The Exact Sequence of a Principal Fibration

Laurence R. Taylor
taylor.2@nd.edu
University of Notre Dame and Institute for Advance Study
Rutgers Topology Seminar

Feb. 22, 2011

Principal fibrations and homotopy classes of maps Examples

Principal fibrations and homotopy classes of maps Examples

The classical theorem
Any map is a fibration

Principal fibrations and homotopy classes of maps Examples

The classical theorem
Any map is a fibration
Version 2 of the theorem

Principal fibrations and homotopy classes of maps Examples

The classical theorem
Any map is a fibration
Version 2 of the theorem
The right action

Principal fibrations and homotopy classes of maps Examples

The classical theorem
Any map is a fibration
Version 2 of the theorem
The right action
Final version of the theorem

Principal fibrations and homotopy classes of maps
Examples
The classical theorem
Any map is a fibration
Version 2 of the theorem
The right action
Final version of the theorem
Maps of a 4-complex to a 2-sphere
Right hand terms
The group structure on the 3 -sphere term
Some examples of the group structure
The last map
The last map II
Two calculations

Principal fibrations and homotopy classes of maps

A principal fibration is a fibration $p: E \rightarrow B$ which is the pull back of the path-loop fibration of a space C with respect to a map $\theta: B \rightarrow C$.

Principal fibrations and homotopy classes of maps

A principal fibration is a fibration $p: E \rightarrow B$ which is the pull back of the path-loop fibration of a space C with respect to a map $\theta: B \rightarrow C$.

Remarks: Fibration means having the homotopy lifting property for all spaces.

Principal fibrations and homotopy classes of maps

A principal fibration is a fibration $p: E \rightarrow B$ which is the pull back of the path-loop fibration of a space C with respect to a map $\theta: B \rightarrow C$.

Remarks: Fibration means having the homotopy lifting property for all spaces.

Principal fibrations and homotopy classes of maps

A principal fibration is a fibration $p: E \rightarrow B$ which is the pull back of the path-loop fibration of a space C with respect to a map $\theta: B \rightarrow C$.

Remarks: Fibration means having the homotopy lifting property for all spaces.

These are sometimes called Hurewicz fibrations.

Principal fibrations and homotopy classes of maps

A principal fibration is a fibration $p: E \rightarrow B$ which is the pull back of the path-loop fibration of a space C with respect to a map $\theta: B \rightarrow C$.

Remarks: Fibration means having the homotopy lifting property for all spaces.

These are sometimes called Hurewicz fibrations. Spaces are based as are maps so there is a base point $*=*_{E} \in E$ with $p(*)=*_{B} \in B$ and $\theta(p(*))=*_{C} \in C$ the corresponding base points.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Examples

- $[X, K(\mathbb{Z}, n)]$ is $H^{n}(X ; \mathbb{Z}): B$ is a point and $C=K(\mathbb{Z}, n-1)$.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Examples

- $[X, K(\mathbb{Z}, n)]$ is $H^{n}(X ; \mathbb{Z}): B$ is a point and $C=K(\mathbb{Z}, n-1)$.
- Stable vector bundles over $X: B$ is a point and $C=\Omega^{-1} B O$

Many problems in topology can be reduced to computing $[X, E$] for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Examples

- $[X, K(\mathbb{Z}, n)]$ is $H^{n}(X ; \mathbb{Z}): B$ is a point and $C=K(\mathbb{Z}, n-1)$.
- Stable vector bundles over X : B is a point and $C=\Omega^{-1} B O$
- n-dimensional vector bundles over $X: B=B O(n+1)$ and $C=\Omega^{-1} S^{n}$.

Many problems in topology can be reduced to computing $[X, E$] for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Examples

- $[X, K(\mathbb{Z}, n)]$ is $H^{n}(X ; \mathbb{Z}): B$ is a point and $C=K(\mathbb{Z}, n-1)$.
- Stable vector bundles over X : B is a point and $C=\Omega^{-1} B O$
- n-dimensional vector bundles over $X: B=B O(n+1)$ and $C=\Omega^{-1} S^{n}$.
- A stable two stage Postnikov system for E.

Many problems in topology can be reduced to computing $[X, E$] for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Examples

- $[X, K(\mathbb{Z}, n)]$ is $H^{n}(X ; \mathbb{Z}): B$ is a point and $C=K(\mathbb{Z}, n-1)$.
- Stable vector bundles over X : B is a point and $C=\Omega^{-1} B O$
- n-dimensional vector bundles over $X: B=B O(n+1)$ and $C=\Omega^{-1} S^{n}$.
- A stable two stage Postnikov system for E.
- $E=S^{2}, B=\mathbf{C P}{ }^{\infty}, C=\mathbf{H} \mathbf{P}^{\infty}$ and $\theta: \mathbf{C P}^{\infty} \rightarrow \mathbf{H} \mathbf{P}^{\infty}$ is the usual map.

Many problems in topology can be reduced to computing $[X, E]$ for X some space and E the total space of a principal fibration.

- The bracket notation means based homotopy classes of maps.
- $[X, E]$ is based by \mathfrak{b}_{E} the constant map to the base point in E.
- X is not required to be path connected.

