAPTER 1

INTRODUCTION

This work seeks to find a means of producing a low order model of mechanical

flapping wing flight in hover. It will study the flow environment in the neighborhood

of the flapping wings to determine what kind of aerodynamic model is appropriate,

measure the steady and unsteady components of the forces produced and determine,

based on observations of the structure, how to best model the relationship between

aerodynamic thrust and wing motion.

The goal of this effort is to produce a simulation that can, in real time, accurately

predict the flight dynamics of a vehicle whose primary propulsion comes from the

periodic flapping of its wings. It will accomplish this using the minimum number

of parameters necessary to estimate aerodynamic forces and moments in hover and

related maneuvers. It will also help define the design space of hovering flapping

wing vehicles to determine what types of control actuators, aerodynamic or mass-

displacement, are most effective.

The results of this work will be useful in the design of flight dynamics simulators

for training of ornithopter pilots and developing control laws for autonomous or-

nithopters, including “hardware in the loop” simulation, similar to the Real Flight

radio controlled aircraft training software [53] and simulation work done at Georgia

Tech [21], respectively. Such simulations have also been useful for automating air-

craft design and mission planning systems. This software will also prove useful in the
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design of future flapping wing vehicles by allowing the development of optimization

routines based on the performance estimates generated by the simulation.

1.1 Experimental background

There have been countless studies over the last several decades exploring the

fluid phenomena associated with flapping wing flight. In general, these can be

broken down into insect, avian, and mechanical. The insect studies tend to follow

the model of Lehmann, Sane and Dickinson [32] or Willmott, Ellington and Thomas

[66], using liquids such as mineral oil or water to allow larger mechanisms to recreate

the complicated movements of a flapping insect, or a tethered insect in air. Birds

and bats are more difficult to study, as their wings are composed of a complicated

arrangement of muscle, bone, skin and feathers, and so the study of their flight

mechanisms tends to focus on high speed imaging, particle image velocimetry (PIV)

and oxygen sensors to determine wing motion, fluid motion and energy consumption,

respectively [52]. Mechanical flapping flight is currently being studied in relatively

few places, with a heavy emphasis on clamped wind tunnel models for analysis and

flying prototypes to conduct flight performance studies [19]. For the purposes of

this document, computational fluid dynamics (CFD) is treated as an experimental

tool, as it provides data about flow structures and properties without requiring the

researcher to explicitly predict them.

1.1.1 Insect flight studies

In many ways, insects represent the best model for development of very small

flapping wing vehicles. Their wings are solid plates driven through root-centered

plunging and twisting by relatively few muscles and an energy storing carapace

[69]. The ongoing Micromechanical Flying Insect (MFI) project is looking to de-

velop a piezoelectrically actuated system that behaves in this manner [8]. Insect
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flight research can be further subdivided into two major groups, clap and fling, or

small insect studies, and conventional flapping, typically with larger insects such as

dragonflies and large flies.

“Clap and fling” was first studied in detail by Wies-Fough while investigating

hovering flight of small wasps [34]. More recently, these results were confirmed in

numerical simulations by Miller and Peskin [42] and Sun and Yu [60] , showing a

strong correlation of bound vorticity between the wings and aerodynamic loads. It

has been observed that clap and fling produces approximately 17% more aerody-

namic force per unit muscle mass than conventional, unclapped flapping based on

observations of small flies in flight. Biologist have observed this mechanism used

when an insect needs an extra burst of aerodynamic force, such as during aggressive

maneuvers [42], or when trying to escape a tether [66].

Mechanical difficulties generally prevent studies of insect-like clap and fling in

air on any platform other than a real insect or a CFD model of one. Several studies

have attempted to overcome this constraint by immersing mechanical wings in a

liquid with larger kinematic viscosity, thus allowing a larger mechanism to have the

same effective Reynolds number. Lehmann, et al. [32]performed an experiment on

fruit-fly shaped wings immersed in mineral oil. Their results showed that clapping

and flinging add a significant increase in lift and a smaller increase in drag at the

beginning of the “fling” cycle.

Numerical studies of the effects of clap and fling are becoming more common as

computer speeds continue to increase and our knowledge of the kinematics of the

process evolves. Miller and Peskin [42] performed several numerical experiments of

2D wings clapping together in an effectively infinite fluid. Their results showed that

for Reynolds numbers up to 128, based on average wing speed, there was a reduction

in average aerodynamic coefficients for clap and fling fliers, and that the benefits
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of clap and fling are very large for the smallest fliers. Sun and Yu [60] conducted

a similar 2D study that showed a strong correlation between the presence of large

vortical structures and aerodynamic loads using an innovative dynamic meshing

scheme.

Clap and fling aerodynamics in live insects was studied by Willmott, Ellington

and Thomas [66] on a tethered hawkmoth. Using stereo cameras and strobe lights,

they were able to clearly illuminate smoke tracers caught in the vortex wake of the

moth, providing clear evidence of the aerodynamic model proposed by Wies-Fogh .

There have also been several studies of non-clapping wings, such as large flies

and dragonflies. Work on dragonflies has focused largely on mapping the motion

of their wings or testing flapping motions using their wings or man-made wings

patterned after them. One example is a CFD study by Tang, et al. [63] which

found that optimal lift in hover occurred when the wings ended each half period

aligned vertically, as this allows for more significant wake capture.

Mokhtar, et al. conducted a numeric study of the effect of adding flow control to

a 2D airfoil based on a dragonfly wing undergoing a figure-8 flapping motion. They

showed that adding leading edge suction improved lift by increasing the strength of

the leading edge vortex by as much as a factor of two [44].

1.1.2 Avian and mammalian flight

In terms of moving parts per unit volume, birds and bats are probably the

most complicated flying machines on Earth and so make poor subjects to guide the

design of mechanical fliers that cannot take advantage of muscle and bone structures.

However, they are are remarkably efficient in the regimes of greatest interest to

those interested in urban surveillance. As such, they have been extensively studied

in the past decade in the hope of learning how they connect their many sensors and
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actuators in hover, forward and maneuvering flight.

One relatively simple study that can give substantial physical intuition into the

realm of realizable MAV configurations is to compare multiple bird species wing area,

flight speed, flapping rate, and other design parameters. Shyy, Berg and Ljungqvist

[57] present an interesting and detailed explanation of scaling laws found in birds,

bats and insects and applied them to the design space of the DARPA-defined micro

air vehicle. Based on their observations of wing loading, flapping rate and vehicle

mass, they conclude that the optimal MAV could have a mass of 50g and flap at

10Hz. Additionally, they provide a means of determining the power required to

accelerate a flapping wing and data on the effects of flexible membranes on fixed-

wing lift generation. Ho, et al. described similar scaling laws in their study of the

design space of flapping wings [19].

The motions of bird wings reflect the full range of the mechanical possibilities

achievable by their combinations of muscle, joints and bone. As one might expect,

they use these to achieve optimum configurations for various flight regimes such as

long-endurance glide, landing and high-speed dive [1]. Interestingly, this points out

that a flapping wing aircraft also can be a morphing wing glider.

In addition to studying power consumption and wing motion in flight, several

researchers have applied flow visualization and PIV to study the wake produced

by these flying creatures. Rayner describes four distinct wake shapes based on the

wing geometry and flapping motion. These include ladder shaped, with each rung

having the same direction of circulation applicable mostly to small insects; ladder

shaped with rungs that reverse their circulation with each half cycle, typically seen

with larger insects and small ornithopters; ring-shaped vortecies shed each half cycle

by small birds and larger ornithopters; and permanently attached wingtip vortexes

[52].
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1.1.3 Mechanical flight experiments

Mechanical flight studies can generally be divided into two categories, (1) fixed

bench-top and wind tunnel experiments and (2) flight tests. In the case of (1), all of

the tools at the experimental fluid dynamicist are available and have been applied

to the body and the fluid nearby. For (2), all of the aerodynamic components are

necessarily included, including changes in speed and angle of attack due to the

period loading of the wings, but it is difficult to collect flight data beyond handling

qualities, range and endurance. To date, the only flight data collected from an

ornithopter was published by Krashanitsa et al. [27] which showed that a relatively

large conventional ornithopter behaves much like a conventional fixed wing aircraft.

In addition to a thorough review of the literature involving scaling laws, the

results of several experiments related to the development of small ornithopter wings

was reported by Ho, et al. [19]. They discovered several key factors in the design

of small flapping wing. Most importantly for spanwise rigid wings, lift and thrust

coefficients increase with decreasing advance ratio, and that flexible membranes

and MEMS check-valves result in more efficient thrust production by minimizing the

negative peaks in the thrust curve [19]. Shyy, Berg and Ljungqvist [57] also presented

results showing how flexible membranes lead to improvements in lift production in

Clarky-Y airfoils at low Reynolds numbers.

A detailed analysis of the wake of a thick (NACA 0030) flapping foil was un-

dertaken by Parker, von Ellenrider and Soria that revealed a complicated pair of

leading and trailing edge vortical structures shed every half period in response to

plunging motion in a low-speed mean flow [48].

There is a growing interest in flapping wing aircraft that hover, which has in-

spired several researchers to investigate clamped models in quiescent air. Tarascio

et al. [62] constructed a small mechanism with a rectangular wing in a pin joint
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that allowed it to move freely between angles of attack of 15o, 30o and 45o. Wing

speeds were chosen such that the device was quickly driven to its stops and held in

place by airflow trough out most of the flap cycle. Using this mechanism, typical

of many micro air vehicle flappers, they observed a wake structure consisting of

a recirculation region near the stroke reversal points, starting vorticies shed with

each stroke reversal and turbulent eddies throughout the stroke cycle. They also

appeared to show the “necking-down” wake predicted by actuator disk theory.

Publications involving mechanical flapping wing flight are limited to largely sub-

jective pilot reports [11]. Additionally, the ornithopter subsection of the Interna-

tional Micro Air Vehicle Competition rewards primarily small size, followed by en-

durance and finally maneuverability, while fixed wing vehicles face strict rules for

vehicle autonomy and ground crew interaction [40].

Extending the work of Cylinder, Srull and Kellogg [10], Kellogg, et al. [25] de-

scribe an alternative approach to mechanical flapping that attempts to make better

use of the tools available to human engineers than the conventional ornithopter con-

figuration. They discussed free-flight tests of several small vehicles that made use of

a combination of fixed foils, clapping wings and reversing camber wings to produce

thrust and lift, a concept they call “aerial swimming.” Their most successful design

features a pair of camber-reversing, clapping foils at the front and rear of the air-

frame, which they describe as being steerable in flight via radio control and capable

of crawling across level ground.

1.2 Aerodynamic modeling

For the purposes stated above, there are three major approaches to the modeling

of unsteady aerodynamics. The oldest, classical approach involves computing the lift

on two dimensional segments using thin airfoil theory or conformal mapping. Also,
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there are several varieties of lifting line theory, generally based on Theodorsen-like

functions, that attempt to compute the lift on segments of the wing based on their

motion. Finally, as faster computers increase the amount of computation that can

be done in “real-time”, it becomes possible to model vehicles using panel methods.

1.2.1 Thin airfoil theory

Nearly all studies of unsteady aerodynamic forces cite Sears’ dissertation, or

at least cite a paper that cites it. The reason his that he and his advisor, von

Karman, derived an analytical expression for the pressure distribution around an

airfoil subject to a sinusoidally varying angle of attack [55]. However, the method

he developed relies on multiple Bessel functions for each relatively small segment,

and as such is not practical for real time simulations.

However, a number of authors have considered the problem of conformally map-

ping a circle undergoing period movement into a flat plate flapping at the same rate.

Yu and Tong [68] use this technique to demonstrate the utility of stroke asymmetry

using conformal mapping of a flapping airfoil going through several different ver-

sions of asymmetric downstrokes. They showed that different ratios of upstroke and

downstroke speed and angle of attack lead to more powerful or efficient force gener-

ation for different flight regimes. Minotti [43] developed a two dimensional, inviscid

model for a flapping airfoil in hover. Like most thin airfoil models, it assumed a

combination of quasi-steady thin airfoil theory, wake recapture and added, or vir-

tual, mass effects. However, his paper explicitly lays out the conformal mapping

transformation, giving explicit relationships for the bound and leading edge vortex

circulation, as well as the forces generated by the airfoil.
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1.2.2 Panel methods

As desktop computers become capable of hundreds of mega-flops, panel methods

become a realistic way of simulating flapping flight in real time without the con-

straints of models that imposed conditions on the mean flow for validity. The most

obvious singularity method to use is the vortex lattice method, as the literature

is full of information related to the placement and motion of shed vorticity near

flapping wings.

In addition to the number and spacing of panels, the most important imple-

mentation detail of an unsteady vortex lattice method is the position of the wake.

Konstadinopoulos et al. [26] take the method proposed in Katz and Plotkin [24]

farther by including the effects of vorticity shed from the leading edge of a delta

wing, and from the sides of a square subjected to slow rotation about its streamwise

axis. They continued adding elements until the wake effect on the wing panels fell

below a threshold, resulting in a relatively long grid that bore a striking resemblance

to flow visualization of the scenarios presented.

More recently, Fritz and Long [17] explained how to implement an unsteady

vortex lattice method for unsteady wing aerodynamics using the C�� programming

language. The central observation was that one should use vortex rings. They

suggested a profile of 15 spanwise by 5 chordwise, and a vortex wake shed from these

rings to compute the steady and unsteady components of lift. They also suggest that

if the run times are not fast enough, the algorithm was highly parallelizable, allowing

the researcher to farm out the expensive computations to the local supercomputer

and use a desktop to display the results. The authors included equations relating

panel circulation to panel forces. This is most useful for thin wings such as those

that would work for micro air vehicles. They showed how to compute the pressure

jump across a panel, allowing simple decomposition into lift and thrust based on
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the equations in Katz and Plotkin’s book [24]. Aside from this, the paper compares

its code to Theodorsen theory for a pitching and plunging airfoil to verify that it

produced good results. The final sections include wake portraits and lift plots. The

results showed fertile ground for improving wake models to provide higher fidelity

and reduce run time.

