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Principal fibrations and homotopy classes of maps

A principal fibration is a fibration p : E → B which is the pull back
of the path-loop fibration of a space C with respect to a map
θ : B → C .

Remarks: Fibration means having the homotopy lifting property
for all spaces.

X × [0, 1] B

EX × 0
∩

H
p

h

X × [0, 1] B

EX × 0
∩

H
p

h

These are sometimes called Hurewicz fibrations.
Spaces are based as are maps so there is a base point ∗ = ∗E ∈ E
with p(∗) = ∗B ∈ B and θ

(
p(∗)
)

= ∗C ∈ C the corresponding base
points.
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Many problems in topology can be reduced to computing [X ,E ]
for X some space and E the total space of a principal fibration.

I The bracket notation means based homotopy classes of maps.
I [X ,E ] is based by bE the constant map to the base point in E .
I X is not required to be path connected.

Examples
I [X ,K (Z, n)] is Hn(X ; Z): B is a point and C = K (Z, n − 1).
I Stable vector bundles over X : B is a point and C = Ω−1BO
I n-dimensional vector bundles over X : B = BO(n + 1) and

C = Ω−1Sn.
I A stable two stage Postnikov system for E .
I E = S2, B = CP∞, C = HP∞ and θ : CP∞ → HP∞ is the

usual map.

[M4,S2] comes up in studying broken Lefschetz fibrations
on the 4-manifold M4.
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The classical theorem

The fibre of the fibration is F = p−1(∗B).

The fibre is based since
∗E ∈ F .
For any based space Y , let ΩY denote the space of loops based at
the base point. F = ΩC up to based homotopy.

Theorem (Version 1 - Peterson [4] and Nomura [3])
For any based space X the following sequence of based sets is exact

· · · → [X ,ΩB]→ [X ,ΩC ]→ [X ,E ]→ [X ,B]→ [X ,C ]

The case X = Sk gives the long exact homotopy sequence for a
fibration.
The proof is worth recalling.
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The qualifying exam proof

By the homotopy lifting property any based map of X → B which
is null homotopic lifts to a based map X → E .

To prepare for further results recall that any map f : Y0 → Y1 can
be made into a fibration. Define the total space
Ef =

{
(y , λ) ∈ Y0 × Y [0,1]

1
∣∣f (y) = λ(0)

}
and the projection

p : Ef → Y1 defined by p(y , λ) = λ(1). The projection p is a
fibration. The map ι : Y0 → Ef defined by
ι(y) =

(
y , constant path at p(y)

)
is a homotopy equivalence. If f

is based by ∗Y1 and f (∗Y1) = ∗Y0 , (∗Y1 , constant path at ∗Y0) is
the base point for Ef .
If f is a fibration, ι is a fibre homotopy equivalence. The fibre of p
is ΩY1 by inspection.
One can always use this model for the total space of a principal
fibration: b ∈ B, λ ∈ C [0,1], λ(0) = p(b).
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Theorem (The Peterson and Thomas improvement [5])

I The group [X ,ΩC ] acts on the set [X ,E ] on the left.
I The map p# identifies the orbit space with θ−1

# (bC ).
I The isotropy subgroup of bE is the image of [X ,ΩB] in

[X ,ΩC ].

· · · → [X ,ΩB]→ [X ,ΩC ]→ [X ,E ]
p#−−→ [X ,B]

θ#−−→ [X ,C ]

Proof.
The action comes from an action of spaces ΩC × E → E . A
point in E is a point b ∈ B and a path λ ∈ C starting at ∗C , the
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The right action

Why not try to add loops on the right?

Because it doesn’t work!
The other end of the path won’t hold still. Just because it’s a bad
idea doesn’t mean you should give up.
For any space Y let £Y denote the space of free loops on Y .
If Y has a base point ∗Y then the constant map of S1 to Y is the
base point of £Y . The projection p : £Y → Y defined by
p(Λ) = Λ(1) where Λ ∈ £Y and 1 ∈ S1 is a fibration with fibre
ΩY where the loops are based at Λ(1).
Given any map f : X → Y , define Liftf (X ,Y ) to be based maps
X → £Y which lift f modulo homotopies which cover the
constant homotopy of f .