Examples

- $[X, K(\mathbb{Z}, n)]$ is $H^{n}(X ; \mathbb{Z}): B$ is a point and $C=K(\mathbb{Z}, n-1)$.
- Stable vector bundles over X : B is a point and $C=\Omega^{-1} B O$
- n-dimensional vector bundles over $X: B=B O(n+1)$ and $C=\Omega^{-1} S^{n}$.
- A stable two stage Postnikov system for E.
- $E=S^{2}, B=\mathbf{C P}{ }^{\infty}, C=\mathbf{H} \mathbf{P}^{\infty}$ and $\theta: \mathbf{C P}^{\infty} \rightarrow \mathbf{H} \mathbf{P}^{\infty}$ is the usual map.
[$\left.M^{4}, S^{2}\right]$ comes up in studying broken Lefschetz fibrations on the 4-manifold M^{4}.

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$.

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$. The fibre is based since $*_{E} \in F$.

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$. The fibre is based since $*_{E} \in F$.
For any based space Y, let ΩY denote the space of loops based at the base point.

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$. The fibre is based since $*_{E} \in F$.
For any based space Y, let ΩY denote the space of loops based at the base point. $F=\Omega C$ up to based homotopy.

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$. The fibre is based since $*_{E} \in F$.
For any based space Y, let ΩY denote the space of loops based at the base point. $F=\Omega C$ up to based homotopy.
Theorem (Version 1 - Peterson [4] and Nomura [3])
For any based space X the following sequence of based sets is exact

$$
\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \rightarrow[X, B] \rightarrow[X, C]
$$

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$. The fibre is based since $*_{E} \in F$.
For any based space Y, let ΩY denote the space of loops based at the base point. $F=\Omega C$ up to based homotopy.
Theorem (Version 1 - Peterson [4] and Nomura [3])
For any based space X the following sequence of based sets is exact

$$
\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \rightarrow[X, B] \rightarrow[X, C]
$$

The case $X=S^{k}$ gives the long exact homotopy sequence for a fibration.

The classical theorem

The fibre of the fibration is $F=p^{-1}\left(*_{B}\right)$. The fibre is based since $*_{E} \in F$.
For any based space Y, let ΩY denote the space of loops based at the base point. $F=\Omega C$ up to based homotopy.
Theorem (Version 1 - Peterson [4] and Nomura [3])
For any based space X the following sequence of based sets is exact

$$
\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \rightarrow[X, B] \rightarrow[X, C]
$$

The case $X=S^{k}$ gives the long exact homotopy sequence for a fibration.
The proof is worth recalling.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$. The projection p is a fibration.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$. The projection p is a fibration. The map $\iota: Y_{0} \rightarrow E_{f}$ defined by
$\iota(y)=(y$, constant path at $p(y))$ is a homotopy equivalence.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$. The projection p is a fibration. The map $\iota: Y_{0} \rightarrow E_{f}$ defined by
$\iota(y)=(y$, constant path at $p(y))$ is a homotopy equivalence. If f is based by $* Y_{1}$ and $f\left(* Y_{1}\right)=* Y_{0},\left(* Y_{1}\right.$, constant path at $\left.* Y_{0}\right)$ is the base point for E_{f}.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$. The projection p is a fibration. The map $\iota: Y_{0} \rightarrow E_{f}$ defined by
$\iota(y)=(y$, constant path at $p(y))$ is a homotopy equivalence. If f is based by $* Y_{1}$ and $f\left(* Y_{1}\right)=* Y_{0},\left(* Y_{1}\right.$, constant path at $\left.* Y_{0}\right)$ is the base point for E_{f}.
If f is a fibration, ι is a fibre homotopy equivalence.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$. The projection p is a fibration. The map $\iota: Y_{0} \rightarrow E_{f}$ defined by
$\iota(y)=(y$, constant path at $p(y))$ is a homotopy equivalence. If f is based by $* Y_{1}$ and $f\left(* Y_{1}\right)=* Y_{0},\left(* Y_{1}\right.$, constant path at $\left.* Y_{0}\right)$ is the base point for E_{f}.
If f is a fibration, ι is a fibre homotopy equivalence. The fibre of p is ΩY_{1} by inspection.

The qualifying exam proof

By the homotopy lifting property any based map of $X \rightarrow B$ which is null homotopic lifts to a based map $X \rightarrow E$.

To prepare for further results recall that any map $f: Y_{0} \rightarrow Y_{1}$ can be made into a fibration. Define the total space $E_{f}=\left\{(y, \lambda) \in Y_{0} \times Y_{1}^{[0,1]} \mid f(y)=\lambda(0)\right\}$ and the projection $p: E_{f} \rightarrow Y_{1}$ defined by $p(y, \lambda)=\lambda(1)$. The projection p is a fibration. The map $\iota: Y_{0} \rightarrow E_{f}$ defined by
$\iota(y)=(y$, constant path at $p(y))$ is a homotopy equivalence. If f is based by $* Y_{1}$ and $f\left(* Y_{1}\right)=* Y_{0},\left(* Y_{1}\right.$, constant path at $\left.* Y_{0}\right)$ is the base point for E_{f}.
If f is a fibration, ι is a fibre homotopy equivalence. The fibre of p is ΩY_{1} by inspection.
One can always use this model for the total space of a principal fibration: $b \in B, \lambda \in C^{[0,1]}, \lambda(0)=p(b)$.