1.2.3 Lifting line theories

The original aerodynamic work that is relevant to the problem of single degree of

freedom ornithopter propulsion was done by Theodorsen while investigating aeroe-

lastic flutter. His frequency domain analysis focused on the coupling between angle

of attack changes due to the wing motion and the aerodynamic loads on the airfoil.

Since his time, there have been numerous studies devoted to the topic of lift gener-

ated by an airfoil section based on a frequency domain analysis of the motion. The

primary advantage of these methods for real-time simulations over thin airfoil the-

ory and panel methods is execution time, although they tend to make assumptions

about the periodicity of the flow that may not be valid in free flight.

In 1936, Garrick [18] investigated the realm of flapping foil propulsion assuming

synchronized pitching, plunging and aileron flapping assuming inviscid flow and no

leading edge vortex. The equations were developed in great detail, and he concluded

that for high Reynolds numbers, slower flapping is more efficient, provided the wing

motion is purely normal to the direction of flight.

The mid-1990’s saw a revival of sorts for these methods, with two papers that

focused on applying them to different scenarios. By assuming sinusoidal flapping

and relatively low advance ratio, DeLaurier [12] developed an aerodynamic model

based on modified Theordorsen functions and empirical relations for wake recapture.

Further, he assumed that leading edge suction from a thick airfoil is the primary
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means of producing thrust. As such, his model does not apply to MAVs, but is

useful for investing the possibility of larger-scale flapping vehicles. Extending the

analysis in his previous work, DeLaurier explains a mechanism for computing the

aeroelastic deflections of a flapping wing. Effectively, he assumes that spanwise

and twist deflections have the same period as the root flapping with a phase and

amplitude determined by structural stiffness. Without this assumption, the result

of integrating the presented equations is an unstable system, but the assumptions

match experimental data well [13]. Later, a student of his, Larijani, developed the

nonlinear equations, including damping, that represent a stable set of equations for

the aeroelastic performance developed in the other DeLaurier papers [12, 13]. This

paper extends that work a bit by adding damping as a result of material stretching

to the original equations to cancel out the unbounded flexture and twisting observed

with the standard set. It also covers how to add the effects of stall. This method

predicts that all of the aeroelastic motion settles into a sinusoidal pattern, even with

the stall during part of the flapping cycle [29].

Jumper and Hugo [23] develop a panel-type method for unsteady lift with more

theoretical backing than DeLaurier’s work. Their results were for solid wings, and so

the method should work for the “aerial swimming” platforms developed by Kellogg,

et al. [25]. Instead of simply assuming a singularity on each panel, it attempted to

compute the unsteady circulation and unsteady wake given the time history of the

motion of the wing. As there are no explicit limits on the allowable motions, this

model offers an interesting and possibly highly efficient and effective wing model.

Anderson, Pesavento andWang [3] developed a lifting line model of a flat plate falling

and fluttering. They explicitly determined the aerodynamic forces and moments

by treating the falling plate as a rapidly pitching 2D airfoil with end effects, and

presented experimental comparisons.
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1.3 Structural modeling

For root-flapping ornithopters, the deflection of the wings in flight must be

tracked as part of the vehicle state. As such, it is important to find a good way

to represent the motion of the wing accurately with as few states as possible. De-

Laurier [12] proposed that a wing could be broken up into strips, each with its own

twist and vertical deflection. This model produced remarkably accurate results for

a 2m span ornithopter wing. However, this means that the simulation must track

four states for each wing section used in the aerodynamic model, and decoupling

sections of the structure that are bound together tightly.

Most aeroelastic simulations follow the example of Preidikman [51], and use a

finite element method (FEM) code, to determine the structure’s response to forcing

found with either a computational fluid dynamics (CFD) or vortex lattice method

(VLM) simulation. Despite its much greater computational complexity, this method

may provide the most accurate model of tractable order by reducing the problem to

an eigenvalue decomposition of the system’s fundamental matrix, A, transforming

from the full set of FEM states, �x, into a more convenient transformed space �ζ,

according to Eq. 1.2. The vast majority of the energy of any vibrating structure is

contained in relatively few modes, reducing the number of states to be tracked from

several thousand for a properly fine mesh, down to two or three relevant states. This

method also decouples the structure and aerodynamic models, placing the aerody-

namics in the forcing term �u in Eq. 1.1 and 1.3, and allowing a linear transform of

the filter states to serve as the input to any aerodynamic model.

�̇x = A�x+ B�u (1.1)

�x = M�ζ (1.2)
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�̇ζ = M��AM�ζ +M��B�u (1.3)

Generating a finite element model of a small composite structure requires de-

tailed knowledge of the fiber to resin ratio as well as the properties of the fibers

and the resin. In addition, the interface between the composite structure and mem-

brane must be modeled accurately. This type of analysis has been performed for the

tightly controlled “dry lay-up” process using pre-impregnated fibers and a well es-

tablished membrane attachment process developed at the University of Florida [20].

They were able to tune a model to predict the peak displacement of a flexible latex

membrane glued to the frame subjected to steady air loads simulating level flight of

a fixed-wing micro air vehicle. This study did not observe large deflections of the

composite structure, and so avoided the need to model the viscoelastic response of

the epoxy resin [58]. This viscoelastic character of carbon fiber composites may be

enough to violate the assumptions underlying the transformation in Eq. 1.2 [29].

1.4 Piezoelectric wing membranes

Piezoelectric materials respond to changes in strain by generating a time-varying

charge across its capacitive elements. Numerous devices take advantage of this

property to detect acceleration and rotational motion by placing either a beam or

a tuning fork made from a piezoelectric crystal. Piezoelectric films are frequently

used in microphones, producing a current proportional to the change in pressure

across the microphone.

For most sensing applications, the output current is too small to power the sensor

and its accompanying amplifiers and signal conditioners. However, interest in low

power, persistent sensor networks has led to the development of circuits to harvest

and analytical models to maximize utilization of the alternating current generated

by these materials as they undergo unsteady loads.
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1.4.1 Sensing

Piezoelectric materials have been used in accelerometers, pressure sensors and as

strain gages on vibrating beams. This review considers using them simultaneously

for all three, as the wings will be accelerating, driven by unsteady air loads and

continuously flexing. Each of these induce a time varying strain at each point on

the wing. Assuming the membrane’s response is linear up to its elastic limits, the

measurement model is simply a matter of projecting the estimations of the three

components onto the wing’s measurement space[46]. This does have some interesting

consequences for the design of the wing, however, as the sampled area must have

conductive material covering both sides of the membrane, and traces that do not

overlap to carry the signal back to the processor. In general, the equations in this

section will have to be integrated over the area sampled.

1.4.2 Acceleration measurement

The local acceleration of a point on the wing can be found using the standard

equation for a point acceleration in a rotating frame, Eq. 1.4, multiplied by the

mass, m, divided by the stiffness, k, of the membrane covered by the electrodes.

However, Usherwood, et al. [64] observed that is it not necessary to filter out the

acceleration signals of small pressure sensors on the wing of a pigeon. In practice,

this term may be washed out by the pressure and deflection portions, but it is

useful to include it until that has been demonstrated. The acceleration am, of the

measured point rm is a function of the vehicle’s acceleration av, the instantaneous

flapping rate ωwing, and the velocity and acceleration of the structure at that point,

as and vs, respectively, and found by transforming the modal space of Eq. 1.3 back

into physical space.
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am = av + as + ωwing × (ωwing × rm) + 2ωwing × vs;S(t) = νaȧm (1.4)

The actual signal, S(t), measured by the microprocessor will be the time rate of

change of this acceleration times a constant νa that accounts for the mass, stiffness

and electrical properties. Given that ωwing drops to zero twice per flapping cycle

and that the change in acceleration is smallest when the wing is moving fastest, and

thus producing the most aerodynamic force, it is easy to see how this term can be

neglected.

1.4.3 Pressure measurement

Piezoelectric materials generally respond to changing loads, and so are particu-

larly useful as microphones. Here the pressure loads are generally changing faster

than the flapping frequency in response to wing harmonics and unsteady flow move-

ment. Estimating the signal depends on computing the change in load on a par-

ticular point, using the computed normal force and pitching moment of a strip to

estimate the pressure distribution using Eq. 1.5. The predicted signal is then com-

puted by estimating a derivative using the difference the current and previous lift

estimate L(t) divided by the time step dt. For panel methods, the pressure difference

at a given point is computed as part of the standard force and moment calculations.

However, for lifting line methods, the pressure distribution is implicitly integrated

over the chord, and so the measurement model requires a term νp that accounts for

the sensor’s position and the current state of the wing structure.

S(t) = νp(rm� �ζ)(L(t)− L(t− dt))/dt (1.5)
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1.4.4 Deflection measurements

The relationship between strain rate and piezoelectric response was shown by

Lee and O’Sullivan to be Eq. 1.6[30]. The signal due to the deflection of the whole

wing, rather than local strains induced by local pressure or acceleration, is a strong

function of the strains, ��, �2 and �6 in the polling, normal to the polling and shear

directions, respectively, and the associated piezoelectric constants, e3�� e32 and e36

in those directions. This effect must be integrated over the area of the sensor A,

while a scaling factor ν� accounts for how this current signal is interpreted by a

voltage-sensing microprocessor.

S� = ν�

�

�

�

e3�

∂��(�ζ)

∂t
+ e32

∂�2(�ζ)

∂t
+ e36

∂�6(�ζ)

∂t

�

dxdy (1.6)

The relationship between �ζ and local strain rate based on the large scale struc-

tural deformation can be found in Bandyopadhyay.[7]

1.4.5 Energy harvesting

The nature of the capacitive, strain induced current requires a fair amount of

creativity in the circuit designed to harvest energy from it. Like most resistor-

capacitor circuits, there is an optimal average resistance that should be supplied by

the load, and modern research seeks to more finely tune the process of converting

the AC signal to DC with a focus on battery charging.

The most basic method of harvesting energy is a simple diode rectifier. This

essentially changes the alternating sign of the piezoelectric voltage into its absolute

value, but fails to optimize the process of charging a battery. Lefeuvre, et al. [31]

compared four different approaches to piezoelectric energy harvesting, the most

efficient being Parallel Synchronized Switch Harvesting on Inductor (SSHI). The

way this works is an inductor and switch are placed in parallel with a piezoelectric
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element and diode rectifier. The switch is closed briefly at peak displacement in

order to grab the charge that has built up on the piezoelectric capacitor. This

sets up an L − C circuit that is designed to have a period much shorter than the

mechanical period, and is broken at half an electrical period. The result is a nearly

constant voltage to the rectifier, and power harvesting up to 800% greater than a

simple rectifier circuit.

More recently, Erika, et al. [15] described a means of designing and modeling a

piezoelectric unimorph harvester for remote power supplies. They supplied a model

for the ratio of voltage to bending moment with a resistive load, and concluded that

this model works at the resonance frequency of the deflecting disk. The important

point to note from this is the need to design the energy harvesting membrane such

that its resonance is close to the expected forcing frequency.

1.5 Flow control

As mentioned above, insects, bats and birds employ a variety of complicated

wing motions and other kinetic features, such as small hairs, flexible skin and feath-

ers to manages the flow over their wings. With the current mechanical state of the

art limiting humans to single degree of freedom flapping and aeroelastic wings, solid

state and micro electromechanical systems (MEMS) provide a means to reproduce

the flow effects of these more complicated movements and structures. This review

will focus on the solid state single dielectric barrier discharge (SDBD) plasma actu-

ator. This section will briefly discuss SDBD plasma actuator applications and their

modeling.

1.5.1 Applications

Post [50] applied a plasma actuator to the leading edge of an airfoil oscillating

in pitch, demonstrating that the actuator can delay stall and speed reattachment,
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leading to a thirteen percent increase in cycle integrated lift using the “smart actu-

ation” technique. This study demonstrated the effectiveness of feed-forward control

of a dynamic stall vortex.

As mentioned above, one of the major research efforts currently underway in-

volves finding a means of implementing feedback flow control on a flapping wing to

maximize the lift production.

One of the central difficulties in applying feedback flow control to flight vehicles

is that despite substantial progress in open-loop flow control, there has been no

significant research into the implications of vehicle motion in response to flow control

on the effectiveness of that control. An interdisciplinary team from the Georgia

Institute of Technology began to address this question by applying model-inverse

adaptive control to an airfoil section with trapped vorticity actuators on the pressure

and suction side of the trailing edge[28].

1.5.2 Modeling

Yu and Tong [68] use a conformal mapping scheme to demonstrate how to use

stroke asymmetry as a means of flow control for insect flight, demonstrating that

an asymmetric stroke is more effective at generating lift and thrust than equally

long up and downstrokes. While not technically a flow control mechanism, this does

provide a possible means of designing control laws for the motors that drive the

wings that would achieve the same effect.

Orlov developed a model for the distribution of the electric-field induced body

force from a single DBD actuator, although it requires an empirical “scaling factor”

to use in flow simulations [47]. While one can manipulate the magnetic field to con-

trol plasma-heavy flows, too much energy is required to perform magnet-based flow

control in air according to simulations and plasma tunnel experiments conducted
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by Shang, et al. [56].

1.6 Flight dynamics modeling

Three groups developed flapping wing flight dynamics models, each using a very

different approach. The oldest was developed by the ornithopter group at the Uni-

versity of Toronto under DeLaurier as a simulator for their manned ornithopter.

They use an aerodynamics model based on a look-up table that takes the vehicle

motion as an input and interpolates between the nearest data points in a database

collected from wind tunnel studies [16]. The rest of the vehicle was modeled using

standard techniques for fixed wing aircraft.

DeLaurier was involved with another group that developed a clap-fling vehicle

capable of hover and transition to forward flight. They describe using a wing aero-

dynamic model that uses a very simple single-vortex model of wing circulation that

sheds a point vortex with circulation equivalent to the computed difference between

the current and previous time step’s vorticity, as determined by a function fit to

experimental data. This singularity model was also used to model the flow over

the aerodynamic control surfaces. Early flight tests suggested that this model was

acceptable in hover, but did not accurately capture the flow over the control surfaces

during transition to forward flight [70].

