Preliminary Estimate of Take-Off Weight

^{*} Photograph of Boeing C-17 Globemaster at take-off: Maximum take-off weight equals 585,000 lbs, maximum payload is 169,000 lbs (Courtesy of the Boeing Company).

$$W_{TO} = W_{fuel} + W_{payload} + W_{empty}.$$
 2.1

$$W_{payload} = W_{expendable} + W_{non-expendable}.$$
 2.2

Weight Buildup

• Fuel weight is based on the flight plan. It considers the fuel used in all of the flight phases:

Fuel Fraction Estimates.

• Total amount of fuel is based on the **sum of individual amounts** used within each flight phase.

Fuel Weight Fraction =
$$(W_f/W_i)_{fuel}$$
. 2.3

$$(W_{landing}/W_{take-off})_{fuel} = \frac{W_2}{W_1}\frac{W_3}{W_2}\cdots\frac{W_N}{W_{N-1}}$$
 2.4

where $1, 2, \ldots N$ represent the individual flight phases in order in the flight plan, starting with take-off (1) and ending with landing (N).

1. Engine start-up and take-off.

- Consists of starting the engines, taxiing to the take-off position, take-off and climb out.
- Empirical estimate:

$$0.97 \le \frac{W_f}{W_i} \le 0.975.$$
 2.5

2. Climb and accelerate to cruise conditions.

3. Cruise out to destination.

• Based on Brequet range equation.

$$R = \frac{V}{C} \frac{L}{D} \ln \left[\frac{W_i}{W_f} \right]$$
 2.6*a*

$$R = \frac{\eta}{C} \frac{L}{D} \ln \left[\frac{W_i}{W_f} \right]$$
 2.6b

- NOTE: exponential dependence \Rightarrow extreme sensitivity to choices
- Start with L/D. A reasonable estimate is

$$\frac{L}{D} = 0.94 \left[\frac{L}{D}\right]_{max}.$$
 2.7

• Other historic trends:

	L/D_{max} Range	Average L/D_{max}
Propeller Personal/Utility	9.6 - 14.2	12.1
Propeller Commercial Transport	13.8 - 18.5	16.3
Business Jet	13.0 - 15.6	14.3
Commercial Jet Transport	15.0 - 18.2	14.4
Military Transport/Bomber	17.5 - 20.5	18.9
Military Fighter (subsonic cruise)	9.2 - 13.9	11.0

• For V/C, a general range is

$$0.5 \le C \le 1.2$$
 2.12

• For **propeller driven aircraft**: use Eqs[2.13 - 2.14] and historic trends.

	η	C
Personal/Utility	0.80	0.60
Commuter	0.82	0.55
Regional Turboprop	0.85	0.50

4. Acceleration to high speed (intercept).

- Consider acceleration in two phases:
 - 1. Acceleration from low speed (Mach 0.1) to cruise Mach number, M_c .
 - 2. Acceleration from low speed (Mach 0.1) to the maximum Mach number, M_{max} .
- The weight fraction for (1) is

$$\frac{W_f}{W_i} = \frac{W_c}{W_{.1}}.$$
 2.15

• The weight fraction for (2) is

$$\frac{W_f}{W_i} = \frac{W_{max}}{W_{.1}}.$$
 2.16

• The total weight fraction to accelerate from M_c to M_{max} is

$$\frac{W_f}{W_i} = \frac{W_{max}}{W_c} = \frac{W_{max}}{W_{.1}} \left[\frac{W_c}{W_{.1}}\right]^{-1}$$
 2.17

5. Combat.

- Defined as a time, t_{combat}
- Weight of fuel used during during combat is

$$W_i - W_f = C_{max} T_{max} t_{combat}.$$
 2.18

- TAKE CARE with Units!
- If ordnance is dropped, this weight is subtracted during combat.

- 6. Return cruise.
 - Either:
 - 1. Return to the point of origin to land.
 - 2. Continue on second half of the cruise phase.
 - Treated exactly like cruise out with **two possible exceptions**.
 - 1. Substantially lower weight \Rightarrow Increase in altitude for same lift.
 - 2. Substantially lower weight \Rightarrow Maintain altitude with added trim drag (lower L/D).
 - Largest effect for long-range aircraft.

7. Loiter.

- Based on Endurance equation.
- Two forms: for turbo-jet and reciprocating engines,

$$E = \frac{1}{C} \frac{L}{D} \ln \left[\frac{W_i}{W_f} \right]$$
 2.19*a*

$$E = \frac{\eta}{C} \frac{L}{D} \frac{1}{V} \ln\left[\frac{W_i}{W_f}\right]$$
 2.19b

where E is the endurance (loiter) time.

- Maximum endurance \Rightarrow maximize L/(DC).
- Initial approximation,

$$\left[\frac{L}{DC}\right]_{max} \simeq \left[\frac{L}{D}\right]_{max}.$$
 2.20

 L/D_{max} found as before.