Theorem (The Peterson and Thomas improvement [5])
$\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (The Peterson and Thomas improvement [5])

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the left.

$$
\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]
$$

Theorem (The Peterson and Thomas improvement [5])

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the left.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
$\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (The Peterson and Thomas improvement [5])

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the left.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of \mathfrak{b}_{E} is the image of $[X, \Omega B]$ in $[X, \Omega C]$.
$\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (The Peterson and Thomas improvement [5])

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the left.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of \mathfrak{b}_{E} is the image of $[X, \Omega B]$ in $[X, \Omega C]$.
$\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.
The action comes from an action of spaces $\Omega C \times E \rightarrow E$.

Theorem (The Peterson and Thomas improvement [5])

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the left.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of \mathfrak{b}_{E} is the image of $[X, \Omega B]$ in $[X, \Omega C]$.
$\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.
The action comes from an action of spaces $\Omega C \times E \rightarrow E . \quad$ A point in E is a point $b \in B$ and a path $\lambda \in C$ starting at $*_{C}$, the base point of C.

Theorem (The Peterson and Thomas improvement [5])

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the left.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of \mathfrak{b}_{E} is the image of $[X, \Omega B]$ in $[X, \Omega C]$.
$\cdots \rightarrow[X, \Omega B] \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.

The action comes from an action of spaces $\Omega C \times E \rightarrow E . \quad$ A point in E is a point $b \in B$ and a path $\lambda \in C$ starting at $*_{C}$, the base point of C. Given a loop, ℓ, at $*_{c}$ and (b, λ) construct a new point in $E,(b, \ell+\lambda)$.

The right action

Why not try to add loops on the right?

The right action

Why not try to add loops on the right? Because it doesn't work!

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up. For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$. The projection $p: £ Y \rightarrow Y$ defined by $p(\Lambda)=\Lambda(1)$ where $\Lambda \in £ Y$ and $1 \in S^{1}$ is a fibration with fibre ΩY where the loops are based at $\Lambda(1)$.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$. The projection $p: £ Y \rightarrow Y$ defined by $p(\Lambda)=\Lambda(1)$ where $\Lambda \in £ Y$ and $1 \in S^{1}$ is a fibration with fibre ΩY where the loops are based at $\Lambda(1)$.
Given any map $f: X \rightarrow Y$, define $\operatorname{Lift}_{f}(X, Y)$ to be based maps $X \rightarrow £ Y$ which lift f

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$. The projection $p: £ Y \rightarrow Y$ defined by $p(\Lambda)=\Lambda(1)$ where $\Lambda \in £ Y$ and $1 \in S^{1}$ is a fibration with fibre ΩY where the loops are based at $\Lambda(1)$.
Given any map $f: X \rightarrow Y$, define $\operatorname{Lift}_{f}(X, Y)$ to be based maps $X \rightarrow £ Y$ which lift f modulo homotopies which cover the constant homotopy of f.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$. The projection $p: £ Y \rightarrow Y$ defined by $p(\Lambda)=\Lambda(1)$ where $\Lambda \in £ Y$ and $1 \in S^{1}$ is a fibration with fibre ΩY where the loops are based at $\Lambda(1)$.
Given any map $f: X \rightarrow Y$, define $\operatorname{Lift}_{f}(X, Y)$ to be based maps $X \rightarrow £ Y$ which lift f modulo homotopies which cover the constant homotopy of f.

- $\operatorname{Lift}_{f}(X, Y)$ is a group by addition of paths.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$. The projection $p: £ Y \rightarrow Y$ defined by $p(\Lambda)=\Lambda(1)$ where $\Lambda \in £ Y$ and $1 \in S^{1}$ is a fibration with fibre ΩY where the loops are based at $\Lambda(1)$.
Given any map $f: X \rightarrow Y$, define $\operatorname{Lift}_{f}(X, Y)$ to be based maps $X \rightarrow £ Y$ which lift f modulo homotopies which cover the constant homotopy of f.

- $\operatorname{Lift}_{f}(X, Y)$ is a group by addition of paths.
- If f_{0} is homotopic to f_{1}, $\operatorname{Lift}_{f_{0}}(X, Y)$ is isomorphic to $\operatorname{Lift}_{f_{1}}(X, Y)$.

The right action

Why not try to add loops on the right? Because it doesn't work! The other end of the path won't hold still. Just because it's a bad idea doesn't mean you should give up.
For any space Y let $£ Y$ denote the space of free loops on Y. If Y has a base point $*_{Y}$ then the constant map of S^{1} to Y is the base point of $£ Y$. The projection $p: £ Y \rightarrow Y$ defined by $p(\Lambda)=\Lambda(1)$ where $\Lambda \in £ Y$ and $1 \in S^{1}$ is a fibration with fibre ΩY where the loops are based at $\Lambda(1)$.
Given any map $f: X \rightarrow Y$, define $\operatorname{Lift}_{f}(X, Y)$ to be based maps $X \rightarrow £ Y$ which lift f modulo homotopies which cover the constant homotopy of f.

- $\operatorname{Lift}_{f}(X, Y)$ is a group by addition of paths.
- If f_{0} is homotopic to f_{1}, $\operatorname{Lift}_{f_{0}}(X, Y)$ is isomorphic to $\operatorname{Lift}_{f_{1}}(X, Y)$.
- If f is null homotopic $\operatorname{Lift}_{f}(X, Y)$ is isomorphic to $[X, \Omega Y]$.

Theorem (Final Version)
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of a lift of $f: X \rightarrow B$ is the image of $\operatorname{Lift}_{f}(X, B)$ in $[X, \Omega C]$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of a lift of $f: X \rightarrow B$ is the image of $\operatorname{Lift}_{f}(X, B)$ in $[X, \Omega C]$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.