The Dickinson Lab at the California Institute of Technology developed a flight

dynamics simulation of a fruit fly using a panel method based on conventional un-

steady aerodynamics that assumes the flow is locally two dimensional. The “steady”

component of the model uses data collected by rotating a scaled model of a fly wing

in linseed oil to determine the lift and thrust components. The rest of the flight

dynamics are computed using standard rigid body mechanics equations [14].
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1.7 Summary and open issues

On the NASA Technical Readiness Level (TRL) scale, flapping wing aircraft

have roughly reached level three, “proof of concept.” There are some flyable pro-

totypes, mostly ornithopters capable of forward flight, one of them autonomous,

and one manually controlled vehicle capable of hover. There has been significant

fundamental fluids research investigating the conditions in which flapping wings are

the optimal propulsion mechanism. Scaling laws based on preliminary vehicle and

animal flight data provide a good start for exploring the design space of feasible

flapping wing aircraft.

However, developing a functional prototype, i.e. an autonomous, hovering flap-

ping wing vehicle than can carry a small surveillance payload, requires a more

methodical approach to examining the behaviors of flapping wings in hover. Specif-

ically, for a given wing geometry, there are four fundamental questions that need to

be answered:

1. What fluid dynamics assumptions can or must be included in a flapping wing
flight dynamics model?

2. What are the time-resolved forces and moments generated by flapping wings
in air?

3. What is the bandwidth and magnitude required of controls, sensors and nav-
igation filters to maintain a stable hover?

4. What effect does changing the wing structure or motion of the wing have on
this force generation?

1.7.1 How we reached TRL-3

The early basic science work was done by Wies-Fogh [65], who discovered the

clap-fling mechanism for very small insects. Lighthill [34] conducted experiments

and produced an excellent summary of the early work on unsteady aerodynamics as

it applies to flapping wing vehicles. Numerous bird, bat and insect studies since have
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provided a plethora of information about the fluid and mechanical constraints in

which flapping wing aircraft operate. Together, these efforts brought the technology

to TRL-1, basic science.

Scaling studies for micro air vehicles based on bird and insect data conducted by

Ho, et al. [19] and Liu [35] began the process of reaching TRL-2 by examining the

likely payload, range and size constraints a flapping wing micro air vehicle would

encounter. Numerous studies into flapping mechanism design and various wing

shapes fleshed out these broad parameters into specific parameters vehicle designers

could chose between to optimize speed, range or maneuverability.

The flapping wing component of the annual International Micro Air Vehicle Com-

petition, led to a large number of vehicles, complete with detailed design reports,

being produced, providing practical experience and academic knowledge of realistic

flight vehicles. A team at the University of Arizona took this a step further and

automated a camera-carrying ornithopter, proving that it can be done. Combined

with the hovering vehicle prototype developed under a DARPA contract, it is safe

to say that the technology has reached TRL-3, proof of concept.

1.7.2 How to reach TRL-4

The goal of this effort is to develop the path towards TRL-4 through experiments

and analysis to provide answers to the questions above.

Chapter 2 presents a novel method of measuring the unsteady flapping wing

forces in a hover and the wing motions associated with those forces to provide

information needed for Questions 1 through 4. The most important lesson of all

of the attempts at modeling flapping wing force production is that all models are

inherently empirical.

Chapter 3 covers the results of the force measurement experiments. These are
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important for both understanding the fundamental physics of flapping wing flight

and advancing understanding of flapping wing flight dynamics. Stabilizing a vehicle

in hover will likely require at the very least an empirically derived process model

for an on-line state estimator such as a Kalman filter, and any attempt at flight

simulation must have an update rate greater than the Nyquist frequency of the

flapping wing aerodynamics.

Chapter 4 presents measurements of the structural deformation to provide infor-

mation towards the answers to Questions 1 and 4. Specifically, it seeks to determine

if the structure can be modeled simply enough to include its dynamics in the equa-

tions of motion of the vehicle, or should it be handled by a look-up table based on

flight conditions. Whether as a simplified structure model or look up table, it will

determine the inputs to the flapping wing aerodynamic model.

Chapter 5 combines the information collected in the previous chapters to directly

answer Question 1 by investigating the results of applying the appropriate model

estimation techniques to the data.

This work concludes with a brief summary of the answers to questions 1-4 and

a description of further efforts required to build, simulate and automate a hovering,

flapping wing aircraft.
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CHAPTER 2

EXPERIMENTAL METHODS

2.1 Force measurement system

2.1.1 Measurement system dynamic modeling

The typical system used to measure flapping wing thrust force is a load cell or

cantilever beam with strain gages that measure the displacement of a linear spring.

This is illustrated in Figure 2.1. Equation 2.1 is a simplified model of the relationship

between the measured displacement, x, and thrust force, T , as a function of time, t,

given a flapping mechanism mass of mm and spring constant, k. The first vibration

mode frequency, fn, of this type of sensor is given by Eq. 2.2.

mmẍ = xk + ẋb+ T (t) (2.1)

fn ≈

�
k

m
(2.2)

This system is not a force sensor, but a displacement sensor whose frequency

response depends on the mass of the flapping mechanism. When T (t) has frequency

content near or greater than fn, the output of a load cell will be dominated by

oscillations at that frequency, as shown in results from Wu et al. [67]. This is

critically important for unsteady force measurements.
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Figure 2.1. Schematic of the standard load cell force transducer. The large mass
of the flapping mechanism lowers the natural frequency of the system to well below
the frequency content of the flapping aerodynamics.

Figure 2.2. Expected flapping wing thrust time series generated using phase-
averaged data from Lehmann, et al. and assuming a flapping rate of 10Hz [32]
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Figure 2.3. Power spectral density of the force signal generated by a dynamically
scaled flapping wing model showing significant frequency content up to 12 times the
flapping rate

The phase-averaged thrust force measured by Lehmann et al. [32] was used as

a starting point to make a synthetic time series. This is shown in Figure 2.2. The

spectra of the flapping time series shown in Figure 2.3 indicates that the frequency

content of the aerodynamic load extends out to twelve times the flapping frequency.

Thus, a system whose first vibration mode frequency is only two or three times

greater than the flapping rate will not be able to faithfully represent the time-

resolved force signal.

2.1.2 Force measurement system

The balance beam system shown in Figure 2.4 has two significant advantages

over conventional load cells: (1) it separates the sensing element’s properties from

the force generation mechanism and (2) it provides a much better simulation of a

real hovering vehicle by allowing the mechanism to move slightly in a vertical plane.
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Figure 2.4. Photograph of the assembled balance beam mechanism.

The first advantage allows time resolved force measurements because accelerome-

ters are available with a wide variety of sensitivity and bandwidth. The second

advantage results in measurements that are more useful to researchers interested in

flapping wing flight mechanics. Figure 2.5 shows a complete electrical schematic,

the components of which are discussed in detail below.

2.1.3 Wing design and construction

Three pairs of wings were built for for this study based on the planform shown

in Figure 2.6. They consisted of an aluminum screw plate used to attach the wing

to the gearbox, a carbon fiber structure and a polyvinylidene fluoride (PVDF) skin.

The screw plate allowed the custom-made wings to mount to the gearbox as a solid

connection that guaranteed the wing root could not rotate relative to the mechanism.

The carbon fiber frame was made using a wet lay up process and was vacuum cured

in a warm oven. The frame and PVDF skin were bonded using cyanoacrylate glue.

Figure 2.7 shows the stiffest wing tested. It had three layers on the inboard

stiffener, two layers on the batten and one on the crossbar. Including the aluminum

screw plates, this pair of wings had a total mass of 5.85g.
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Figure 2.5. Schematic of the electrical system used in the experiment

Figure 2.6. Schematic view of the planform and support structures of the wings
used in this study
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Figure 2.7. Photograph of the stiffest wing with structural details noted. Mass
= 5.85g

Figure 2.8. Photograph of the most flexible wing with structural details noted. Mass
= 4.79g
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Figure 2.9. Photograph of the drumhead wing with structural details noted. Mass
= 5.56g

Figure 2.8 shows the most flexible wing tested. It had two layers on the inboard

stiffener, one layer on the batten and one on the crossbar. Including the aluminum

screw plates, the most flexible wings had a total mass of 4.79g.

Figure 2.9 shows the drumhead wing. It had two layers on the inboard stiffener,

two layers along the trailing edge and one on the crossbar. This drumhead arrange-

ment placed more mass farther from the access of rotation and thus produced a

significantly different timing of pitching of the wing relative to the flap cycle. The

pair of drumhead wings had a total mass of 5.56g.

2.1.4 Flapping mechanism

Figure 2.10 shows the Cybird commercial gearbox driven by a Great Planes

Speed 280 motor that was used to flap the wings. The motor was powered using

a radio control aircraft electronic speed control (ESC) powered by a Tenma 72-

630A power supply. The Tenma power supply replaced the battery that would
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Figure 2.10. Photograph of the flapping mechanism, a Cybird gearbox, and brushed
DC motor used to drive it for this experiment.

normally accompany the ESC in an RC aircraft. The ESC received standard RC

pulse width modulated (PWM) control signals from a Pololu serial servo controller

(SSC). The SSC received its commands from a Linux desktop that also hosted the

data acquisition electronics.

Figure 2.11 shows how an optical sensor was used as a tachometer that measured

the passage of a reflective element on the mechanism. This produced a pulse that

Figure 2.11. Schematic view of the operation of the reflective optical tachometer.
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Figure 2.12. Diagram showing how the vertical displacement of the beam was used
to find the angle θ.

began at a phase angle φ = 110◦ on each passage, allowing both measurement of

the flapping rate and phase averaging of the data.

2.1.5 Balance beam deflection measurement

The angle of the balance beam relative to the horizontal plane θ was important

both for determining the counterweight by showing when the beam was level and

for processing the accelerometer data. In this experiment it was measured using a

Keyence optical displacement sensor that measured the distance between the bottom

of the balance beam and a reference height. This is shown schematically in Figure

3.2.

2.1.6 Accelerometer selection and mounting

The unsteady part of the aerodynamic load was measured using an accelerometer

mounted above the counterweight. The accelerometer was a Freescale MMA1270EG

with a single sensitive axis orthogonal to the plane of its surface mount. It was able

to measure accelerations between ±28m/s2 (±2.5 times acceleration due to gravity)

over a frequency range from from 0− 1kHz. Figure 2.13 shows how it was mounted
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Figure 2.13. Photograph of the accelerometer mounted on the test stand with
sensitive axis in the vertical direction.

above the counterweight during experiments. This placed the accelerometer as far

from the axis of rotation as possible, with its sensitive axis perpendicular to the

balance beam. The counterweight itself consisted of a quarter inch bolt on which

washers were secured. This provided an adjustable and rigid counterweight.

2.1.7 Balance beam design

The balance beams were constructed from aluminum bars as shown in Figure

2.14. They rotated about a quarter inch shaft that passed through a ball bearing

sleeve located near the center. The flapping mechanism mounted to one side of the

beam. That end of the beam had been milled thinner to attach the mechanism. A

slot was milled into the other side to hold the accelerometer and counterweight.
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Figure 2.14. Photograph of the balance beams used in this experiment. The shorter
beam is shown with ball bearing mounted at the rotation point.

A second longer beam was built to confirm the assumption that the system was

measuring the thrust force generated by the wings. Its length was longer, resulting

in a larger moment of inertia and thus smaller net acceleration than the shorter

beam.

2.1.8 Data collection procedure

Data collection involved three distinct steps: (1) setting the motor speed, (2)

adjusting the counterweight to level the beam, and (3) collecting acceleration, dis-

placement and tachometer time series as well as the weight of the counterweight.

Step (1) was accomplished with a small program written to convert Linux com-

mand line arguments into RS-232 signals that could be read by the SSC. Generally,

there was a settling time of approximately 10s between the sending of the command

and the mechanism’s arriving at its new speed. This also included the time required

for the pendulum part of the beam dynamics to damp out to a low amplitude,
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long-period oscillation.

Step (2) involved adding or removing metal washers and nuts from the 1/4” bolt

attached to the end of the beam. This method was labor intensive, but provided a

finely adjustable mass that could be firmly attached to the beam. The counterweight

hung below the center-line to insure the system center of gravity stayed below its axis

of rotation. This resulted in a small change to lp and thus the oscillation frequency

of the pendulum. However, it was never faster than on the order of 1Hz, well below

the flapping frequency.

Step (3) used a PowerDAQ analog to digital (A/D) board with three single-

ended inputs to measure the accelerometer, deflection and tachometer time series.

It was controlled using the vendor-provided drivers and a custom program that ran

from the Linux command line. The counterweight’s mass was measured using an

electronic balance after the electronic data was collected. A shell script was written

to insure that these steps were done in the correct order and that the generated

data files were handled properly.

2.2 Structure deformation measurements

2.2.1 Mechanism, Camera and Lighting Setup

A schematic of the arrangement the camera, spot light and flapping mechanism

is shown in Figure 2.15. The flapping mechanism was mounted on the short beam

shown in Figure 2.14. The driving electronics are the same, but no motion sensors

were used. A white board placed behind the wings provided a relatively contrast-

free background. The best results for lighting were obtained by placing the light

source off to the side and bouncing it off the background such that the wings are

easily detected shadows. An example of an image obtained by this setup is shown

in Figure 2.16.
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Figure 2.15. Top-view of the arrangement of camera, flapping mechanism and spot-
light as seen from above during the structure deformation measurements

Figure 2.16. One of the frames captured during high speed flapping of the stiff wing
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Figure 2.17. Electrical schematic of the optical deflection measurement system

Measurements were taken with a high speed digital camera at a frame rate of

2kHz. This matched the sampling rate of the force measurement system. Each

sequence consisted of 5,457 frames, each with a resolution of 1024× 1024 pixels per

image. An electrical schematic of this system is shown in Figure 2.17.