I Liftf (X ,Y ) is a group by addition of paths.
I If f0 is homotopic to f1, Liftf0(X ,Y ) is isomorphic to

Liftf1(X ,Y ).
I If f is null homotopic Liftf (X ,Y ) is isomorphic to [X ,ΩY ].
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Theorem (Final Version)

I The group [X ,ΩC ] acts on the set [X ,E ] on the right.
I The map p# identifies the orbit space with θ−1

# (bC ).
I The isotropy subgroup of a lift of f : X → B is the image of

Liftf (X ,B) in [X ,ΩC ].

· · · → Liftf (X ,B)→ [X ,ΩC ]→ [X ,E ]
p#−−→ [X ,B]

θ#−−→ [X ,C ]

1. [X ,ΩC ] still only depends on X and C .
2. Liftf (X ,B) depends on X and B and f .
3. The map may depend on everything.
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Maps of a 4-complex to a 2-sphere

The “Yes” answer to “Is this of any real use?” is best supplied by
example.

I was commissioned to compute [M4, S2] for M a 4-manifold.
While not finding the answer in the literature I was reminded of
Pontryagin’s calculation [6] of [K 3,S2] for K 3 a 3-complex.
Since it’s no harder we might as well do [K 4,S2] and this will
recover Pontryagin’s result as well.
I was also reminded of Steenrod’s enumeration of [K k+1, Sk ] for
k > 2 which introduced the Steenrod operations [8].

The principal fibration used here is

S2 p−→ CP∞ θ−→ HP∞

The sequence becomes
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Since it’s no harder we might as well do [K 4,S2] and this will
recover Pontryagin’s result as well.
I was also reminded of Steenrod’s enumeration of [K k+1, Sk ] for
k > 2 which introduced the Steenrod operations [8].

The principal fibration used here is

S2 p−→ CP∞ θ−→ HP∞

The sequence becomes



Liftf (X , S1)→ [X , S3]→ [X , S2]
p#−−→ [X ,CP∞]

θ#−−→ [X ,HP∞]

The first two terms in the sequence are not so bad.
[X ,CP∞] = H2(X ; Z) in general.
In general [X ,HP∞] is not so easy, but for a 4-complex,
[X ,HP∞] = H4(X ; Z) and the map θ#(x) = x ∪ x ∈ H4(X ; Z)
for all x ∈ H2(X ; Z). Hence [X , S2]→ Q is onto, where
Q =

{
x ∈ H2(X ; Z)

∣∣ x ∪ x = 0
}
.

Next the group [X ,ΩHP∞] = [X ,S3] fits in an exact sequence

H2(X ; Z)
Sq2
−−−−→ H4(X ; Z/2Z)→ [X , S3]→ H3(X ; Z)→ 0

by the result of Steenrod.
For dimensional reasons, S3 can be replaced by a 2-stage
Postnikov system which is an infinite loop space so for the
complexes considered here [X ,S3] is an abelian group.
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H2(X ; Z)
Sq2
−−−→ H4(X ; Z/2Z)→ [X , S3]→ H3(X ; Z)→ 0

The above sequence does not determine the group structure on
[X ,S3].
A result of Larmore and Thomas [2] does. In this case it says

Theorem
Let X be a finite complex of dimension 6 4. Fix γ ∈ H3(X ; Z) and
suppose there is a k > 1 such that 2kγ = 0. Pick
γ′ ∈ H2(X ; Z/2kZ) with δk(γ′) = γ. Reduce γ′ mod 2 and
compute Sq2(γ′) ∈ H4(X ; Z/2Z)/Sq2(H2(X ; Z)

)
⊂ [X ,S3]. For

any γ̄ ∈ [X ,S3] which maps to γ, 2k γ̄ = Sq2(γ′).