Here $[X, \Omega C]$ has been identified with $\operatorname{Lift}_{\mathfrak{b}_{C}}(X, C)$. All the maps are induced by the corresponding maps of spaces. The actions are the right actions.

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of a lift of $f: X \rightarrow B$ is the image of $\operatorname{Lift}_{f}(X, B)$ in $[X, \Omega C]$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.

Here $[X, \Omega C]$ has been identified with $\operatorname{Lift}_{\mathfrak{b}_{C}}(X, C)$. All the maps are induced by the corresponding maps of spaces. The actions are the right actions.
Is this of any real use?

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of a lift of $f: X \rightarrow B$ is the image of $\operatorname{Lift}_{f}(X, B)$ in $[X, \Omega C]$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.

Here $[X, \Omega C]$ has been identified with $\operatorname{Lift}_{\mathfrak{b}_{C}}(X, C)$. All the maps are induced by the corresponding maps of spaces. The actions are the right actions.
Is this of any real use?

1. $[X, \Omega C]$ still only depends on X and C.

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of a lift of $f: X \rightarrow B$ is the image of $\operatorname{Lift}_{f}(X, B)$ in $[X, \Omega C]$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.

Here $[X, \Omega C]$ has been identified with $\operatorname{Lift}_{\mathfrak{b}_{C}}(X, C)$. All the maps are induced by the corresponding maps of spaces. The actions are the right actions.
Is this of any real use?

1. $[X, \Omega C]$ still only depends on X and C.
2. $\operatorname{Lift}_{f}(X, B)$ depends on X and B and f.

Theorem (Final Version)

- The group $[X, \Omega C]$ acts on the set $[X, E]$ on the right.
- The map $p_{\#}$ identifies the orbit space with $\theta_{\#}^{-1}\left(\mathfrak{b}_{C}\right)$.
- The isotropy subgroup of a lift of $f: X \rightarrow B$ is the image of $\operatorname{Lift}_{f}(X, B)$ in $[X, \Omega C]$.
$\cdots \rightarrow \operatorname{Lift}_{f}(X, B) \rightarrow[X, \Omega C] \rightarrow[X, E] \xrightarrow{p_{\#}}[X, B] \xrightarrow{\theta_{\#}}[X, C]$

Proof.

Here $[X, \Omega C]$ has been identified with $\operatorname{Lift}_{\mathfrak{b}_{C}}(X, C)$. All the maps are induced by the corresponding maps of spaces. The actions are the right actions.
Is this of any real use?

1. $[X, \Omega C]$ still only depends on X and C.
2. $\operatorname{Lift}_{f}(X, B)$ depends on X and B and f.
3. The map may depend on everything.

Maps of a 4-complex to a 2-sphere

The "Yes" answer to "Is this of any real use?" is best supplied by example.

Maps of a 4-complex to a 2-sphere

I was commissioned to compute $\left[M^{4}, S^{2}\right]$ for M a 4-manifold.

Maps of a 4-complex to a 2-sphere

I was commissioned to compute $\left[M^{4}, S^{2}\right]$ for M a 4-manifold. While not finding the answer in the literature I was reminded of Pontryagin's calculation [6] of $\left[K^{3}, S^{2}\right]$ for K^{3} a 3-complex.

Maps of a 4-complex to a 2-sphere

I was commissioned to compute $\left[M^{4}, S^{2}\right]$ for M a 4-manifold. While not finding the answer in the literature I was reminded of Pontryagin's calculation [6] of $\left[K^{3}, S^{2}\right]$ for K^{3} a 3-complex. Since it's no harder we might as well do $\left[K^{4}, S^{2}\right]$ and this will recover Pontryagin's result as well.

Maps of a 4-complex to a 2-sphere

I was commissioned to compute $\left[M^{4}, S^{2}\right]$ for M a 4-manifold. While not finding the answer in the literature I was reminded of Pontryagin's calculation [6] of $\left[K^{3}, S^{2}\right]$ for K^{3} a 3-complex. Since it's no harder we might as well do $\left[K^{4}, S^{2}\right]$ and this will recover Pontryagin's result as well.
I was also reminded of Steenrod's enumeration of $\left[K^{k+1}, S^{k}\right]$ for $k>2$ which introduced the Steenrod operations [8].

Maps of a 4-complex to a 2-sphere

I was commissioned to compute $\left[M^{4}, S^{2}\right]$ for M a 4-manifold.
While not finding the answer in the literature I was reminded of Pontryagin's calculation [6] of $\left[K^{3}, S^{2}\right]$ for K^{3} a 3-complex.
Since it's no harder we might as well do $\left[K^{4}, S^{2}\right]$ and this will recover Pontryagin's result as well.
I was also reminded of Steenrod's enumeration of $\left[K^{k+1}, S^{k}\right]$ for $k>2$ which introduced the Steenrod operations [8].

The principal fibration used here is

$$
S^{2} \xrightarrow{p} \mathbf{C} \mathbf{P}^{\infty} \xrightarrow{\theta} \mathbf{H} \mathbf{P}^{\infty}
$$

Maps of a 4-complex to a 2-sphere

I was commissioned to compute $\left[M^{4}, S^{2}\right]$ for M a 4-manifold.
While not finding the answer in the literature I was reminded of Pontryagin's calculation [6] of $\left[K^{3}, S^{2}\right]$ for K^{3} a 3-complex.
Since it's no harder we might as well do $\left[K^{4}, S^{2}\right]$ and this will recover Pontryagin's result as well.
I was also reminded of Steenrod's enumeration of $\left[K^{k+1}, S^{k}\right]$ for $k>2$ which introduced the Steenrod operations [8].