2.2.2 Image collection procedure

Images were collected at five flapping rates for each of the three wings described

above. The camera was configured to fill its internal memory buffer, resulting in

5,457 frames collected over 2.7s. This resulted in a minimum of 10 flap periods at

the slowest flapping rate, and up to 33 complete periods at the highest flapping

frequency.

36



CHAPTER 3

Force Measurement

3.1 Introduction

The objective of this study was to examine the time-resolved forces generated

by mechanical flapping wings in hover. This is useful for generating insight into

the fundamental physics of flapping wing flight, designing flight dynamics models

(FDMs), and finding control laws for micro air vehicles (MAVs).

The standard ornithopter uses a pair of wings hinged at the root and flapped

about a single axis. This approach has been used for over a century in order to

propel mechanical flapping wings that use wing flexing to achieve a pitch-plunge

profile, that in turn generates thrust [45]. There has been substantial progress in

the design of mechanisms that mimic the complex motions of hummingbird and

insect wing flapping, but these mechanisms add weight and complexity to vehicle

systems, and for now exist only as bench top models [9]. Another popular flapping

mechanism involves clapping pairs of wings together that mimic the “clap and fling”

mechanism used by small insects to boost their efficiency [70]. In short, for all man

made flapping vehicles in use today, the flexible wing is a critical component in the

force generation. Since a combination of aerodynamic and inertial loads causes the

wings to take on a shape trajectory, quantifying this is critical for designing flapping

vehicles.

Previous efforts to measure flapping wing forces have used scaled models in a
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heavier fluid such as oil or water, or have attempted to interpret the output of a

spring scale [19, 14, 61]. The problem with these models is the difficulty of dynam-

ically scaling both fluid and structural components. As a result the complicated

fluid-structure interaction is generally neglected, thus producing substantially dif-

ferent results from tests conducted in air. Additionally, the heavier fluid essentially

acts as a larger second order low-pass filter. Both effects limit the detectable band-

width of the flapping system, which gives the impression of less high-frequency

content than is actually present in the force time series, and potentially leads to

inadequate update rates in the design of simulations and control systems.

Force measurements in air typically use a strain-gage load cell or cantilever

beam that behaves like a spring scale. As discussed further in the next section, this

technique is useful for measuring the average force [39]. Wu et al. [67] developed a

flapping mechanism and camera system to simultaneously measure the small forces

generated by the flapping wings and their deformation. They encountered significant

problems with “ringing” in the force measurement device. They ultimately assumed

that the heavily filtered strain gage output represented the true force measurement.

3.2 Data Analysis

The mean thrust, T̄ , is balanced by an adjustable counterweight, mc. The

magnitude of the acceleration is determined by the angular acceleration of the beam,

θ̈, which in turn depends on the moment of inertia of the whole beam, I. The mass

and moment arm of the counterweight, lc; the mass and moment of arm of the

flapping mechanism lm and mm respectively, and the mass and moment arm of the

wings themselves lw(t) and mw. These dimensions are enumerated in Table 3.1.

Iθ̈ = lcmcg + lbmbg + lwT (t)− lwmwg − lmmmg − sin θmtlpg� (3.1)
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Figure 3.1. A schematic view of the instrumented balance beam used to measure
the flapping wing forces and moments

Table 3.1

Values used in this analisys

Beam lm lc lb mb lw mm lp
Short 17cm 18cm 3.00cm 272cm 19cm 97 g 1.5cm
Long 21cm 19cm 1.6cm 236.5 g 23cm 97 g 1.5cm

T̄ = (l̄wmwg + lmmmg − lbmbg − lcmcg)/lw� (3.2)

T̂ = Iθ̈ + sin θmtlpg. (3.3)

As shown in Equations 3.1-3.3, accelerometers do not directly measure the gen-

erated thrust, only the changes from the mean thrust T̂ . The unsteady thrust

component T̂ was measured using an accelerometer mounted above the counter-

weight. The voltage generated by the accelerometer, Va was a combination of the

acceleration at the point above the counterweight and the alignment of the sensi-

tive axis with gravity. The acceleration was determined using the equation for the
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acceleration of a point on a rotating body in Meriam and Kraige [41]. The grav-

ity influence is based on the properties of accelerometers described in Chapter 1 of

Sevens and Lewis [59]. The voltage generated is related to these physical factors

through a scaling factor ka as shown derived in Equations 3.4-3.6. Equation 3.4

describes the relationship between linear acceleration, alignment with local gravity,

and the voltage measured by the device. Equation 3.5 relates the linear acceleration

of a point on a rigid rotating body to the angular acceleration of the body given its

distance from the point of rotation. Equation 3.6 combines these two to produce an

estimate of the voltage time series generated by the accelerometer.

Va = −ka ∗ (ẍa + cos θg) (3.4)

ẍa = lcθ̈ (3.5)

Va = −ka ∗ (θ̈lc + cos θg) (3.6)

The voltage time series from the accelerometer was processed in three steps to

compute T̂ (t). First, the raw voltage from the accelerometer was converted to the

nongravitational specific force. The second step involved removing the effect of

gravity using the measurement of the beam’s angle to determine the relationship

between the axis of sensitivity and the local gravity vector. The third step was to

use Equation 3.8 to determine θ̈. With θ̈ and Equation 3.7, it was possible to solve

for T̂ . The total thrust was then the sum of the average and unsteady components.

Iθ̈ = T̂ (t)lw − sin θmtlpg (3.7)

θ̈ =
(−Va/ka − g cos(θ))

lc
(3.8)
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Figure 3.2. Diagram showing how the measured vertical displacement of the balance
beam was used to measure the angle θ.

The angle θ was important both for determining the counterweight by showing

when the beam was level and for processing the accelerometer data. In this ex-

periment, θ was measured using a Keyence optical displacement sensor. This is an

industrial sensor typically used for process control, but it provides a very fast and

accurate non-contact measurement of the height of the bottom of the beam as shown

in Figure 3.2. The angle θ is related to the measurement by Equation 3.9, where r

is the horizontal distance from the axis of rotation to the measurement system

θ = arctan
Δh

r
. (3.9)

3.3 Results and Discussion

3.3.1 Average force measurements

Figures 3.3-3.7 show the average thrust force generated over the range of flapping

frequencies tested using both the short and long beams. In each case, the measure-
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Figure 3.3. The average thrust generated by the stiff wing.

ments from the two beam are repeatable with the experimental uncertainty. This

confirms that the balance beam is measuring a thrust force as shown in Figure 3.1

and modeled by Equation 3.2.

The stiff wing average thrust is shown in Figure 3.3. A log-log plot of thrust

versus flap rate is shown in Figure 3.4, demonstrating the average thrust increases

with the flapping frequency to the 3.5 power. This is very similar to the 3.3 power

observed in data collected by Wu, et al. [67] for a similar wing design.

The average thrust versus flapping frequency for the flexible is shown in Figure

3.5. A log-log plot of thrust versus flapping frequency is shown in Figure 3.6. This

shows that the flexible wing average force increased with flapping frequency to the
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Figure 3.4. Log-log plot of the data presented in Figure 3.3.
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Figure 3.5. The average thrust generated by the flexible wing.
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Figure 3.6. Log-log plot of the data presented in Figure 3.5.

2.98 power. However, the flexible wing generated more thrust than the stiff wing.

The average thrust for the drumhead wing is shown in Figure 3.7. The log-log

plot of these data is shown in Figure 3.8. The drumhead wing produced considerably

more thrust than the stiff wing at all flapping frequencies. This implies that a less

stiff root, and consequently greater deflection due to wing acceleration, is beneficial

for thrust production. The drumhead wing produced as much thrust as the flexible

wing.
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Figure 3.7. The average thrust generated by the drumhead wing.
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Figure 3.8. Log-log plot of the data presented in figure 3.7.
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Figure 3.9. Time resolved thrust generated by the stiff wing at a flapping frequency
of 11.5Hz

3.3.2 Time-resolved force measurement

Figures 3.9-3.11 show time-resolved thrust measurements for the stiff, flexible,

and drumhead wings, respectively, at the highest flapping frequency tested. They

show that the flapping thrust generation is a highly periodic process with respect to

the flapping rate. This fact allowed the data sets to be phase-averaged for further

analysis.

Figures 3.12 through 3.14 show the phased averaged thrust time series for the

stiff wing at three flapping frequencies. This shows similarities to the data collected

by Lehmann, et al. [32]. Most notable is the large peak in the thrust shortly
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Figure 3.10. Time resolved thrust generated by the flexible wing at a flapping
frequency of 12Hz
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Figure 3.11. Time resolved thrust generated by the drumhead wing at a flapping
frequency of 11.5Hz
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Figure 3.12. Plot of the phase resolved thrust of the stiff wing at 11.5Hz
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Figure 3.13. Plot of the phase resolved thrust of the stiff wing at 10Hz
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Figure 3.14. Plot of the phase resolved thrust of the stiff wing at 9Hz
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Figure 3.15. Plot of the phase angle of the peak thrust generated by the stiff wing
at the flapping rates tested.

after the beginning of the downstroke, and followed by small oscillations afterward.

Differences in these three curves relate to differences in vortex formation and vortex

shedding as the wing transitions from a flow dominated by a starting vortex at high

frequencies to a quasi-steady condition at slower flapping rates as described by Jones

and Babinsky [22].

Figure 3.15 shows a plot of the phase angle of the peak thrust generated by the

stiff wing versus flapping frequency. This shows that the phase angle of the peak of

the peak thrust is approximately constant at φ = 210◦, indicating thrust generation

can be treated as a linear process relative to the flapping rate. The peak thrust
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Figure 3.16. Plot of the peak thrust generated by the stiff wing at the flapping
frequencies tested

generated during each flapping cycle can be fit very well by a quadratic function of

the flapping frequency, as shown in Figure 3.16. The square of the flapping frequency

is equivalent to the square of the maximum tip speed as computed by Equation 3.10.

This fact suggests that the force generation process is at least qualitatively similar

to that of rotors and propellers[33].

vtip = (b/2)ff2π (3.10)

The phase averaged thrust for the flexible wings at three different frequencies are
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Figure 3.17. Plot of the phase resolved thrust of the flexible wing at 12Hz.
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Figure 3.18. Plot of the phase resolved thrust of the flexible wing at 11Hz.
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Figure 3.19. Plot of the phase resolved thrust of the flexible wing at 9Hz.
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Figure 3.20. Peak thrust generated by the flexible wing as a function of frequency.

shown in Figures 3.17 through 3.19. As with the stiff wing, it exhibited a prominent

peak in the thrust shortly after the beginning of the downstroke. However, the

instantaneous thrust peak was broader with the flexible wing.

The peak thrust value is plotted versus the flapping frequency in Figure 3.20.

This shows that the peak thrust scales as f 2

f like the stiff wing. However, it appears

the that the peak thrust saturates at flapping frequencies above 10Hz. The phase

angle of the peak thrust versus flapping rate is shown in Figure 3.21. In this case

it occurs at φ = 240◦ which is slight later than with the stiff wing. It still suggests

that the thrust generation is a linear process.

The phase averaged thrust for the drumhead wing at different frequencies is
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Figure 3.21. Plot of the phase angle of the peak thrust generated by the flexible
wing at the flapping rates tested.
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Figure 3.22. Plot of the phase resolved thrust of the drumhead wing at 11.5Hz.
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Figure 3.23. Plot of the phase resolved thrust of the drumhead wing at 10Hz.
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Figure 3.24. Plot of the phase resolved thrust of the drumhead wing at 10Hz.
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shown in Figures 3.22 through 3.24. While the drumhead wing, like the other two

wings, has a dominant peak in its thrust curve, the shape of this peak changes

substantially with the flapping frequency. The peak thrust increases steadily over

the range of flapping frequencies tested as shown in Figure 3.25. Figure 3.25 shows

the magnitude of the peak thrust as a function of flapping frequency. Like the other

wings, the peak thrust increases as the square of the flapping frequency. In contrast

to the flexible wing, the drumhead wing does not saturate at the higher frequencies.

The flapping phase angle of the peak thrust for the drumhead wing as a function of

flapping frequency is presented in Figure 3.26. As with the other wings, the phase

angle is constant at all frequencies.

3.3.3 Flapping thrust frequency content

The most significant challenge in this study was finding a means of measuring the

time-resolved flapping wing forces given their high bandwidth and small magnitude

relative to the weight of the flapping mechanism. To investigate this the spectral

density was computed for the thrust time series for each of the wings. These spectra

are shown in Figures 3.27 through 3.29. Here the frequency axis has been normalized

by the flapping frequency. This indicates that significant energy exists at as much

as fifteen times the flapping frequency.

3.4 Chapter Summary

The goal of this portion of the research was to gain a better understanding of

the behavior of flapping wing aircraft in hover. The experimental setup proved

effective in measuring the time-resolved thrust forces. It revealed differences in the

thrust produced by wings of different stiffness. In particular it showed that wing

structures that cannot easily twist tend to have a relatively sharp thrust peak in

their flapping cycle compared to flexible wings. The flexible wings, in contrast to
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Figure 3.25. Peak thrust generated by the drumhead wing as a function of flapping
frequency.
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Figure 3.26. Phase angle of the peak thrust generated by the drumhead wing vs.
flapping frequency.
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Figure 3.27. Spectra of frequency content of the thrust time series for the stiff wing.
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Figure 3.28. Spectra of frequency content of the thrust time series for the flexible
wing.
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Figure 3.29. Spectra of frequency content of the thrust time series for the drumhead
wing.
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stiff wings, smoothly “washed out” in response to peak aerodynamic loads.

There was significant frequency content in the aerodynamic force generation out

to 15 times the flapping frequency. As a result, simulations of flapping wing flight

and on-board state estimators need to have bandwidths of at least 30 times the

flapping frequency to avoid aliasing.
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CHAPTER 4

STRUCTURE DEFORMATION MEASUREMENTS

As presented in Chapter 3, different wing stiffnesses produced different thrust

time series. This chapter will examine the motion of the wings during the flapping

cycle to attempt to correlate its effect on the generated flapping wing thrust.