• For propeller driven:

$$E = \frac{T}{P} \frac{L}{DC} \frac{1}{V} \ln \left[\frac{W_i}{W_f} \right]. \qquad 2.21$$

• Maximum endurance \Rightarrow shaft power , P, is a minimum $\Rightarrow L/D$ is a maximum.

8. Landing.

• Emperical like take-off

$$0.97 \le \frac{W_f}{W_i} \le 0.975.$$
 2.22

Total take-off weight.

$$(W_{landing}/W_{take-off})_{fuel} = \frac{W_2}{W_1} \frac{W_3}{W_2} \cdots \frac{W_N}{W_{N-1}}$$
 2.4

- \bullet Add 5% reserve and 1% trapped fuel.
- The structure weight is determined from the structure coefficient,

$$s = \frac{W_{empty}}{W_{TO}}$$
 2.23

• Historical trends:

$s = AW_{TO}^C$	A	C
Sailplane (unpowered)	0.86	-0.05
Sailplane (powered)	0.91	-0.05
Homebuilt (metal/wood)	1.19	-0.09
Homebuilt (composite)	0.99	-0.09
Homebuilt (composite)	0.99	-0.09
General aviation (single engine	e)2.36	-0.18
General aviation (twin engine)	1.51	-0.10
Twin turboprop	0.96	-0.05
Jet trainer	1.59	-0.10
Jet fighter	2.34	-0.13
Military cargo/bomber	0.93	-0.07
Jet transport	1.02	-0.06

• The final take-off weight

$$W_{TO} = W_{fuel} + W_{payload} + W_{empty}.$$
 2.1

- The difference between the available empty weight and the <u>required</u> empty weight gives the surplus empty weight **which should be zero**.
- This requires an **iterative approach** where an initial take-off weight is guessed.

Spread sheet approach for take-off weight estimate.

• **itertow.xls**: "Iter" refers to the fact that the calculations use iterative steps to reach the solution of the take-off weight.

	Mission Requirements					
Max. Mach	2.1					
Cruise Mach	2.1					
Cruise Alt. (ft)	55,000					
Oper. Rad. (nm)	2,000					
Engine: TSFC Min.	0.9		100,000	.00		
Engine: TSFC Max.	2.17		90,000	.00		
Engine: Thrust (lbs)	108,540		70.000	.00		[
Aspect Ratio	2	\square	iu 60,000	.00		[
Combat: Time (min)	0		Š 50,000.	.00	<u> </u>	
Combat: Altitude (ft)	30,000		9 40,000	.00 +		
Loiter: Time (min)	10	\square	► 30,000	.00 + + + 00		Kow 23
Loiter: Altitude (ft)	0	\square	20,000	.00 + + + + 00		
Fuel Reserve (%)	5	\square	10,000.			
Trapped Fuel (%)	1	\square	0.			Colu
Structure Factor	0.5	\square		mn 3 mn 4 mn	5 mn 6 mn 7 mn 8	mn 9
		П		lte	eration No.	Π
Payload: Exp. (lb)	0					
Payload: Non-exp. (lb)	4000					
		Iter	ration 1	Iteration 2	Iteration 3	Iteration 4
Weight: T–O (estimated)	40,000	4	0,000.00	42,232.50	90,523.17	90,523.17
Weight: T–O (final)		4	2,232.50	44,366.34	90,523.17	90,523.17
Surplus Empty Wt. (Ibs)		-	2,232.50	-2,133.85	0.00	0.00
1. Start–up & T–O		3	9,000.00	41,176.68	88,260.09	88,260.09
2. Climb & Accel. to Cruise		3	6,153.00	38,170.79	81,817.10	81,817.10
3a. L/D			7.59	7.59	7.59	7.59
3b. V (f/s)			1,925.70	1,925.70	1,925.70	1,925.70
3c. Cruise to destination		2	9,364.58	31,003.49	66,454.38	66,454.38
4. Accel. to high speed		2	9,364.58	31,003.49	66,454.38	66,454.38
5. Combat		2	9,364.58	31,003.49	66,454.38	66,454.38
6. Drop Exp. Payload		2	9,364.58	31,003.49	66,454.38	66,454.38
7. Cruise back		2	3,850.82	25,182.00	53,976.30	53,976.30
7. Loiter		2	3,384.13	24,689.26	52,920.15	52,920.15
8. Land		2	2,799.53	24,072.03	51,597.15	51,597.15
Total Fuel Wt. (lbs)		1	8,232.50	19,250.10	41,261.58	41,261.58
Available Empty Wt. (lbs)		1	7,767.50	18,982.40	45,261.58	45,261.58
Required Empty Wt. (lbs)		2	20,000.00	21,116.25	45,261.58	45,261.58