This theorem explains how to decide if a Z/2kZ summand of
H3(X ; Z) is a summand of [X , S3] or is hit by a Z/2k+1Z
summand.
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H2(X ; Z)
Sq2
−−−→ H4(X ; Z/2Z)→ [X , S3]→ H3(X ; Z)→ 0

Example
Suppose X is a complex of dimension 6 4 and suppose that
Sq2 : H2(X ; Z)→ H4(X ; Z/2Z) and
Sq2 : H2(X ; Z/2Z)→ H4(X ; Z/2Z) have the same image. Then
[X ,S3] = coker(Sq2)⊕ H3(X ; Z).

Example
If X is Habegger’s manifold [1] or an Enrique’s surface, then
Sq2 : H2(X ; Z)→ H4(X ; Z/2Z) is zero but
Sq2 : H2(X ; Z/2Z)→ H4(X ; Z/2Z) is onto. Since
H3(X ; Z) = Z/2Z it follows that [X ,S3] ∼= Z/4Z.
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Liftf (X ,CP∞)→ [X , S3]→ [X , S2]
p−→ H2(X ; Z)

x ∪ x−−−−→ H4(X ; Z)

It remains to work out the homomorphism

Liftf (X ,CP∞)→ [X ,S3] = LiftbHP∞ (X ,HP∞)

given f ∈ [X , S2].

Since CP∞ is an H-space, the group of lifts is
independent of f and so it is H1(X ; Z). To determine the map

ψf : H1(X ; Z)→ [X , S3]

proceed as follows. The map HP∞ → ΩΣHP∞ is connected
enough that ΩΣHP∞ can be used in place of HP∞. It is perhaps
easier for purposes of exposition to pretend that HP∞ is an
H-space.
If the map £CP∞ → £HP∞ were an H-map, the calculation
would be easy, but alas it is not.
The H-space structure gives decompositions

ΩCP∞ × CP∞
∼=−−→ £CP∞ → £HP∞

∼=−−→ ΩHP∞ ×HP∞
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ψf : H1(X ; Z)→ [X , S3]

An old formula of Rutter’s [7] can be explained in terms of
Zabrodsky’s deviation from being an H-map [9].

Zabrodsky’s
deviation is a map

ΩCP∞ ∧ CP∞ → ΩHP∞

In the case here, it is only necessary to determine the deviation on
the S3 ⊂ ΩCP∞ ∧ CP∞ and this is determined by the induced
map H3(£CP∞; Z) ∼= Z→ H3(£HP∞; Z) ∼= Z which is
multiplication by ±2. (This is not obvious.)
It follows that the map ψf : H1(X ; Z)→ [X ,S3] is determined as
follows.

I For x ∈ H1(X ; Z) calculate x ∪ p(f ) ∈ H3(X ; Z).

I Recall the surjection [X ,S3]→ H3(X ; Z)
I Lift x ∪ p(f ) to [X ,S3] and then multiply by 2.

I Since H4(X ; Z/2Z)→ [X , S3]→ H3(X ; Z) is exact, the lift
may not unique but twice it is.
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deviation is a map
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In the case here, it is only necessary to determine the deviation on
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multiplication by ±2. (This is not obvious.)
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Example (Pontryagin)
Let X = S2 × S1. Then H2(X ; Z) ∼= Z: let γ be a generator. If
β = cγ then there are maps f : X → S2 such that β = p(f ) and
there is a bĳection between p−1

# (β) and Z if c = 0 and Z/2cZ
otherwise.

Example
Let X = S2 × S1 × S1. Let {a1, a2} ⊂ H1(X ; Z) ∼= Z⊕ Z be a
basis and let {a = a1 ∪ a2, b} ⊂ H2(X ; Z) be a basis. It follows
that {b ∪ a1, b ∪ a2} is a basis for H3(X ; Z). Then β = aa + bb

has square 0 if and only if a · b = 0. If b = 0, then
coker(ψf ) = H3(X ; Z)⊕ Z/2Z ∼= Z2 ⊕ Z/2Z. If a = 0 and b 6= 0,
then the image of ψf is spanned by (2b) b∪ a1 and (2b) b∪ a2 and
so coker(ψf ) ∼= Z/2bZ⊕ Z/2bZ⊕ Z/2Z.
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