4.1 Image Analysis

The captured image sequences were processed to find four quantities, the phase

angle of the flapping mechanism, the the flapping angle relative to a horizontal

plane, and the deflection of the trailing edge of the wing relative to a stiff leading

edge defined at two points.

4.1.1 Determining Phase Angle

Figure 4.1 shows a schematic of the flapping mechanism that includes the drive

wheel and connection between drive wheel and link to the flapping wing. The

flapping phase angle was based on the position of the connection point relative to

φ = 0, the beginning of the upstroke, which was at the bottom of the drive wheel

as seen in the collected images. These measurements replaced the tachometer used

for force measurements in Chapter 3 and was used for determining the phase angle

and flapping rate of the wing’s motion.
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Figure 4.1. Schematic of the flapping mechanism with drive wheel and connection
point highlighted.
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The phase angle measurement was implemented by manually inspecting the im-

ages for the location of the center of the drive wheel, and then locating the connection

point in several subsequent frames. Figure 4.2 shows this technique applied to the

first frame in the sequence of images collected using the flexible wing at an 11.5Hz

flapping frequency.

Figure 4.2. Close up view of the drive wheel from the first frame in a series. The
center (star), φ = 0 (diamond) and location of the connection (x) are highlighted.

The process was repeated at frame number 100, providing two measurements

of the phase angle in a single rotation, since the shortest period observed with the
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tachometer was 83ms, corresponding to 166 frames at 2kHz. Figure 4.3 shows the

location of the connection point in the 100th frame of the sequence collected. These

two measurements were used to estimate the phase angle of formulation as a function

of flapping frequency given in Equation 4.1 as function of frame number fn. Based

on this the accuracy of the connection point position is within three degrees of its

true position.

Figure 4.3. Close up view of the drive wheel from the 100th frame in a series. The
center (star), φ = 0 (diamond) and location of the connection (x) are highlighted.
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φest(fn) = fn(φ(100)− φ(1))/(99) + φ(1) (4.1)

φtrue = φest(fn) + φcorr(fn) (4.2)

The true phase angle in later images is the sum of the initial estimate φest and

a manual correction factor φcorr, as given in Equation 4.2. This approach was

necessary because with φ accurate to within 3◦ in any frame, the slope of any two

point line could only be accurate to within 6◦ divided by the distance between the

points. The extrapolation was used to ensure that the measurement of φ included

previous complete rotations.

Figure 4.4 shows a close up the drive wheel from the same series with both φest

and two estimates of φtrue for frame number 2000. The circle in the center of the

connection represents a plot of φtrue, the circle slightly below it depicts a previous

guess. A small correction was used to determine the difference between the initial

estimate of φ(fn) and the true phase angle in each frame.

Figure 4.5 shows a plot of φtrue versus time for the flexible wing at a flapping

frequency of 11.5Hz. The good linear fit to the points confirms that the flapping

frequency was constant. Therefore it is possible to use this linear estimate of φ as a

reference to phase-average the data in the following sections instead of determining

it in each frame.

4.1.2 Wing Motion and Angle of attack

The individual images were analyzed for three quantities, the flapping angle

Γ(φ), near-root defection δroot(φ) and near tip angle of attack δtip(φ). The spanwise

bending was very small relative to these quantities. The analysis proceeded in 3

steps:

1. Use a non-directional edge detection scheme to find the edges of the wing in
each frame
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Figure 4.4. Close up view of the drive wheel from the 2000th frame in a series
showing the initial guess (x), and corrected estimate of φ (open circle).
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Figure 4.5. Plot of the measured phase angle versus frame number with a linear fit.
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2. Find the leading edge of each wing in the frame

3. Search along a line perpendicular to the leading edge for the location of the
trailing edge

The first step made use of the Prewitt edge detection filter. This is a non-

directional edge detection algorithm that convolves eight edge detection kernels with

the image and sums the result point by point. Points with values above a threshold

set to be two standard deviations above the mean for the image were returned as

edges. Figure 4.6 shows the output from this filter when applied to an image of the

flexible wing.

Finding the flapping angle Γ(φ) required finding the leading edge of the wing.

This was implemented by finding a line in the image that passed through the root

point that contained the largest number of edge points. This is illustrated in Figure

4.7 which shows a schematic of the search for the leading edge in an image. The

search algorithm defined a rectangle covering the wing root and tip. The number

of edge points in each rectangle was computed, and the rectangle with the largest

number of edge points was determined to be the leading edge. Figure 4.8 shows an

image with the estimated leading edge overlaid with a line of open circles.

The final step was to find the angle of attack of the trailing edge relative to the

leading edge. Figure 4.9 shows and orthographic and cutaway view of the deflected

wing. The two trailing edge measurements, δroot(φ) and δtip(φ), are highlighted in

the front and side views. Figure 4.10 shows a schematic of the search areas used

to find the trailing edge. These search areas are perpendicular to the leading edge

detected in the previous step. The wing edge points farthest from the leading edge

were assumed to be on the trailing edge. Figure 4.11 shows the results of this

algorithm applied to the image used to generate Figure 4.8. The number of pixels

between the leading and trailing edge defines the distances δroot(φ) and δtip(φ) based
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Figure 4.6. The output of the Prewitt edge detection filter for an image of the
flexible wing.
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Figure 4.7. Schematic view of the leading edge edge search algorithm. The box with
the most edge points determines the flapping angle.

on the relationship between pixel size and physical distance. As shown in Figure

4.9, the measurements of δroot(φ) and δtip(φ) are analogous to the angle of attack of

the wings during the flapping cycle.

4.1.3 Determine angle of attack

The calculation of the angle of attack, α, was straightforward. Equation 4.3

shows the computation for αroot(t) at the point where the root deflection was mea-

sured, and based on the root chord croot . Equation 4.4 shows the similar calculation

for αtip.

αroot = arcsin
δroot

croot

(4.3)

αtip = arcsin
δtip

ctip

(4.4)
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Figure 4.8. Image of a wing with its leading edge highlighted by a line of open
circles.
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Figure 4.9. Orthographic and cut-away views of the angle of attack of the wing.
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Figure 4.10. Schematic view of the trailing edge location algorithm.

4.2 Results and discussion

4.2.1 Stiff Wing

Figures 4.12 through 4.14 and 4.15 through 4.17 show the angle of attack of

the wing root and tip as function of the flapping phase angle for the stiff wing.

The maximum flapping angle Γ(φ) corresponded to φ = 180. The bars represent

uncertainty in the angle of attack due to the pixel size propagated through the edge

detection and search algorithms.

The membrane on top of the wings was stronger in tension than compression.

This resulted in the wings having generated greater stiffness against downward mo-

tion. Therefore the largest wing angle of attack occurred at the beginning of the

downstroke where the wing structure deflected in the upward direction. This is seen

as a peak in the angle of attack at φ ≈ 180◦. The width of this angle of attack

peak is comparable to the width of the thrust peak for this case that was shown in

Figures 3.12 through 3.14.
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Figure 4.11. Example of the trailing edge location algorithm applied to the image
shown in Figure 4.8. The selected trailing edge points are highlight with stars.
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Figure 4.12. Angle of attack near the wing root of the stiff wing at the 11Hz flapping
frequency.
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Figure 4.13. Angle of attack near the wing root of the stiff wing at the 10.5Hz
flapping frequency.
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Figure 4.14. Angle of attack near the wing root of the stiff wing at the 9.5Hz

87



Figure 4.15. Angle of attack near the wing tip of the stiff wing at the 11Hz flapping
frequency.
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Figure 4.16. Angle of attack near the wing tip of the stiff wing at the 10.5Hz flapping
frequency.
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Figure 4.17. Angle of attack near the wing tip of the stiff wing at the 9.5Hz
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Figure 4.18 shows the peak angle of attack at the root of the wing as function of

the flapping frequency for the stiff wing. Figure 4.19 shows the flapping phase angle

where the peak angle of attack occurs. There appears to be a frequency dependence

on the angle of attack at the root that has a maximum at approximately 9.5Hz

flapping frequency. At all frequencies, the peak angle of attack occurs near a phase

angle of 180◦, where the acceleration due to the flapping motion is at a maximum.

Figure 4.18. Peak angle of attack of the root of the wing as function of the flapping
frequency for the stiff wing.

Figure 4.20 shows the maximum angle of attack of the wing tip versus flapping

frequency for the stiff wing. The phase angle where the peak tip angle of attack was

a maximum is shown in Figure 4.21. We observe that the largest angle of attack

91



Figure 4.19. Phase angle of the peak angle of attack of the root of the stiff wing
versus flapping frequency.
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occurs at approximately 10.5Hz versus 9.5Hz at the root. We also note a significant

change in phase angle of the maximum above the 6Hz flapping frequency. This

might suggest that there is a different physical process that is causing the angle of

attack at the lower flapping frequencies compared to the higher flapping frequencies.

Figure 4.20. Maximum angle of attack of the tip of the wing versus flapping fre-
quency for the stiff wing.

4.2.2 Flexible Wing

The wing root angle of attack of the flexible wing versus the flapping phase

angle phase angle is shown in Figures 4.22 through 4.24. The wing tip angle of

attack for the flexible wing is shown in Figures 4.25 through 4.27. We note that
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Figure 4.21. Phase angle of the peak tip angle of attack for the stiff wing.
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the magnitude of both angles of attack for the flexible wing is larger than that

of the the stiff wing. In addition, the peak in the angle of attack is considerably

broader indicating a larger degree of wing twist over a larger portion of the flapping

cycle. This correlates with the higher overall thrust measured for the flexible wing

in Chapter 3. We note that although the overall thrust was higher, the maximum

thrust was lower with the flexible wing.

Figure 4.22. Angle of attack near the root of the flexible wing at the 11.5Hz flapping
frequency.

Figure 4.28 shows the peak angle of attack of the wing root as function of the

flapping frequency. The phase angle where this peak angle of attack occurs is shown

in Figure 4.29. The peak angle of attack has a broad maximum centered at approx-
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Figure 4.23. Angle of attack near the root of the flexible wing at the 11Hz flapping
frequency.
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Figure 4.24. Angle of attack near the root of the flexible wing at the 10Hz flapping
frequency.
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Figure 4.25. Angle of attack near the tip of the flexible wing at the 11.5Hz flapping
frequency.
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Figure 4.26. Angle of attack near the tip of the flexible wing at the 11Hz flapping
frequency.
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Figure 4.27. Angle of attack near the tip of the flexible wing at the 10Hz flapping
frequency.

100



imately 11Hz flapping frequency. This is higher than the 9.8Hz frequency for the

root location of the stiff wing. The phase angle of the maximum angle of attack of

the wing root is constant, with the possible exception of the 11.5Hz frequency.

Figure 4.28. Peak angle of attack of the root of the wing as function of the flapping
frequency for the flexible wing.

The maximum angle of attack of the wing tip versus flapping frequency is shown

in Figure 4.30. The phase angle of the maximum tip angle of attack is shown in

Figure 4.31. The maximum tip angle of attack has a peak at a flapping frequency

centered at the 10.5Hz flapping frequency. This is similar to the wing root angle

of attack. The flapping phase of the maximum tip angle of attack is again nearly

constant with flapping frequency, similar to the wing root. In this case there is still
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Figure 4.29. Phase angle of the peak angle of attack of the root of the flexible wing
versus flapping frequency.
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considerable wing twist between root and tip with the flexible wing.

Figure 4.30. Maximum angle of attack of the tip of the wing versus flapping fre-
quency for the flexible wing.

4.2.3 Drumhead Wing

The wing root angle of attack of the drumhead wing as a function of the flapping

phase angle is shown in Figures 4.32 through 4.34. Figures 4.35 through 4.37 show

the angle of attack of the drumhead wing tip as a function of the flapping phase

angle. Here we observe that the magnitude of the angles of attack of the drumhead

wing is larger than that of the stiff wing and comparable to the flexible wing. We

note that the drumhead wing has the the largest maximum thrust compared to the
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Figure 4.31. Phase angle of the peak tip angle of attack for the flexible wing.
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other wings.

Figure 4.32. Angle of attack near the root of the drumhead wing at the 11Hz
flapping frequency.

The peak angle of attack of the wing root as function of the flapping frequency is

shown in Figure 4.38. The phase angle of this peak angle of attack is shown in Figure

4.39. The maximum wing root angle of attack has a peak at approximately 9.5Hz,

which is comparable to the stiff wing. The flapping phase angle where the maximum

angle of attack occurs is constant for all frequencies. This is more comparable to

the flexible wing.

The maximum angle of attack of the wing tip versus the flapping frequency is

shown in Figure 4.40. The flapping phase angle of the peak tip angles of attack are
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Figure 4.33. Angle of attack near the root of the drumhead wing at the 10.5Hz
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Figure 4.34. Angle of attack near the root of the drumhead wing at the 8Hz flapping
frequency.
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Figure 4.35. Angle of attack near the tip of the drumhead wing at the 11Hz flapping
frequency.
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Figure 4.36. Angle of attack near the tip of the drumhead wing at the 10.5Hz
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Figure 4.37. Angle of attack near the tip of the drumhead wing at the 8Hz flapping
frequency.
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Figure 4.38. Peak angle of attack of the root of the wing as function of the flapping
frequency of the drumhead wing.
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Figure 4.39. Phase angle of the peak angle of attack of the root of the drumhead
wing versus flapping frequency.
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shown in Figure 4.41. This indicates that the maximum angle of attack occurs at

approximately 10.5Hz flapping frequency. This is comparable to the flexible wing.

The phase angle of the maximum wing tip angle of attack is constant with frequency

and comparable to all the other wings.

Figure 4.40. Maximum angle of attack of the tip of the wing versus flapping fre-
quency of the drumhead wing.