The principal fibration used here is

$$
S^{2} \xrightarrow{p} \mathbf{C P}^{\infty} \xrightarrow{\theta} \mathbf{H} \mathbf{P}^{\infty}
$$

The sequence becomes
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C} \mathbf{P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$

The first two terms in the sequence are not so bad.
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C} \mathbf{P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$

The first two terms in the sequence are not so bad. $\left[X, \mathbf{C P}^{\infty}\right]=H^{2}(X ; \mathbb{Z})$ in general.
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C} \mathbf{P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$

The first two terms in the sequence are not so bad. $\left[X, \mathbf{C P}^{\infty}\right]=H^{2}(X ; \mathbb{Z})$ in general.
In general $\left[X, \mathbf{H P}^{\infty}\right]$ is not so easy, but for a 4-complex, $\left[X, \mathbf{H P}^{\infty}\right]=H^{4}(X ; \mathbb{Z})$
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$

The first two terms in the sequence are not so bad. $\left[X, \mathbf{C P}^{\infty}\right]=H^{2}(X ; \mathbb{Z})$ in general.
In general $\left[X, \mathbf{H P}^{\infty}\right]$ is not so easy, but for a 4-complex, $\left[X, \mathbf{H P}^{\infty}\right]=H^{4}(X ; \mathbb{Z})$ and the map $\theta_{\#}(x)=x \cup x \in H^{4}(X ; \mathbb{Z})$ for all $x \in H^{2}(X ; \mathbb{Z})$.
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$

The first two terms in the sequence are not so bad.
$\left[X, \mathbf{C P}^{\infty}\right]=H^{2}(X ; \mathbb{Z})$ in general.
In general $\left[X, \mathbf{H} \mathbf{P}^{\infty}\right]$ is not so easy, but for a 4-complex, $\left[X, \mathbf{H P}^{\infty}\right]=H^{4}(X ; \mathbb{Z})$ and the map $\theta_{\#}(x)=x \cup x \in H^{4}(X ; \mathbb{Z})$ for all $x \in H^{2}(X ; \mathbb{Z})$. Hence $\left[X, S^{2}\right] \rightarrow Q$ is onto, where
$Q=\left\{x \in H^{2}(X ; \mathbb{Z}) \mid x \cup x=0\right\}$.
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$
The first two terms in the sequence are not so bad.
$\left[X, \mathbf{C P}^{\infty}\right]=H^{2}(X ; \mathbb{Z})$ in general.
In general $\left[X, \mathbf{H P}^{\infty}\right]$ is not so easy, but for a 4-complex, $\left[X, \mathbf{H P}^{\infty}\right]=H^{4}(X ; \mathbb{Z})$ and the map $\theta_{\#}(x)=x \cup x \in H^{4}(X ; \mathbb{Z})$ for all $x \in H^{2}(X ; \mathbb{Z})$. Hence $\left[X, S^{2}\right] \rightarrow Q$ is onto, where $Q=\left\{x \in H^{2}(X ; \mathbb{Z}) \mid x \cup x=0\right\}$.

Next the group $\left[X, \Omega \mathbf{H} \mathbf{P}^{\infty}\right]=\left[X, S^{3}\right]$ fits in an exact sequence

$$
H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0
$$

by the result of Steenrod.
$\operatorname{Lift}_{f}\left(X, S^{1}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p_{\#}}\left[X, \mathbf{C P}^{\infty}\right] \xrightarrow{\theta_{\#}}\left[X, \mathbf{H P}^{\infty}\right]$
The first two terms in the sequence are not so bad.
$\left[X, \mathbf{C P}^{\infty}\right]=H^{2}(X ; \mathbb{Z})$ in general.
In general $\left[X, \mathbf{H P}^{\infty}\right]$ is not so easy, but for a 4-complex, $\left[X, \mathbf{H P}^{\infty}\right]=H^{4}(X ; \mathbb{Z})$ and the map $\theta_{\#}(x)=x \cup x \in H^{4}(X ; \mathbb{Z})$ for all $x \in H^{2}(X ; \mathbb{Z})$. Hence $\left[X, S^{2}\right] \rightarrow Q$ is onto, where $Q=\left\{x \in H^{2}(X ; \mathbb{Z}) \mid x \cup x=0\right\}$.