4.3 Chapter Summary

The object of the results presented in this chapter was to determine the structural

response of the different wing structures in flapping motion. These data, along with

the thrust measurements presented in Chapter 3, can be combined to determine the
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Figure 4.41. Phase angle of the peak tip angle of attack of the drumhead wing.
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relationship between the structural deformation and aerodynamic thrust generation.
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CHAPTER 5

MODELING AND SIMULATION

5.1 Purpose and Objective

This chapter explores the fundamental physical properties of flapping wing thrust

production by examining the functional relationship between the motion and deflec-

tion of the wings, and the thrust they produce. Estimates of the form of this func-

tional relationship will be made based on what is known about the fluid dynamics

of this situation.

The goal of this effort is to produce a phenomenological model that can provide

insight into the underlying physics of flapping wing flight. It will also be useful for

the design of autonomous flapping wing vehicles.

5.2 Aerodynamics functional form

Three facts about flapping wing aerodynamics are well established in the litera-

ture. First, the flow is highly three dimensional, with significant spanwise compo-

nents [61, 19]. Second, there are both quasi-steady and completely unsteady periods

in each flapping half-cycle [2, 22]. Third, the flow is vortex-dominated [4, 66].

Linear models have been derived for situations involving unsteady, vortex dom-

inated flow that use empirical corrections to linear inviscid aerodynamics for blade

element theory models of helicopter rotors [33]. This approach has been applied

to flapping wings as well by DeLaurier [11]. Both of these assume that the flow is
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two dimensional over the wing, neglecting spanwise interactions. Functionally, they

compute the circulation, γ, about each wing segment as a function of plunge rate,

ḣ, and angle of attack, α, and a linearized aerodynamic model, A, and then use

a linear transformation, C, to compute the force, �F , generated by the wing in a

given direction. A state space representation of this system is shown in Equations

5.2 and 5.3. This results in block diagonal matrices, where each block represents an

independent wing segment. Figure 5.1 shows a diagram of a wing or rotor broken

into segments for this type of analysis. Note that that it is assumed that one section

does not interact with other segments.

�u = [ḣα] (5.1)

γ̇ = Aγ + B�u (5.2)

�F = Cγ (5.3)

Ansari et al. [4] and Philips et al. [49] showed that it is possible to produce

flapping wing aerodynamic models by assuming locally 2D flow and applying sig-

nificant case-specific corrections. Both of these approaches potentially important

spanwise flow effects and require significant effort by the modeler to assign values

for any change in wing geometry or flapping motion.

Results from Swanton et al. [61] and Sallstrom and Ukeileythe [54], however,

show that spanwise flow has important effects on flapping wing aerodynamics. This

suggests that it may be possible to produce a three dimension linear model that

assumes the wing segments interact. Instead of computing an internal fluid state

like circulation about a wing segment in isolation, it should be possible to define the

internal fluid state at the wing as a function of the fluid state at other points on the

wing. Practically, this would mean replacing the off-diagonal zeros in the matrix A
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Figure 5.1. Schematic illustration of the angle of attack and plunge rate inputs for
a blade element theory model.
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in Equation 5.2 with non-zero parameters.

The ability to generate a linear model of flapping wing force generation without

reference to wake geometry would imply that the fundamental aerodynamics depend

more heavily on spanwise flow interaction than the structure of the wake. Inviscid

CFD models are essentially linear approximations of the fluid, and eigenvector or

proper orthogonal decomposition (POD) forms of these solutions are used to gain

insight into the fundamental fluid dynamics. A low-order linear model of flapping

wing aerodynamics could serve the same purpose. Additionally, the ability to use

mathematical tools such as parameter estimation and system identification to de-

velop flapping wing aerodynamic models would remove the need for complicated,

case specific empirical corrections based on wake measurements.

5.3 Linear model

The results from Chapter 4 suggest that the structural deformation of the flap-

ping wings were primarily driven by inertial loads on the wing, rather than aerody-

namic loads. This makes it appropriate to use the structural deformation to define

the inputs to a linear aerodynamic model. In this way the motion of the structure

determines the aerodynamic forces.

For this analysis, we assume the existence of a smooth nonlinear function,

F (δ� Γ̇), relating the deflection of the wing, δ, and flapping angle rate, Γ̇, of the

wing to the thrust. This is given by Equation 5.4. By assuming this function is

smooth, we expect to be able to find a a linear approximation to F (δ� Γ̇) at any

combination of flapping frequency and structure deformation. This linear approxi-

mation is given in Equations 5.5 and 5.6. Here x represents the internal fluid states,

A is the system matrix for this linearized fluid model, B is a linear transform be-

tween the model inputs, x, and fluid states u, and C is a linear transform relating
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the fluid states to the thrust, T .

T = F (δ� Γ̇) (5.4)

ẋ = Ax+ Bu (5.5)

T = Cx (5.6)

5.4 System Identification

Because the approximate form of the model is known, but nothing is known

about its structure, this was an appropriate use of black box state space modeling

techniques. A discrete time version of this parametrization is shown in Equations

5.7 and 5.8. The algorithm computes the elements of the A, B, and C given the

measurements of the system inputs, which in this case are wing deformation and

motion; the system output, which is the thrust; and the number of states, nx.

These elements are determined such that the mean squared error of the prediction

is minimized [37]. Six states were used to generate the models presented in this

chapter. Fewer states resulted in less accurate models, and more states resulted in

numerical instability.

x(τ +Δτ) = Ax(τ) + Bu(τ) (5.7)

y(τ) = Cx(τ) (5.8)

For this analysis, it was also necessary to specify that the eigenvalues of A had

magnitude that was less than 1. This guaranteed a stable model. The study used

the n4sid function in Matlab with stability enforced to implement this procedure.

The generated models were converted from discrete to continuous time using the

algorithm described by Ljung [37]. The inputs in this case are the deflection of
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the wing structure from the previous chapter. By assuming that the deflection is

periodic, the phase averaged values were used to generate smooth long time series.

The block diagram for this technique is shown in Figure 5.2, where the output is

the thrust T .

Because the system is periodic, the analysis was done using a non-dimensional

time based on the flapping phase angle, φ. Getting from the force and deflection

measurements to an approximate system model required two broad steps, each of

which contained several internal steps. The first broad step involved preparation of

the time series to be estimated. This involved the following steps:

1. filtering the time series to remove high frequency noise,

2. determining the time derivative of the flap angle, Γ̇,

3. determining the aerodynamic inputs ḣ and α,

4. constructing long time series of the aerodynamic inputs, ḣ(t) and α(t), and
thrust, T (t).

5.4.1 Filter time series to remove high frequency noise

The phase averaged time series contained some high-frequency noise. Therefore

it was necessary to smooth them so that they could be used in the system identifi-

cation algorithm. An effective tool for this was a seven point moving average filter

whose width corresponded to 3.8% of the flapping cycle. The start and end of the

time series were zero padded to half the filter width to provide the appropriate start-

up and ending for filtering the time series. After filtering, periodicity was enforced

by making the first and last points in the filtered signal equal each other. Figures

5.3 through 5.5 show a sample comparison between the unfiltered and filtered time

series of the wing root and tip deflection and thrust for the stiff wing at a flapping

frequency of 11Hz.
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Figure 5.2. Block diagram showing how the matrices generated by least square
prediction error are used to compute the thrust given aerodynamic inputs.
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Figure 5.3. Plot of the unfiltered and filtered phase averaged thrust for the stiff
wing at an 11Hz flapping frequency.
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Figure 5.4. Plot of the unfiltered and filtered phase averaged wing root deflection
for the stiff wing at an 11Hz flapping frequency.

124



Figure 5.5. Plots of the unfiltered and filtered phase averaged deflection of the wing
tip of the stiff wing at an 11Hz flapping frequency.
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5.4.2 Determining Γ̇

While the flapping angle, Γ(t), was directly determined in Chapter 4, its time

derivative, Γ̇(t), is the most relevant aerodynamic quantity, since it largely defines

the plunge rate. Determining Γ̇(t) involved estimating the time derivative of a

real data series, which is a non-trivial process given its inherent noise. This was

accomplished in three steps:

1. simplify the time series of Γ(t) by only selecting points corresponding to every
10◦ of the flapping phase angle,

2. generate a spline fit to Γ(t),

3. determine the time derivative Γ̇(t) based on the spline function.

An example of the simplified time series Γ(t) and its spline fit is shown in Figure

5.6 for the stiff wing at an 11Hz flapping frequency. The correspond Γ̇(t) time series

is shown in Figure 5.7.

5.4.3 Find ḣ along the wing

Most simplified aerodynamic models assume a chord-wise flow along the wings,

relative to which they pitch and plunge [11, 70, 18]. Conservation of momentum

theory stipulates that thrust generation in quiescent air requires the generation of

a net flow along the wings as well. This allows us to define the angle of attack, α,

and plunge rate, ḣ, as we would for a pitching and plunging airfoil. A diagram of

this is shown in Figure 5.8.

The calculation of ḣ(t) was straightforward. The plunge rate is defined in Equa-

tion 5.9. It was estimated at the points where the deflections were measured. An

example of αtip(t), αroot(t), ḣtip(t) and ḣroot(t) for a flapping cycle at a flapping

frequency of 11Hz for the stiff wing is shown in Figures 5.9 and 5.10.

ḣ(y) = Γ̇y (5.9)
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Figure 5.6. Plot of the simplified time series and spline fit for the stiff wing at an
11Hz flapping frequency.
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Figure 5.7. Plot of Γ̇(t) for the time series in Figure 5.6.
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Figure 5.8. Diagram showing how α and ḣ were computed.

5.4.4 Construct long time series

Once smooth signals for a single period of the thrust T (t), angle of attack α(t)

and plunge rate ḣ(t) were found, long time series were generated by concatenating

ten flapping periods. The longer data sets allowed start up time for the model

generation process. This improved the numerical accuracy.
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Figure 5.9. Estimate of αtip(t) and αroot(t) for the stiff wing at a flapping frequency
of 11Hz.
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Figure 5.10. Estimate of ḣtip(t) and ḣroot(t) for the stiff wing at a flapping frequency
of 11Hz.
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5.5 Model Generation

5.5.1 Stiff Wing

An example of the application of Equations 4.3 through 5.9 for the stiff wing

at a flapping frequency of 11Hz is shown in Figures 5.9 and 5.10. This utilized the

filtered phased averaged series that were shown in Figures 5.4 and 5.5.

Figure 5.11 shows a comparison between the measured thrust and the output

from the simulation based on the wing deflection time series. In general the model

captured the basic features of the thrust cycle. It shows the peak thrust began at

the start of the down-stroke of the wing. The peak thrust that occurred at φ = 216◦

was underestimated by the model by approximately 50%.

This model does capture the period of negative thrust that occurs before the

downstroke of the wing. The magnitude is similar between the two although the

simulation exhibits oscillations that do not precisely match in amplitude. Over all,

the quality of the fit is similar to that of the complex nonlinear model of flapping

aircraft wings at this scale developed Ansari et al. [4]. However, in this case there

is significantly less computation required, and the generation of models of similar

quality for different cases is largely automated.

Figures 5.12 through 5.15 show the results of this modeling approach applied

to the stiff wing at flapping frequencies of 10.5Hz, 9.5Hz, 8Hz and 6Hz. Given

the similarities in wing motion and thrust measurements for this wing, it is not

surprising that the model generated at other flapping frequencies produce similar

results. In each case, there is a small negative thrust segment shortly before the peak

thrust at the beginning of the down-stroke. Also as before, the model under-predicts

the peak thrust by approximately 50%.

Figure 5.16 shows the mean-squared error of the model estimate of the thrust,

T (t), that is normalized by the variance of the measured thrust. This provides a
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Figure 5.11. Comparison between the linear model and measured thrust for the stiff
wing at a flapping frequency of 11Hz.
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Figure 5.12. Comparison between the linear model and measured thrust for the stiff
wing at a flapping frequency of 10.5Hz.
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Figure 5.13. Comparison between the linear model and measured thrust for the stiff
wing at flapping frequency 9.5Hz.
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Figure 5.14. Comparison between the linear model and measured thrust for the stiff
wing at a flapping frequency of 8Hz.
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Figure 5.15. Comparison between the linear model and measured thrust for the stiff
wing a flapping frequency of 6Hz.

137



Figure 5.16. Normalize mean-squared error in the model estimated thrust for the
stiff wing as a function of flapping frequency.

.

measure of the quality of the model for the different flapping frequencies. It shows a

trend of generally decreasing normalized error. This might indicate that the thrust

generation process becomes more linear as the flapping frequency increases, where

we would expect that the acceleration effects come to dominate the wing motion.

While a simple procedure to generate a fairly good model of a wing is a signif-

icant step forward, it is important to understand the range over which the model

is valid. Figures 5.17 through 5.20 shows plots of the thrust predicted using the

model generated for the stiff wing at at a flapping frequency of 11Hz that used
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inputs from the other flapping frequencies. At the higher flapping frequencies, the

model prediction is qualitatively as good as that generated with the models at their

respective flapping frequencies. However, the peak of the predicted thrust is slightly

out of phase with the measured peak thrust. At a flapping frequency of 6Hz, where

both inertial loads and aerodynamic loads play a role in structure deformation, the

11Hz flapping frequency model does not produce a good result. An estimate of the

overall error in the model prediction is shown in Figure 5.21, with the data above

8Hz shown in Figure 5.22. The mean squared error normalized by the variance in

the measured thrust at the corresponding flapping frequency is shown in Figure

5.21.

5.5.2 Flexible Wing

The input time series for the flexible wing at a flapping frequency of 11.5Hz

are shown in Figures 5.23 and 5.24. These show significantly more motion than

that of the stiff wings, which could possibly reduce the inherent linearity of the

thrust generating system. A comparison between the predicted thrust and measured

thrust time series based on those inputs is shown in Figure 5.25. Qualitatively, the

prediction is as good as that for the stiff wing. As with the stiff wing it predicts a

prominent thrust peak at the start of the down-stroke of the flapping cycle.

In contrast to the stiff wing, we expect that the flexible wing is more influenced

by aeroelastic loads as the flapping frequency increases. As a result, its thrust

characteristics should be more linear at lower flapping frequencies. Figures 5.26

through 5.29 show a comparison between the model estimated thrust at flapping

frequencies of 11Hz, 10Hz, 8.5Hz and 6Hz. Qualitatively, the results at the higher

flapping frequencies are comparable to that at a 11.5Hz flapping frequency. However,

the normalized mean square error shown in Figure 5.30 indicates a clear trend of
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Figure 5.17. Comparison between the measured thrust and predicted thrust at
flapping frequency of 10.5Hz for the model coefficients estimated for the stiff wing
at an 11Hz flapping frequency.
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Figure 5.18. Comparison between the measured thrust and predicted thrust at
flapping frequency 9.5Hz for the model coefficients estimated for the stiff wing at
an 11Hz flapping frequency.
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Figure 5.19. Comparison between the measured thrust and predicted thrust at a
flapping frequency of 8Hz for the model coefficients estimated for the stiff wing at
an 11Hz flapping frequency.
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Figure 5.20. Comparison between the measured thrust and predicted thrust at a
flapping frequency of 6Hz for the model coefficients estimated for the stiff wing at
an 11Hz flapping frequency.
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Figure 5.21. Normalized mean-squared error in the model estimate of the thrust for
the stiff wing obtained using the 11Hz flapping model coefficients for conditions of
the other flapping frequencies.

144



Figure 5.22. Plot of the data presented in Figure 5.21 above 8Hz.
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Figure 5.23. Input α(t) for the flexible wing at a flapping frequency of 11.5Hz.
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Figure 5.24. Input ḣ(t) for the flexible wing at a flapping frequency of 11.5Hz.
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Figure 5.25. Comparison of the linear model and measured thrust for the flexible
wing data at flapping frequency 11.5Hz.
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lower model error at the lower flapping frequencies that would suggest the linear

model is more appropriate there.

Figure 5.26. Comparison of the linear model and measured thrust for the flexible
wing at a flapping frequency of 11Hz.

Figures 5.31 through 5.34 show the result of using the inputs from flapping

frequencies of 11Hz, 10Hz, 8.5Hz, and 6Hz with the model coefficients generated with

the data collected at an 11.5Hz flapping frequency. For flapping frequencies of 10Hz

and 11Hz, the model gives qualitatively similar thrust time series compared to the

experimental measurements. This indicates that the underlying physics are similar

over this higher range of flapping frequencies. The mean square error between the

predicted and measured time series for the linear model as a function of the flapping
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Figure 5.27. Comparison of the linear model and measured thrust for the flexible
wing at a flapping frequency of 10Hz.
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Figure 5.28. Comparison of the linear model and measured thrust for the flexible
wing data at a flapping frequency of 8.5Hz.
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Figure 5.29. Comparison of the linear model and measured thrust for the flexible
wing data at a flapping frequency of 6Hz.
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Figure 5.30. Normalized mean square prediction error versus flapping frequency for
the flexible wing.
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Figure 5.31. Comparison between the measured thrust and predicted thrust at a
flapping frequency of 11Hz using the model coefficient’s for the flexible wing at an
11.5Hz flapping frequency.

frequency is shown in Figure 5.35, with results for the higher flapping frequencies

shown in Figure 5.36. When the coefficients for the 11.5Hz flapping case were used

at other flapping frequencies it a comparable error down to a flapping frequency of

about 8Hz.

5.5.3 Drumhead Wing

The drumhead wing provided an opportunity to study the response of the flap-

ping wing thrust with high frequency motion inputs. These inputs are shown for a
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Figure 5.32. Comparison between the measured thrust and predicted thrust at a
flapping frequency of 10Hz using the model coefficient’s for the flexible wing at an
11.5Hz flapping frequency.
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Figure 5.33. Comparison of measured thrust and predicted thrust at a flapping
frequency of 8.5Hz using the model coefficients for the flexible wing at an 11.5Hz
flapping frequency.

156



Figure 5.34. Comparison of measured thrust and predicted thrust at flapping fre-
quency of 6Hz using the model coefficients for the flexible wing at an 11.5Hz flapping
frequency.
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Figure 5.35. Normalized mean-squared error in the model estimate of the thrust for
the flexible wing obtained using the 11.5Hz flapping model coefficients for conditions
at the other flapping frequencies.
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Figure 5.36. Plot of the data presented in Figure 5.35 above 8Hz.
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flapping frequency of 11Hz in Figures 5.37 and 5.38. Using these input time series,

the output from the model is compared to the experimental thrust in Figure 5.39.

In this case, the thrust model prediction is satisfactory although the thrust peak at

the down-stroke of the flapping is broader than exhibited in the experimental data

series.

Figure 5.37. Estimates of α for the drumhead wing at an 11Hz flapping frequency.

At lower flapping frequencies the wing motion is somewhat less erratic. This is

illustrated in Figures 5.40 and 5.38, which shows the angle of attack and plunge rate

time series for the wing at an 10.5Hz flapping frequency. The model thrust prediction

for this input is shown in Figures 5.42. This indicates a significant improvement in
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Figure 5.38. Estimates of ḣ for the drumhead wing at an 11Hz flapping frequency.
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Figure 5.39. Comparison between the linear model output thrust, T (t),and the
measured thrust for the drumhead wing at a flapping frequency of 11Hz.

162



the model thrust estimate. A comparison of the model and experimental thrust time

series for flapping frequencies of 8.5Hz and 6Hz are shown in Figures 5.44 and 5.45.

The agreement is good at an 8.5Hz, but not as good at a 6Hz. This is confirmed by

the normalized mean squared prediction error for each of these cases that is shown

in Figure 5.46.

Figure 5.40. Estimate of α for the drumhead wing at a flapping frequency of 10.5Hz.

5.6 Model trend analysis

Qualitatively, this approach captures the dominant features and phasing of the

measured thrust. The utility and physicality of this approach, however, depends on
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Figure 5.41. Estimate of ḣ(t) for the drumhead wing at a flapping frequency of
10.5Hz.
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Figure 5.42. Comparison between the linear model and the measured thrust for the
drumhead wing at a flapping frequency of 10.5Hz.
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Figure 5.43. Comparison between the linear model and the measured thrust for the
drumhead wing at a flapping frequency of 9.5Hz.
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Figure 5.44. Comparison between the linear model and the measured thrust for the
drumhead wing at a flapping frequency of 8.5Hz.
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Figure 5.45. Comparison between the linear model and the measured thrust for the
drumhead wing at a flapping frequency of 6Hz.
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Figure 5.46. Normalized mean square error in the estimate of the thrust for the
drumhead wing as a function of flapping frequency.

169



the ability of the linear model to capture trends in the mean and peak thrust. Figure

5.47 shows the expected power law relationship between the flapping frequency and

average thrust reported in Zdunich et al. [70], Wu et al. [67], and for the stiff,

flexible and drumhead wings.

5.6.1 Stiff wing

The stiff wing models did a poor job of capturing the trend in mean thrust with

changing flapping frequency, however it did a a good job of capturing the physical

scaling trend of the maximum thrust. This is shown in Figure 5.48 for the mean

thrust and Figure 5.50 for the maximum thrust. Figure 5.49 shows that the es-

timated mean thrust does not follow the power law observed in the experiment.

However, Figure 5.51 shows that the maximum thrust does follow the square of

the flapping frequency. The correct physical scaling of the maximum thrust was

expected, given that stiff wing had the lowest mean squared error in its force pre-

diction. This suggests that a linear model captures the unsteady component of the

thrust very well, but must be coupled with a nonlinear function to determine the

mean thrust. A block diagram of this approach is shown in Figure 5.52, where T̂

represents the zero-mean unsteady thrust component and T̄ represents the mean

thrust.

5.6.2 Flexible wing

Despite having significantly larger mean square error when computing the un-

steady thrust, this approach captures the physical scaling trends of the flexible wing

experimental data quite well. The mean thrust appears to follow the scaling law of

observed in the experiment as shown in Figure 5.53. A log-log plot suggests that the

estimated mean thrust actually increases slight faster than the cube of the flapping

frequency, as shown in Figure 5.54. The maximum thrust appears to be following a
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Figure 5.47. Histogram of power law relationship observed between mean thrust
and flapping frequency in Zdunich et al. [70], Wu et al. [67] and the wings used in
this study.
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Figure 5.48. Plot of the model estimate of mean thrust for the stiff wing.
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Figure 5.49. Log-log plot of the mean thrust presented in Figure 5.48 after a constant
was added to each point to make the minimum value 10�6.
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Figure 5.50. Plot of the model estimate of maximum thrust for the stiff wing.
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Figure 5.51. Log-log plot of the maximum thrust presented in Figure 5.50
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Figure 5.52. Block diagram showing a decoupled mean, T̄ , and unsteady, T̂ , thrust
model.
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Figure 5.53. Plot of the model estimate of mean thrust for the flexible wing.

quadratic trend, as is the case with the physical wing. This is shown in Figure 5.55

and as a log-log plot in Figure 5.56.

These results and those for the stiff wing suggest that there is a threshold value

of the ratio between maximum and average thrust that allows the linear model

to capture the physical scaling trends. Data collected for the stiff wing, with a

maximum thrust of 2N and mean thrust of .05N, suggest that a value of 40 is too

large. The flexible wing data, with maximum thrust 1.5N and mean thrust of .12N

suggest that a ratio of 12.5 is acceptable. These data also suggest that there is a

trade-off between accuracy of the trends and the mean squared error as a function

of this ratio.
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Figure 5.54. Log-log plot of the mean thrust presented in Figure 5.53.
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Figure 5.55. Plot of the model estimate of maximum thrust for the flexible wing.
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Figure 5.56. Log-log plot of the maximum thrust presented in Figure 5.55
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5.6.3 Drumhead wing

The drumhead wing had a mean thrust of .11N and a maximum thrust of 2.7N .

This corresponds to a ratio of 24.5. The mean thrust does appear to follow the

correct cubic scaling trend in Figure 5.57. Figure 5.59 indicates that the mean thrust

is increasing with the scaling law observed for the drumhead wing. Additionally, the

maximum thrust plotted in Figure 5.59 does generally follow a quadratic trend, but

with more scatter than for the flexible wing. This trend can be seen more clearly

as a log-log plot as shown in Figure 5.60.

These results, together with the other wings, suggest that the ratio between

maximum and mean thrust provides a good indicator of how well linear models will

capture physically important trends. For the flexible wing and drumhead wing the

model scaled reasonably well with flapping frequency. The model for the stiff wing,

however, did not scale well. As a result, a more complicated model that separates

the mean and dynamic effects is required.

5.7 Chapter discussion

Several interesting conclusions came from this analysis:

1. The stiff wing, with its relatively separate structure and aerodynamics, was
the most easily and reliably modeled over the range of flapping frequencies
examined.

2. Linear models consistently under predicted the peak thrust, implying that the
dynamic stall leading to maximum thrust is an inherently nonlinear process.

3. The model developed at the highest flapping frequency examined for the flexi-
ble wing more accurately captured the behavior at lower flapping frequencies.

4. The thrust generation appeared to be band-limited since high frequency mo-
tion of the drumhead wing did not translate into the thrust time series.

5. The ratio between the maximum and mean thrust provides a good indicator
of how well a linear model will capture physical trends. In general, the smaller
the ratio the better the physical trends are matched.
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Figure 5.57. Plot of the model estimate of mean thrust for the drumhead wing.
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Figure 5.58. Log-log plot of the mean thrust presented in Figure 5.57 after a constant
was added to each point to make the minimum value 10�6.
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Figure 5.59. Plot of the model estimate of maximum thrust for the drumhead wing.
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Figure 5.60. Log-log plot of the maximum thrust presented in Figure 5.59
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This analysis demonstrated that for fairly stiff root-flapped wings, an approx-

imate linear model could capture the unsteady behavior of the thrust cycle based

on simple flapping wing inputs. If coupled with a nonlinear function to provide the

mean thrust as a function of flapping frequency, these models are accurate enough

for flight dynamics simulations.

For more flexible wings, the linear model performed reasonably well in capturing

the unsteady behavior and trends in mean thrust. It appears that the ratio between

maximum and mean thrust determines how well the physical trends are captures,

with the best results seen at the lowest value tested.

These results suggest that sensors in the wings would probably work to provide

a real-time indication of the thrust production as proposed by this author in [5] and

[6].
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusions

Returning to the open questions at the end of Chapter 1, it is now possible to

provide answers.

Question 1: What are properties of the time-resolved thrust generated by me-

chanical flapping wings in air?

The thrust produced by flapping wings is closely correlated with the flapping

wing phase angle when any oscillations in the structure occur at a much higher

rate than the flapping frequency. The average thrust grows with a power law re-

lationship to the flapping frequency between 2.98 and 4.04 for the cases studied.

The maximum thrust grows with the square of the tip speed, consistent with other

vorticity-dominated flows such as propellers and helicopter rotors.

The phase resolved thrust curve for the cases studied is characterized by a large

thrust peak, small negative thrust region and small amplitude oscillations over the

rest of the phase. The large thrust peak always occurs after the beginning of the

downstroke, before the wing reaches its greatest linear speed, implying that this

effect is driven by a dynamic stall vortex. The negative thrust occurred shortly

before the peak thrust, as the wing transitioned from the upstroke to the downstroke.

The oscillations through the rest of the flapping cycle do not correlate with the
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structure motion, and so likely indicate the shedding of smaller vorticies during the

transition from the initial motion and towards a quasi-steady flow.

Question 2: What effect does changing the wing structure, and hence motion of

the wing, have on thrust generation?

This study investigated three wing structures with different properties. The first

was a relatively stiff wing that deflected smoothly in response to the acceleration

loads imposed during each flapping period. The magnitude of the deflection was

constant above a flapping frequency of 9Hz, resulting in phase-resolved thrust curves

that looked very similar and a peak thrust that grew with the square of the flapping

frequency. The lift generation process was well approximated by a linear model

based on the measured deflection.