Next the group $\left[X, \Omega \mathbf{H} \mathbf{P}^{\infty}\right]=\left[X, S^{3}\right]$ fits in an exact sequence

$$
H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0
$$

by the result of Steenrod.
For dimensional reasons, S^{3} can be replaced by a 2 -stage Postnikov system which is an infinite loop space so for the complexes considered here $\left[X, S^{3}\right]$ is an abelian group.

$$
H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0
$$

$H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0$

The above sequence does not determine the group structure on $\left[X, S^{3}\right]$.
$H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0$

The above sequence does not determine the group structure on [X, S^{3}].
A result of Larmore and Thomas [2] does. In this case it says
Theorem
Let X be a finite complex of dimension $\leqslant 4$. Fix $\gamma \in H^{3}(X ; \mathbb{Z})$ and suppose there is a $k \geqslant 1$ such that $2^{k} \gamma=0$. Pick $\gamma^{\prime} \in H^{2}\left(X ; \mathbb{Z} / 2^{k} \mathbb{Z}\right)$ with $\delta_{k}\left(\gamma^{\prime}\right)=\gamma$. Reduce $\gamma^{\prime} \bmod 2$ and compute $S q^{2}\left(\gamma^{\prime}\right) \in H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) / S q^{2}\left(H^{2}(X ; \mathbb{Z})\right) \subset\left[X, S^{3}\right]$. For any $\bar{\gamma} \in\left[X, S^{3}\right]$ which maps to $\gamma, 2^{k} \bar{\gamma}=S q^{2}\left(\gamma^{\prime}\right)$.
$H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0$

The above sequence does not determine the group structure on [X, S^{3}].
A result of Larmore and Thomas [2] does. In this case it says
Theorem
Let X be a finite complex of dimension $\leqslant 4$. Fix $\gamma \in H^{3}(X ; \mathbb{Z})$ and suppose there is a $k \geqslant 1$ such that $2^{k} \gamma=0$. Pick $\gamma^{\prime} \in H^{2}\left(X ; \mathbb{Z} / 2^{k} \mathbb{Z}\right)$ with $\delta_{k}\left(\gamma^{\prime}\right)=\gamma$. Reduce $\gamma^{\prime} \bmod 2$ and compute $S q^{2}\left(\gamma^{\prime}\right) \in H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) / S q^{2}\left(H^{2}(X ; \mathbb{Z})\right) \subset\left[X, S^{3}\right]$. For any $\bar{\gamma} \in\left[X, S^{3}\right]$ which maps to $\gamma, 2^{k} \bar{\gamma}=S q^{2}\left(\gamma^{\prime}\right)$.

This theorem explains how to decide if a $\mathbb{Z} / 2^{k} \mathbb{Z}$ summand of $H^{3}(X ; \mathbb{Z})$ is a summand of $\left[X, S^{3}\right]$ or is hit by a $\mathbb{Z} / 2^{k+1} \mathbb{Z}$ summand.
$H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0$

Example

Suppose X is a complex of dimension $\leqslant 4$ and suppose that $S q^{2}: H^{2}(X ; \mathbb{Z}) \rightarrow H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z})$ and
$S q^{2}: H^{2}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z})$ have the same image. Then $\left[X, S^{3}\right]=\operatorname{coker}\left(S q^{2}\right) \oplus H^{3}(X ; \mathbb{Z})$.
$H^{2}(X ; \mathbb{Z}) \xrightarrow{S q^{2}} H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z}) \rightarrow 0$

Example

Suppose X is a complex of dimension $\leqslant 4$ and suppose that $S q^{2}: H^{2}(X ; \mathbb{Z}) \rightarrow H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z})$ and
$S q^{2}: H^{2}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z})$ have the same image. Then $\left[X, S^{3}\right]=\operatorname{coker}\left(S q^{2}\right) \oplus H^{3}(X ; \mathbb{Z})$.

Example

If X is Habegger's manifold [1] or an Enrique's surface, then $S q^{2}: H^{2}(X ; \mathbb{Z}) \rightarrow H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z})$ is zero but $S q^{2}: H^{2}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z})$ is onto. Since $H^{3}(X ; \mathbb{Z})=\mathbb{Z} / 2 \mathbb{Z}$ it follows that $\left[X, S^{3}\right] \cong \mathbb{Z} / 4 \mathbb{Z}$.
$\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p} H^{2}(X ; \mathbb{Z}) \xrightarrow{x \cup x} H^{4}(X ; \mathbb{Z})$
It remains to work out the homomorphism

$$
\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right]=\operatorname{Lift}_{\mathfrak{b}_{H P} \infty}\left(X, \mathbf{H P}^{\infty}\right)
$$

given $f \in\left[X, S^{2}\right]$.
$\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p} H^{2}(X ; \mathbb{Z}) \xrightarrow{x \cup x} H^{4}(X ; \mathbb{Z})$
It remains to work out the homomorphism

$$
\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right]=\operatorname{Lift}_{\mathfrak{b}_{\mathrm{HP} \infty}}\left(X, \mathbf{H P}^{\infty}\right)
$$

given $f \in\left[X, S^{2}\right]$. Since $\mathbf{C P}{ }^{\infty}$ is an H -space, the group of lifts is independent of f and so it is $H^{1}(X ; \mathbb{Z})$. To determine the map

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

proceed as follows.
$\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p} H^{2}(X ; \mathbb{Z}) \xrightarrow{x \cup x} H^{4}(X ; \mathbb{Z})$
It remains to work out the homomorphism

$$
\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right]=\operatorname{Lift}_{\mathfrak{b}_{H \mathbf{P} \infty}}\left(X, \mathbf{H P}^{\infty}\right)
$$

given $f \in\left[X, S^{2}\right]$. Since $\mathbf{C P}{ }^{\infty}$ is an H -space, the group of lifts is independent of f and so it is $H^{1}(X ; \mathbb{Z})$. To determine the map