The flexible wing appeared to respond significantly to the aerodynamic loads

acting on it. The peak thrust reached a maximum at a flapping frequency of 10Hz,

although the mean thrust continued to grow with flapping frequency. This is likely

due to the fact that the wing moved to a smaller “angle of attack” relative to the

flapping plane as the linear speed of the wing increased. This weakened the dynamic

stall vortex effect, but it allowed for more fully attached flow during the transition

from dynamic stall to quasi-steady flow. The result was that this wing had the

largest average thrust of the three cases tested. However, because of the strong

effect of the fluid on the structure in this case, it was difficult to establish a linear

relationship between the motion of the wing and the thrust.

The drumhead wing demonstrated that the thrust generation process is inher-

ently band limited. It exhibited multiple sharp motions during the flapping cycle,

and had the largest maximum trust of the three cases tested. However, this extra

motion did not translate into a larger average thrust. This wing appeared to reach a

maximum average thrust at 11Hz, although its maximum thrust continued to grow.
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Given that much of the thrust is generated by these sharp motions, resulting in a

nonlinear dynamic stall behavior at several points in the flapping cycle, it was not

possible to fit a linear dynamic model to the the relationship between its motion

and thrust.

Question 3: What is the bandwidth and magnitude required of controls, sensors

and navigation filters to maintain a stable hover?

For the situation studied in this work, the frequency content of the thrust signal

extended to roughly 15 times the flapping frequency for all wings. This defines when

the power in the thrust time series dropped below −20dB, and suggests that the

minimum sampling rate for a state estimator or simulation should be 30 times the

flapping frequency. Since this is a phenomenological observation rather than based

on a fluid dynamic theory, the most important contribution of this work is that it

provides a means of determining these values for any flapping wing system.

The net moment generated by the flapping wings is effectively zero, and in

general the flapping period is much shorter than the time required for any maneuver.

As a result, the control actuators only need to be as fast as required for other parts

of the vehicle’s mission.

Question 4: What components must be included in a flapping wing aerodynamics

model?

This study has shown that a phenomenological linear model based on the flap-

ping motion and wing deflection provides an adequate model for flight dynamics

simulation and controller design in certain cases. When the ratio between the maxi-

mum thrust and mean thrust is small, these models capture physical trends in mean

and maximum thrust well. At a ratio of 40, no physical trends are observed, de-

spite very low mean squared error. Going from 24.5 to 12.5 appears to substantially

increase the ability of the linear model to capture trends in both mean and max-
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imum thrust. For high-ratio scenarios, it would be necessary to break the model

into steady and unsteady components to use for flight dynamics simulation. In ei-

ther case, producing such a model for wings similar to those tested here requires

measurements of the angle of attack of the wing near the root and tip for flapping

frequencies close to the desired operating frequency.

Any physics-based model must allow for interaction between spanwise segments

of the wing. This suggests that a linearized vortex panel method should work, but

a Blade Element Theory model similar to that used for propellers and helicopters

will not work for small flapping wings.

Finally, this study determined that the flexible wing is the best design for hover-

ing flapping wing aircraft. It exhibited the largest average thrust. It also exhibited

the smallest maximum thrust, which allows the smoothest flight.

6.2 Future Work

6.2.1 Clap and Fling

Many hobbyists and researchers have demonstrated that paired clap-fling flap-

ping is a more effective way of generating thrust with flapping wings than single

flapped wings. It would be interesting to run experiments like those presented here

to see how the results compare to the single wing flapping.

6.2.2 Fluid dynamics measurements

While there have been many studies of flapping wing fluid dynamics, it is now

possible to directly correlate the thrust and fluid motion. Since the force generation

is periodic, it is reasonable to assume the fluid motion is as well. Ideally, these

measurements should be of the fluid along the span of the wing, to investigate

spanwise flow effects such as dynamic stall vortex stabilization and the spread of

unsteady circulation along the span of the wing.
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6.2.3 Wing membrane strain measurements

The results of the present experiment show that knowledge of the dynamics of

the structure provides enough information to determine a good approximation the

thrust. This suggests that it is possible to use some technique that measures the

strain in the wing membrane itself to estimate the thrust, and thus acceleration, of

a flapping wing vehicle.

6.2.4 Gust and cross-wind response

This study focused on the phase-averaged thrust of flapping wings in quiescent

air, but real vehicles will encounter gusts and crosswinds. This line of research

will allow study of the stability and robustness of the thrust generation process.

Additionally, it will allow researchers to address one of the critical issues preventing

practical use of flapping wing vehicles.

6.2.5 Three axis measurements

Simultaneous measurements of lift, thrust and pitching moment are possible if

the vehicle is free to make small deflections in these directions. A design that might

accomplish this would use a long rod that runs through a journal bearing mounted in

a ball and socket joint. As with the balance beam used in this study, a counterweight

and inertial measurement unit placed at the other end would measure the steady

and unsteady force and moment contributions, respectively.
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APPENDIX A

FLUID MEASUREMENTS

A.1 Purpose and Objective

The purpose of the experiment described in this appendix is twofold:

• provide fluid data that can be used to produce an unsteady measurement of
flapping wing thrust,

• provide insight into the fundamental fluid dynamics of flapping wings.

A.1.1 Thrust Measurement

Figure A.1. Schematic of the control volume planned for force measurement. Flow
symmetry is assumed based on the literature.

As described earlier, conventional load cells and other force measurement tools

cannot measure the time-resolved forces generated by flapping wings. By assuming
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that the flow, and hence thrust production, is periodic, it is possible to use a control

volume approach to estimate the phase-resolved thrust, T (φ).

The data required for this approach is a sequence of cross-sections of the flow-

field. At each slice, a sequence of vector fields captured at multiple phase angles can

be used to compute the contribution of that segment to the phase-resolved thrust.

The total thrust can then be estimated with the sum of each slice at a given phase

angle.

A.1.2 Fundamental Physics

While many studies have sought to understand the fundamental physics of flap-

ping wing flight using detailed fluid velocity measurements, the goal of this study

was more modest. Rather than ask why flapping wings generate lift and thrust,

the work described in this appendix only seeks to answer three important questions

that arise when attempting to design or simulate a flapping wing aircraft:

1. Can the flow be described as locally two dimensional at the surface of the wing,
like a helicopter rotor, or is it fully three dimensional, like a canoe paddle?

2. Is the flow vortex dominated, or can other prominent flow structures be ob-
served?

3. What is the effect of the flapping motion on the flow over an aerodynamic
tail?

The first two questions determine how to approach the modeling of flapping

wing force generation. The first determines if 2D simplifications can be made to

describe the flow over sections of the wing using techniques such as blade element

or lifting line theory. The second determines the required complexity of the 2D or

3D model, since a vortex dominated flow implies one that can be treated as largely

inviscid, and thus linear in nature. Together, these questions will also determine how

controllable a flapping wing aircraft will be using modern control design techniques
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which trade bandwidth, and thus maneuverability, for robustness when applied to

nonlinear systems.

Question three is import to both vehicle designers and biologists. Currently,

there are no vehicles that use biological-style wings to hover, and all examples built

to date use standard or v-tail empennage controls. However, there is no published

data on the effect of flapping wing flow on the control authority of an aerodynamic

tail. Understanding this may also reveal why biological fliers typically do not have

aerodynamic tails, despite their relative simplicity and light weight [38].

A.2 Experimental setup

Figure A.2. Diagram showing arrangement of PIV camera, laser and flapping mech-
anism.

This study looked at the spanwise flow induced by the flapping wings in the

plane of the wing at Γ = 0. Figure A.2 shows a schematic view of the arrangement
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Figure A.3. Photograph of the camera and laser mounted outside the measurement
box

of the laser sheet, flapping mechanism and camera.

The wings were mounted in a 4ft×4ft (1.23m2) box having an open top and

bottom to allow airflow. A 2ft (.66m) section of the “back” wall was left open

to provide access to the interior of the box for seeding and servicing the flapping

mechanism. Opaque fabric was draped over the top and open section of the box

to contain the seeding particles. The box itself sat on top of a 2ft high stand

constructed of 80/20 brand slotted beams. Two sides were constructed of Plexiglas

to allow the laser to shine in a plane normal to the camera’s field of view. This is

shown in Figure A.3.

The flapping mechanism itself was mounted on an aluminum rectangular tube

1in×1.5in (2.54cm ×3.81cm) spanning the interior of the box approximately 1ft

(.3m) below the top. Holes drilled at .5in (1.27cm) intervals allowed the short rect-

angular aluminum tube holding the mechanism and tachometer to be placed pre-

cisely and securely at many locations within the box. The 1in×2in (2.54cm×5.08cm)

section of aluminum tube holding the wings was secured with a pair of 1/4in bolts
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at the top, while the mechanism itself is attached to a custom-machined adapter

block with a single #6 machine screw allowing small adjustments in the distance

between the optical sensor and reflective spot. The tachometer was positioned such

that the photo-detector would produce a pulse as the small piece of reflective tape

passed in front of the sensor once per rotation.

All of the aluminum was painted black to limit specular reflections and reduce

noise in the image. Parts that received frequent handling, such as the bolts holding

the smaller tube in place, were covered with black electrical tape. A piece of tape

was placed between the laser and motor to prevent the steel can from becoming a

light source without adding a coat of paint that may have limited the motor’s ability

too cool properly.

The flapping was driven by a Cybird gearbox driven by a Great Planes Speed 280

brushed direct current (DC) motor. A Tenma regulated DC power supply, model

number 72-630A, drove the motor at approximately 9V , resulting in a flapping rate

of 10Hz, the rate determined to be optimal by Liu et al [36] for a micro flapping

vehicle. The tachometer was driven by the lower voltage side of an Aligent E3631A

three-level DC power supply. The pair of high voltage rails powered an Analog De-

vices OP07 operational amplifier (op-amp) wired as a voltage follower. The output

of the op-amp was directed to the “external trigger” of a TSI PIV Synchronizer and

a LaCroix oscilloscope to provide feedback on the flapping frequency. Figure A.4

shows the schematic layout of the power and tachometer circuit.

The seeding particles consisted of very small (1 − 10µ m) droplets of olive oil

produced by a TSI seeding generator The regulator on the generator was adjusted

to produce the minimum velocity of the particles as they entered the box. The

generator was pressurized by a building air supply connected via a standard pres-

sure hose. The system is pressurized by opening a ball valve between the building
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Figure A.4. Circuit diagram of the experiment

pressure supply and the hose to the generator.

An ND-YaG laser illuminated the particles with green laser light in separate

pulses. The laser is spread into a 45◦ sheet using a combination of spherical and

cylindrical lenses. A TSI PIV-CAM 10-30 captured the motion of the particle on

its interlaced CCD; it was calibrated using a calibration plate in the frame to mea-

sure the field of view. TSI’s Insight software, version 1.3, was used to control the

Synchronizer and process the image pairs into vectors.

A.3 Image collection procedure

1. Set both laser 1 and laser 2 to “Low” (Q-switch delay of 75µ s) .

2. Acquire an image, confirm that there is no saturation. If not, gradually in-
crease the power on each laser until particles are visible but no regions are
overexposed. Adjust the f-stop if necessary.

3. Process the image and observe the resulting vector field.

4. Adjust the time between pulses Δt to find the one that results in a good vector
field in three shots in a row.

5. Open the valve to charge the seeder for approximately 3s, then wait approxi-
mately one minute for it to disperse. Capture a sequence of 1000 image pairs
to the disk.
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6. Adjust the camera trigger delay to the next scheduled phase angle and repeat
from step 1 onward, being careful not to overwrite previously saved images.

7. Once all phase angles have been sampled, process the images to produce vector
fields and move the flapping mechanism to the next position.

A.4 Problems Encountered

There were two problems that led to the decision to suspend this experiment.

The first was incomplete vector fields over significant portions of the flapping periods

at most wake slices. The second more critical problem was specular reflection off

of the wings. The first problem could potentially be solved by making a composite

image with multiple times between laser flashes. The second could not be solved,

and further experimentation risked damage to the camera.

A.4.1 Incomplete Vector Fields

Most of the vector fields collected had substantial missing portions in which no

vectors were detected. There are two likely reasons for this. The first is that the

motion of the wing is normal to the plane of the image. The second is that the box

may have been too small, and flow reflected off the walls may have contribute to a

highly turbulent environment.

A.5 Specular reflection mitigation attempts

The most significant problem encountered was the inability to limit the reflection

of the laser light off of the wings. Black paint, rhodamine and finally matte black

cloth glued to the wings were each tried to reduce the amount of laser light reflected

directly from the source to the camera. However, as shown in Figure A.5, it was not

possible to reduce this to a level that would not risk damage to the camera, while

also allowing a good vector field.
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Figure A.5. Images captured by the PIV camera with the laser at low power showing
specular reflections off the wing. The top image shows the reflection off black and
rhodamine paint, the bottom matte black fabric
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A.6 Successful measurements

While it was not possible to compute the thrust based on PIV images, there were

some measurements that yielded interesting results for the study of flapping wing

fluid dynamics. When good measurements could be taken, a large vortical structure

seemed to dominate the flow field. Two examples are shown in Figure A.6.

The most instructive frame was taken immediately after the wing had passed

through the laser plane. The passage of the wing left a very clear “shadow” on the

fluid, and gives the best view of the fluid environment around the wing itself. Figure

A.7 shows this measurement, which provide the information needed to answer the

questions posed in Chapter 1. These answers are enumerated below.

1. The flow appears to be fully three dimensional, like a canoe paddle.

2. There appears to be a single large vortex that dominates the flow environment,
implying that a linear singularity model might be appropriate.

3. In hover, the wings can draw air towards them from below, implying that
conventional aerodynamic control surfaces won’t work.
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Figure A.6. Phase-averaged flow images at two phase angles showing a vortex
dominated flow.
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Figure A.7. Measurements of the flow immediately after the wing has passed on its
downward plunge.
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