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

proceed as follows. The map $\mathbf{H P}^{\infty} \rightarrow \Omega \Sigma \mathbf{H} \mathbf{P}^{\infty}$ is connected enough that $\Omega \Sigma \mathbf{H} \mathbf{P}^{\infty}$ can be used in place of $\mathbf{H} \mathbf{P}^{\infty}$. It is perhaps easier for purposes of exposition to pretend that $\mathbf{H} \mathbf{P}^{\infty}$ is an H-space.
$\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p} H^{2}(X ; \mathbb{Z}) \xrightarrow{x \cup x} H^{4}(X ; \mathbb{Z})$
It remains to work out the homomorphism

$$
\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right]=\operatorname{Lift}_{\mathfrak{b}_{H P} \infty}\left(X, \mathbf{H P}^{\infty}\right)
$$

given $f \in\left[X, S^{2}\right]$. Since $\mathbf{C P}{ }^{\infty}$ is an H -space, the group of lifts is independent of f and so it is $H^{1}(X ; \mathbb{Z})$. To determine the map

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

proceed as follows. The map $\mathbf{H P}^{\infty} \rightarrow \Omega \Sigma \mathbf{H} \mathbf{P}^{\infty}$ is connected enough that $\Omega \Sigma \mathbf{H} \mathbf{P}^{\infty}$ can be used in place of $\mathbf{H} \mathbf{P}^{\infty}$. It is perhaps easier for purposes of exposition to pretend that $\mathbf{H} \mathbf{P}^{\infty}$ is an H-space.
If the map $£ \mathbf{C} \mathbf{P}^{\infty} \rightarrow £ \mathbf{H} \mathbf{P}^{\infty}$ were an H -map, the calculation would be easy, but alas it is not.
$\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right] \rightarrow\left[X, S^{2}\right] \xrightarrow{p} H^{2}(X ; \mathbb{Z}) \xrightarrow{x \cup x} H^{4}(X ; \mathbb{Z})$
It remains to work out the homomorphism

$$
\operatorname{Lift}_{f}\left(X, \mathbf{C P}^{\infty}\right) \rightarrow\left[X, S^{3}\right]=\operatorname{Lift}_{\mathfrak{b}_{H P} \infty}\left(X, \mathbf{H P}^{\infty}\right)
$$

given $f \in\left[X, S^{2}\right]$. Since $\mathbf{C P}{ }^{\infty}$ is an H -space, the group of lifts is independent of f and so it is $H^{1}(X ; \mathbb{Z})$. To determine the map

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

proceed as follows. The map $\mathbf{H P}^{\infty} \rightarrow \Omega \Sigma \mathbf{H} \mathbf{P}^{\infty}$ is connected enough that $\Omega \Sigma \mathbf{H} \mathbf{P}^{\infty}$ can be used in place of $\mathbf{H} \mathbf{P}^{\infty}$. It is perhaps easier for purposes of exposition to pretend that $\mathbf{H} \mathbf{P}^{\infty}$ is an H-space.
If the map $£ \mathbf{C P} \mathbf{P}^{\infty} \rightarrow £ \mathbf{H} \mathbf{P}^{\infty}$ were an H -map, the calculation would be easy, but alas it is not.
The H-space structure gives decompositions

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \times \mathbf{C} \mathbf{P}^{\infty} \xrightarrow{\cong} £ \mathbf{C} \mathbf{P}^{\infty} \rightarrow £ \mathbf{H} \mathbf{P}^{\infty} \xrightarrow{\cong} \Omega \mathbf{H} \mathbf{P}^{\infty} \times \mathbf{H} \mathbf{P}^{\infty}
$$

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9].

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

In the case here, it is only necessary to determine the deviation on the $S^{3} \subset \Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty}$ and this is determined by the induced map $H_{3}\left(£ \mathbf{C P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H_{3}\left(£ \mathbf{H P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is multiplication by ± 2. (This is not obvious.)

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

In the case here, it is only necessary to determine the deviation on the $S^{3} \subset \Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty}$ and this is determined by the induced map $H_{3}\left(£ \mathbf{C P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H_{3}\left(£ \mathbf{H P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is multiplication by ± 2. (This is not obvious.)
It follows that the map $\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]$ is determined as follows.

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

In the case here, it is only necessary to determine the deviation on the $S^{3} \subset \Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty}$ and this is determined by the induced map $H_{3}\left(£ \mathbf{C P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H_{3}\left(£ \mathbf{H P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is multiplication by ± 2. (This is not obvious.)
It follows that the map $\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]$ is determined as follows.

- For $x \in H^{1}(X ; \mathbb{Z})$ calculate $x \cup p(f) \in H^{3}(X ; \mathbb{Z})$.

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

In the case here, it is only necessary to determine the deviation on the $S^{3} \subset \Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty}$ and this is determined by the induced map $H_{3}\left(£ \mathbf{C P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H_{3}\left(£ \mathbf{H P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is multiplication by ± 2. (This is not obvious.)
It follows that the map $\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]$ is determined as follows.

- For $x \in H^{1}(X ; \mathbb{Z})$ calculate $x \cup p(f) \in H^{3}(X ; \mathbb{Z})$.
- Recall the surjection $\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z})$

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

In the case here, it is only necessary to determine the deviation on the $S^{3} \subset \Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty}$ and this is determined by the induced map $H_{3}\left(£ \mathbf{C P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H_{3}\left(£ \mathbf{H P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is multiplication by ± 2. (This is not obvious.)
It follows that the map $\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]$ is determined as follows.

- For $x \in H^{1}(X ; \mathbb{Z})$ calculate $x \cup p(f) \in H^{3}(X ; \mathbb{Z})$.
- Recall the surjection $\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z})$
- Lift $x \cup p(f)$ to $\left[X, S^{3}\right]$ and then multiply by 2 .

$$
\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]
$$

An old formula of Rutter's [7] can be explained in terms of Zabrodsky's deviation from being an H-map [9]. Zabrodsky's deviation is a map

$$
\Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty} \rightarrow \Omega \mathbf{H} \mathbf{P}^{\infty}
$$

In the case here, it is only necessary to determine the deviation on the $S^{3} \subset \Omega \mathbf{C} \mathbf{P}^{\infty} \wedge \mathbf{C} \mathbf{P}^{\infty}$ and this is determined by the induced map $H_{3}\left(£ \mathbf{C P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z} \rightarrow H_{3}\left(£ \mathbf{H P}^{\infty} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is multiplication by ± 2. (This is not obvious.)
It follows that the map $\psi_{f}: H^{1}(X ; \mathbb{Z}) \rightarrow\left[X, S^{3}\right]$ is determined as follows.

- For $x \in H^{1}(X ; \mathbb{Z})$ calculate $x \cup p(f) \in H^{3}(X ; \mathbb{Z})$.
- Recall the surjection $\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z})$
- Lift $x \cup p(f)$ to $\left[X, S^{3}\right]$ and then multiply by 2 .
- Since $H^{4}(X ; \mathbb{Z} / 2 \mathbb{Z}) \rightarrow\left[X, S^{3}\right] \rightarrow H^{3}(X ; \mathbb{Z})$ is exact, the lift may not unique but twice it is.

Example (Pontryagin)
Let $X=S^{2} \times S^{1}$. Then $H^{2}(X ; \mathbb{Z}) \cong \mathbb{Z}$: let γ be a generator. If $\beta=c \gamma$ then there are maps $f: X \rightarrow S^{2}$ such that $\beta=p(f)$ and there is a bijection between $p_{\#}^{-1}(\beta)$ and \mathbb{Z} if $c=0$ and $\mathbb{Z} / 2 c \mathbb{Z}$ otherwise.

Example (Pontryagin)

Let $X=S^{2} \times S^{1}$. Then $H^{2}(X ; \mathbb{Z}) \cong \mathbb{Z}$: let γ be a generator. If $\beta=c \gamma$ then there are maps $f: X \rightarrow S^{2}$ such that $\beta=p(f)$ and there is a bijection between $p_{\#}^{-1}(\beta)$ and \mathbb{Z} if $c=0$ and $\mathbb{Z} / 2 c \mathbb{Z}$ otherwise.

Example

Let $X=S^{2} \times S^{1} \times S^{1}$. Let $\left\{\mathfrak{a}_{1}, \mathfrak{a}_{2}\right\} \subset H^{1}(X ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}$ be a basis and let $\left\{\mathfrak{a}=\mathfrak{a}_{1} \cup \mathfrak{a}_{2}, \mathfrak{b}\right\} \subset H^{2}(X ; \mathbb{Z})$ be a basis. It follows that $\left\{\mathfrak{b} \cup \mathfrak{a}_{1}, \mathfrak{b} \cup \mathfrak{a}_{2}\right\}$ is a basis for $H^{3}(X ; \mathbb{Z})$. Then $\beta=a \mathfrak{a}+b \mathfrak{b}$ has square 0 if and only if $a \cdot b=0$. If $b=0$, then $\operatorname{coker}\left(\psi_{f}\right)=H^{3}(X ; \mathbb{Z}) \oplus \mathbb{Z} / 2 \mathbb{Z} \cong \mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$. If $a=0$ and $b \neq 0$, then the image of ψ_{f} is spanned by $(2 b) \mathfrak{b} \cup \mathfrak{a}_{1}$ and $(2 b) \mathfrak{b} \cup \mathfrak{a}_{2}$ and so $\operatorname{coker}\left(\psi_{f}\right) \cong \mathbb{Z} / 2 b \mathbb{Z} \oplus \mathbb{Z} / 2 b \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.
[1] Nathan Habegger, Une variété de dimension 4 avec forme d'intersection paire et signature -8, Comment. Math. Helv. 57 (1982), no. 1, 22-24 (French). MR672843 (83k:57018)
[2] Lawrence L. Larmore and Emery Thomas, Group extensions and principal fibrations, Math. Scand. 30 (1972), 227-248. MR0328935 (48 \#7277)
[3] Yasutoshi Nomura, On mapping sequences, Nagoya Math. J. 17 (1960), 111-145. MR0132545 (24 \#A2385)
[4] Franklin P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc. 86 (1957), 197-211. MR0105679 (21 \#4417)
[5] Franklin P. Peterson and Emery Thomas, A note on non-stable cohomology operations, Bol. Soc. Mat. Mexicana (2) 3 (1958), 13-18. MR0105680 (21 \#4418)
[6] Lev Semenovich Pontrjagin, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 331-363 (English, with Russian summary). MR0004780 (3,60g)
[7] John W. Rutter, A homotopy classification of maps into an induced fibre space, Topology 6 (1967), 379-403. MR0214070 (35 \#4922)
[8] Norman E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290-320. MR0022071 (9,154a)
[9] Alexander Zabrodsky, Hopf spaces, North-Holland Publishing Co., Amsterdam, 1976. North-Holland Mathematics Studies, Vol. 22; Notas de Matemática, No. 59. MR0440542 (55 \#13416)

